Org.

Organic Fluorine Compounds. Part XXXVI.¹ Preparation of N-substituted Amides of α-Fluoroacids

By Israel Shahak and Ernst D. Bergmann, Department of Chemistry, Hebrew University, Jerusalem

N-substituted a-chloro-, a-bromo- and a-toluene-p-sulphonyloxy-amides are converted into the corresponding α-fluoro-amides by reaction with potassium fluoride in bis(2-hydroxyethyl) ether.

The simplest method for the preparation of α -fluoroacids, the reaction of α -chloroacid esters with potassium fluoride in acetamide with continuous removal of the α -fluoroester formed,^{2,3} is not applicable to the esters of the higher α -chloroacids, since the product cannot be distilled off and is attacked by the acetamide, to give high-boiling material. Hoffman's⁴ method which uses bis(2-hydroxyethyl) ether as a solvent for the metathetical reaction, is not applicable to the alkyl esters of α -haloacids since they undergo immediate ester exchange, and no fluorination takes place.

Since amides are much more stable to attack by bis-(2-hydroxyethyl) ether, the reaction of α -haloamides with potassium fluoride in this as a solvent has been studied. In order to facilitate the isolation of the products, N-substituted amides were employed which are easily soluble in organic solvents, such as benzene. It was found that α -chloro-, α -bromo-, and α -toluenep-sulphonyloxy-amides are easily transformed into the analogous *a*-fluoroamides; anilides, benzoyl-substituted anilides, and NN-diethylamides have been used with good

¹ Part XXXV, E. D. Bergmann and I. Shahak, J. Chem. Soc. (C), 1966, 899.

 ² E. D. Bergmann and I. Blank, J. Chem. Soc., 1953, 3786.
 ³ E. D. Bergmann and A. Cohen, Tetrahedron Letters, 1965, 1151. ⁴ F. Hoffman, J. Amer. Chem. Soc., 1948, 70, 2596.

results. Recently, two patents⁵ have described the analogous preparation of fluoroacetanilides, using nonylphenol-ethylene oxide copolymer or xylene as the reaction media. In this connection, it is recalled that Phillips⁶ prepared fluoroacetamide by the reaction of chloroacetamide with potassium fluoride in xylene.

Bis(2-hydroxyethyl)ether has the advantage that potassium fluoride is soluble in it (to the extent of about 15%; the only side reaction is the replacement of the α -substituent by the $\cdot O \cdot (CH_2)_2 \cdot O \cdot (CH_2) \cdot OH$ radical. This reaction does not constitute a major obstacle, however, except in the case of α -halophenylacetanilides, in which the yields are lower than for α -haloanilides of aliphatic acids. It may be worthwhile to point out that the type of reaction observed by Maynard ⁷ for aliphatic polychloro-compounds does not apply here; we believe that the metathetical reaction described here involves a nucleophilic attack on the C-Cl, C-Br, or $C-O-SO_2C_6H_5Me$ bond. In particular, the formation of the known α -fluoropropananilide from both α -chloroand α -toluene-p-sulphonyloxypropananilide proves that the same mechanism operates for both reactions and

⁶ M. A. Phillips, Ind. Chemist, 1954, 30, 122

7 J. T. Maynard, J. Org. Chem., 1963, 28, 112.

⁵ Daikin Kogyo Co., F.P. 1,407,707 and 1,405,502 (Chem. Abs., 1965, **63**, 13,164). Neth. P. 292,686 (Chem. Abs., 1966, **64**, 2022. Neth. P. 6,500,874 (Chem. Abs., 1966, **64**, 7982).

that in neither of them is there an elimination of HX with subsequent addition of HF to the acrylanilide formed, since this sequence would give β-fluoropropananilide.

EXPERIMENTAL

(Note: It should be remembered that derivatives of fluoroacetic acid are toxic.)

A stirred mixture of the α -haloamide (0.1 mole), dry potassium fluoride (15 g., 0.25 mole), and bis(2-hydroxyethyl)ether (100 ml.) was heated rapidly to 125-130° and kept at this temperature for 2 hr. The product was cooled, diluted with water (200 ml.), and extracted with 33.9%). α -Bromoheptanilide, from α -bromoheptanoyl bromide 12 and aniline in benzene; m. p. 62-63°, after recrystallisation from light petroleum (Found: Br, 28.1. $C_{13}H_{18}BrNO$ requires Br, $28 \cdot 2\%$).

 α -Bromoheptan-p-toluidide, from benzene-light petroleum, m. p. 79-80° (Found: Br, 26.7. C14H10BrNO requires Br, $26 \cdot 8\%$).

