SHORT COMMUNICATIONS

Unusual Reactivity of α-Aminopapaverine

D. V. Krivorotov^a, M. V. Vorob'ev^a, V. A. Polukeev^b, M. L. Petrov^a, E. N. Glibin^{† a}, and A. V. Didenko^a

^a St. Petersburg State Institute of Technology, Moskovskii pr. 26, St. Petersburg, 190013 Russia e-mail: den@orgchem.spb.ru

b "Vekton" Ltd., St. Petersburg, Russia

Received October 26, 2005

DOI: 10.1134/S1070428006060248

The chemistry of α -aminopapaverine [I, (6,7-dimethoxyisoquinolin-1-yl)-3,4-dimethoxyphenylmethanamine] has been studied very poorly, though Lespagnol et al. [1] reported on the synthesis of amides by treatment of α -aminopapaverine (I) with carboxylic acid halides [1]. α -Acetamides and α -trifluoroacetamides derived from papaverine were not described previously.

We have found that the reactions of α -aminopapaverine (I) with excess acetyl chloride or trifluoroacetic anhydride lead to the formation of 3-methyl- and 3-trifluoromethylimidazoisoquinolines IIa and IIb, respectively, rather than N-acetyl- and N-trifluoroacetyl- α -

aminopapaverines IIIa and IIIb. We succeeded in obtaining amide IIIa by reductive acylation of oxime IV in the system acetic acid–acetic anhydride–zinc (method a), as well as by acylation of α -aminopapaverine (I) with an equimolar amount of acetic anhydride (method b). Likewise, using trifluoroacetic anhydride we synthesized the corresponding trifluoroacetamide IIIb.

It should be noted that the transformation of N-acetyl- α -aminopapaverine IIIa into 3-methylimid-azoisoquinoline IIa occurs unexpectedly readily. Compound IIa is formed on treatment of acetyl derivative IIIa with phosphoryl chloride, hydrochloric acid, or

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \text{NOH} \\ \text{MeO} \\ \text{NOH} \\ \text{MeO} \\ \text{NOH} \\ \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \text{NOH} \\ \text{MeO} \\ \text{MeO$$

[†] Deceased.

acetic anhydride. The formation of imidazoquinoline systems from N-(isoquinolin-2-ylmethyl) amides was reported previously [2]; however, these reactions required such strong condensing agents as phosphoryl chloride.

Thus we have demonstrated the possibility for the cyclization of N-acyl- α -aminopapaverine derivatives into methylimidazoisoquinolines to occur under very mild conditions.

1-(3,4-Dimethoxyphenyl)-8,9-dimethoxy-3-methylimidazo[5,1-a]isoquinoline hydrochloride (Ha·HCl). a. Acetyl chloride, 100 mmol, was added to a solution of 10 mmol of α-aminopapaverine (I) [1] in 100 ml of anhydrous ethyl acetate. The mixture was stirred for 24 h, and the precipitate was filtered off and recrystallized. mp 210–212°C (from ethanol). 1 H NMR spectrum, δ, ppm: 3.00 s (3H, CH₃), 3.60 s (3H, OCH₃), 3.90 s (9H, 3OCH₃), 7.11 d (1H, H_{arom}, J = 7 Hz), 7.30 m (4H, H_{arom}), 7.47 s (1H, H_{arom}), 8.09 d (1H, H_{arom}, J = 7 Hz). Found, %: C 63.68; H 5.61; N 6.83. C₂₂H₂₃ClN₂O₄. Calculated, %: C 63.69; H 5.59; N 6.75.

b. A mixture of 10 mmol of N-acetyl-α-aminopapaverine **IIIa** and 50 ml of phosphoryl chloride was heated for 12 h under reflux. The mixture was evaporated, and the precipitate was filtered off and recrystallized. Yield 70%.

c. A mixture of 10 mmol of N-acetyl- α -aminopapaverine IIIa, 20 ml of 37% hydrochloric acid, and 40 ml of water was heated for 12 h under reflux. The mixture was evaporated, and the residue was recrystallized. Yield 90%.

1-(3,4-Dimethoxyphenyl)-8,9-dimethoxy-3-methylimidazo[5,1-a]isoquinoline (IIa). A mixture of 10 mmol of compound IIIa and 50 ml of acetic anhydride was heated for 5 h under reflux. The mixture was poured into water and made alkaline by adding aqueous ammonia, and the precipitate was filtered off and recrystallized. Yield 95%, mp 112–114°C (from toluene). 1 H NMR spectrum, δ , ppm: 2.62 s (3H, CH₃), 3.59 s (3H, OCH₃), 3.85 s (9H, 3OCH₃), 6.79 d (1H, H_{arom}, J = 7 Hz), 6.99 d (1H, H_{arom}, J = 7 Hz), 7.09 s (1H, H_{arom}), 7.18 m (2H, H_{arom}), 7.51 s (1H, H_{arom}), 7.69 d (1H, H_{arom}, J = 7 Hz). Mass spectrum, m/z (I_{rel} , %): 378 (100) [M] $^{+}$, 363 (33), 189 (40). Found, %: C 69.93; H 5.98; N 7.38. C₂₂H₂₂N₂O₄. Calculated, %: C 69.83; H 5.86; N 7.40.