Toluene-p-sulphonyloxyacetanilide.—Toluene-p-sulphonyl chloride (57 g.) and pyridine (47.5 g.) were added to a solution of hydroxyacetanilide (45.3 g.) in benzene (300 ml.). The temperature was kept below 20° for 1 hr. and then set aside at room temperature for 48 hr. The mixture was poured into hydrochloric acid and the organic layer

Starting material	Product (% yield)	B. p. (mm.)	М. р.	Remarks
Chloroacetanilide	FCH ₂ ·CO·NHPh (65)	131—133°/1	76° 4	(Found: F, 12.1. Calc. for C_8H_8FNO :
Bromoacetanilide Toluene-p-sulphonoxy- acetanilide	FCH ₂ ·CO·NHPh (45) FCH ₂ ·CO·NH·Ph (54)	131—133/1 131—133/1	76 76	F, 12·4%)
Chloroacet-p-chloroanilide	$FCH_2CO\cdot NH\cdot C_6H_4\cdot Cl-p$ (53)		132 b	Recryst. from benzene-light petroleum (Found: C, 51·3; H, 3·8; N, 7·4; F, 10·4. Calc. for C ₈ H ₇ ClFNO: C, 51·1; H, 3·7; N, 7·4; F, 10·1%)
α -Chloropropananilide	MeCHF•CO•NH•Ph (64)		62 °	
α-Toluene- <i>p</i> -sulphonoxy- propananilide	MeCHF·CO·NH·Ph (63)		62	-, /0)
α-Bromobutanananilide	MeCH ₂ ·CHF·CO·NH·Ph ^d (66)	140-142/1	55	Recryst. from light petroleum (Found: C, 66·2; H, 6·5; F, 10·8. $C_{10}H_{12}FNO$ requires C, 66·7; H, 8·1; F, 10·6%)
α-Bromovaleroyl-N,N-di- ethylamide	Me(CH ₂) ₂ ·CHF·CO·NEt ₂ ^d (69)	132 - 134/25		(Found: F, 10.5 ; N, 7.7 . C ₉ H ₁₈ FNO requires: F, 10.9 ; N, 8.0%)
α-Bromoheptananilide	$Me(CH_2)_4$ ·CHF·CO·NH·C ₆ H ₅ ^d (61)	136-138/1	56-57	Recryst. from light petroleum (Found: F, 8.2. $C_{13}H_{18}FNO$ requires F, 8.5%)
α-Bromoheptan- <i>p</i> -toluidide	$Me \cdot [CH_2]_4 \cdot CHF \cdot CO \cdot NH \cdot C_8H_4Me \cdot p^d$ (62)	145146/1	71	(Found: F, 8·1. C ₁₄ H ₂₀ FNO re- quires F, 8·0%)
α -Chlorophenylacetanilide	PhCHF·CO·NHPh ^d (25)	174—175/1	103	Recryst. from aqueous isopropyl alcohol. (Found: F, 8.1. C ₁₄ H ₁₂ FNO re-
α-Bromophenylacetanilide		174-175/1	103	quires F, 8·3%)

^a H. Kituro et al., Chem. Abs., 1956, 50, 3293, give m. p. 76-77°. ^b Ref. a give m. p. 132°. ^c Ref. a give m. p. 62°. ^d New compound.

benzene $(3 \times 150 \text{ ml.})$. The benzene layer was washed with 5% sodium hydrogen carbonate solution (100 ml.), dried, and concentrated.

For the α -toluene-p-sulphonyloxyamides the temperature of the reaction was $95-100^{\circ}$ and the reaction time 40 min.

Starting Materials.-Bromoacetanilide,⁸ m. p. 130°. Chloroacet-p-chloroanilide,⁹ m. p. 168°. a-Chloropropananilide,¹⁰ m. p. 92°. α-Bromobutananilide, m. p. 98°.¹¹ α -Bromovaleroyl-NN-diethylamide, from α -bromovaleroyl bromide¹² and diethylamine in benzene, b. p. 121-123° (0.5 mm.) (Found: Br, 34.2. C9H18BrNO requires Br,

⁸ W. Flimm, Ber., 1890, 23, 58.
⁹ A. Collet, Bull. Soc. chim. France, [3], 1902, 27, 541.
¹⁰ C. A. Bischoff and P. Walden, Annalen, 1894, 279, 792.

washed, dried, and evaporated. The residue, after recrystallisation from ethanol, melted at 144-145° (Found: C, 58.8; H, 5.1; S, 10.2. C₁₅H₁₅NO₄S requires C, 59.0; H, 5.0; S, 10.5%).

a-Toluene-p-sulphonyloxypropananilide was prepared analogously from α -hydroxypropananilide, m. p. 132°. The compound had been prepared before 13 by a different route.

The results of the experiments are summarised in the Table.

[6/346 Received, March 17th, 1966]

¹² S. M. Birnbaum, S. C. J. Fu, and J. P. Greenstein, J. Biol. Chem., 1953, 203, 378. ¹³ C. M. Beans, J. Kenyon, and A. Phillips, J. Chem. Soc.,

1936, 303.

¹¹ A. Tigerstedt, Ber., 1892, 25, 2924.