1-(3,4-Dimethoxyphenyl)-8,9-dimethoxy-3-tri-fluoromethylimidazo[5,1-a]isoquinoline (IIb). Tri-

fluoroacetic anhydride, 100 mmol, was added to a solution of 10 mmol of α-aminopapaverine (**I**) [1] in 100 ml of anhydrous ethyl acetate. The mixture was stirred for 24 h, and the precipitate was filtered off and recrystallized. mp 109–111°C (from acetone). 1 H NMR spectrum, δ, ppm: 3.57 s (3H, CH₃), 3.87 t (9H, 3OCH₃), 7.03 d (1H, H_{arom}, J = 7 Hz), 7.18 m (4H, H_{arom}), 7.46 s (1H, H_{arom}), 7.95 d (1H, H_{arom}, J = 7 Hz). Found, %: C 61.18; H 4.44; N 6.47. C₂₂H₁₉F₃N₂O₄. Calculated, %: C 61.11; H 4.43; N 6.48.

N-[6,7-Dimethoxyisoquinolin-1-yl(3,4-dimethoxyphenyl)methyl]acetamide (IIIa, N-acetyl-αaminopapaverine). a. Acetic anhydride, 30 mmol, was added to a solution of 10 mmol of oxime IV [1] in 80 ml of acetic acid. Zinc dust, 40 mmol, was then added in small portions under stirring, maintaining the temperature at 40°C. The mixture was heated to the boiling point, cooled to room temperature, and filtered, the filtrate was evaporated under reduced pressure, and the residue was recrystallized. Yield 70%, mp 189-191°C (from toluene). ¹H NMR spectrum, δ, ppm: 1.94 s (3H, COCH₃), 3.71 s (6H, OCH₃), 3.91 s (6H, OCH_3), 6.75 d (2H, H_{arom} , J = 8 Hz), 6.86 d (1H, α -CHNH, J = 8 Hz), 7.03 s (1H, H_{arom}), 7.23 s (1H, H_{arom}), 7.48 s (1H, H_{arom}), 7.53 d (1H, H_{arom} , J = 6 Hz), 8.29 d (1H, H_{arom} , J = 6 Hz), 8.65 d (1H, NH, J =8 Hz). 13 C NMR spectrum, $\delta_{\rm C}$, ppm: 23,46 (1C), 59.91 (1C), 56.15 (4C, OCH₃), 103.89 (1C), 106.18 (1C), 112.16 (1C), 112.75 (1C), 119.76 (1C), 120.76 (1C), 121.92 (1C), 133.70 (1C), 135.07 (1C), 140.25 (1C), 148.63 (1C), 149.30 (1C), 150.62 (1C), 153.13 (1C), 157.06 (1C), 168.60 (1C, COCH₃). Mass spectrum, m/z (I_{rel} , %): 396 (51) $[M]^+$, 353 (100), 215 (20), 166 (24), 43 (22). Found, %: C 66.70; H 6.26; N 7.14. C₂₂H₂₄N₂O₅. Calculated, %: C 66.65; H 6.10; N 7.07.

b. Acetic anhydride, 10 mmol, was added to a solution of 10 mmol of α-aminopapaverine (I) [1] in 100 ml of ethyl acetate. After 24 h, the precipitate of amide IIIa was filtered off and recrystallized. Yield 99%, mp 189-191°C (from toluene).

N-[6,7-Dimethoxyisoquinolin-1-yl(3,4-dimethoxyphenyl)methyl]-2,2,2-trifluoroacetamide (IIIb, N-trifluoroacetyl- α -aminopapaverine). Trifluoroacetic anhydride, 10 mmol, was added to a solution of 10 mmol of α -aminopapaverine (I) [1] in 100 ml of ethyl acetate. After 24 h, the mixture was evaporated under reduced pressure, the residue was dissolved in acetone, and 5 ml of aqueous ammonia was added to the solution. The precipitate was filtered off and recrystallized. Yield 50%, mp 129–131°C (from MeOH).

¹H NMR spectrum, δ, ppm: 3.77 s (3H, OCH₃), 3.81 s (3H, OCH₃), 3.88 s (3H, OCH₃), 3.99 s (3H, OCH₃), 6.60 d (1H, α-CHNH, J = 6 Hz), 6.75 d (1H, H_{arom}, J = 8 Hz), 6.93 m (2H, H_{arom}), 7.07 s (1H, H_{arom}), 7.19 s (1H, H_{arom}), 7.53 d (1H, H_{arom}, J = 8 Hz), 8.41 d (1H, NH, J = 6 Hz). Found, %: C 58.73; H 4.82; N 6.19. C₂₂H₂₁F₃N₂O₅. Calculated, %: C 58.67; H 4.77; N 6.33.

The ¹H and ¹³C NMR spectra were recorded on a Bruker AM-500 spectrometer at 500 and 125 MHz, respectively, from 1% solutions in DMSO-*d*₆. The elemental compositions were determined on a Perkin–Elmer 240 analyzer. The mass spectra (electron

impact, 70 eV) were run on an MKh-1321 instrument (vaporizer temperature 120°C, ion source temperature 200°C). The melting points were determined on an NMK melting point apparatus. The progress of reactions was monitored by TLC on Silufol UV-254 plates using benzene–anhydrous ethanol (9:1) as eluent.

REFERENCES

- 1. Lespagnol, A., Debaert, M., Devergnies, M., and Garot, N., *Bull. Soc. Chim. Fr.*, 1972, no. 2, p. 699.
- 2. Reimlinger, H., Vandewalle, J.J.M., Lingier, W.R.F., and de Ruiter, E., *Chem. Ber.*, 1975, vol. 108, p. 3771.