Synthesis of 5-Keto-5-oxime Derivatives of Milbemycins and Their Activities against Microfilariae

Yoshihisa TSUKAMOTO, Kazuo SATO, Shigeru MIO, Soji Sugai, Toshiaki Yanai, Noritoshi Kitano,* Shigeki Muramatsu,* Yasuo Nakada* and Junya Ide*

Agricultural Chemicals Research Laboratories, Sankyo Co., Ltd., 1041 Yasu, Yasu-cho, Shiga 520–23, Japan * Medicinal Chemistry Research Laboratories, Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo 140, Japan

Received May 24, 1991

Starting from milbemycin D (1), milbemycin A_4 (2) and milbemycin A_3 (3), a series of 5keto-5-oxime derivatives were synthesized by selective oximation at the α,β -conjugated carbonyl function of the 5-ketomilbemycins (4–6). The activities of the synthesized compounds were studied in dogs naturally infested with microfilariae of *Dirofilaria immitis*. The 5-keto-5-oximes of milbemycin D (7), A_4 (8) and A_3 (9) had quite high efficacy to control the microfilariae and more potency than their parents, while the 5-O-acyl oximes (11–15) also exhibited high activity.

Milbemycins, which are known to have a potent and broad spectrum of anthelmintic, acaricidal and insecticidal activities, are sixteen-membered-ring macrolides isolated from Streptomyces hygroscopicus.^{1,2)} Among them, milbemycin D (1) is now in commercial use for the treatment and control parasites in dogs, and a 7:3 mixture of milberrycin A_4 (2) and milberrycin A_3 (3) has recently been brought to the market as an agricultural miticide. During a study on the chemistry of milberrycins, we have been especially interested in the chemical transformation of the allylic hydroxy group at the 5-position. Starting from milbemycin D, A_4 and A_3 , we synthesized a series of 5-keto-5-oxime derivatives and tested their activities against microfilariae. In this paper, we report details of the synthesis and the activities of 5-keto-5-oxime derivatives of milbemycins.³⁻⁵⁾

The synthesis of the 5-keto-5-oxime derivatives is shown in Scheme 1. The 5-keto intermediates of milberrycin A_3 (6) and A_4 (5) were also isolated from a culture broth of *Streptomyces hygroscopicus*, and were named

milbemycin J and K, respectively.1) Milbemycin D has been reported to be transformed to the corresponding keto derivative by the general oxidation method.⁶⁾ We adopted active manganese dioxide for the oxidation of milbemycins (1-3) to afford 5-ketomilbemycins (4-6) in 70-80% yields. By other oxidation reactions such as Jones oxidation,⁷⁾ Swern oxidation⁸⁾ and Collins oxidation,⁹⁾ 5-ketomilbemycins were also obtained in rather low yields (50–60%). Oximation of α,β -unsaturated ketones (4-6) with hydroxylamine hydrochloride (hydroxylamine hydrochloride in dioxane-methanol-water) gave 5-ketomilbemycin-5-oximes (7–9) exclusively in high yields. On the other hand, the use of free hydroxylamine (hydroxylamine hydrochloride-sodium acetate in methanol) in the reaction of 4 afforded an undesired bis-adduct (10, 34.9%) in addition to 7 (22.8%). It is important, therefore, to use the hydrochloride salt of hydroxylamine as a weaker nucleophile for selective oximation at the 5-position of the α,β -conjugated carbonyl group in the intermediates (4-6). The obtained oximes (7 and 8)

Scheme 1.

were further converted to 5-*O*-acetyloximes (11 and 12), 5-*O*-ethoxycarbonyloxime (13), 5-*O*-methylcarbamoyloxime (14) and 5-*O*-dimethylcarbamoyloxime (15).

The activities of the synthesized compounds were studied in dogs naturally infested with microfilariae of *Dirofilaria immitis*,¹⁰⁾ the results being summarized in Table I. Parent 5-hydroxy milbemycin D (1) and A_4 (2), excepting A_3 (3), showed high activity, whereas 5-ketomilbemycin A_4 (5) exhibited only moderate activity. To our delight, the 5-keto-5-oxime derivatives exhibited high activity. Especially, the 5-keto-5-oximes of milbemycin D (7) and A_4 (8), and 5-ketomilbemycin A_4 5-*O*-dimethylcarbamoyloxime (15) had quite high efficacy for controlling microfilariae. Their activities were superior to that of milbemycin D (1), which was the most active compound among parent 5-hydroxyl milbemycins.¹¹⁾ 5-Keto-5-oxime of milbemycin A_3 (9) also had high activity against microfilariae and more potency than the parent.

In the structure-activity relationship at the 5-position of milberry ins, the hydroxyimino function turned out not only to act as a bioisostere of the hydroxyl function, but to potentiate the activity against microfilariae. Recently, a mixture of 5-keto-5-oximes of milberry in A_4 and A_3 ($A_4: A_3 = 80: 20$) was launched as a parasiticide for dogs in U.S.A.

Compd.	Mil. ^b	Substituent at the 5-position	Dose ^c (mg/kg)	Reduction $(\%)^d$		
				l day	1 week	2 weeks
1	D	<i>β</i> -OH	0.05	99.6	90.1	92.5
2	A_4	<i>β</i> -OH	0.05	94.1	74.3	86.2
3	A ₃	<i>β</i> -OH	0.05	40.9	22.6	11.7
5	A ₄	=O	0.1	12.2	42.6	45.4
7	D	= NOH	0.05	69.0	95.0	95.5
8	A ₄	= NOH	0.05	87.8	93.2	93.2
9	A ₃	= NOH	0.05	89.3	85.2	67.0
	A_{4+3}^{e}	= NOH	0.05	88.8	89.8	90.5
11	D	=NOCOMe	0.05	36.0	63.9	79.9
12	A_4	=NOCOMe	0.05	89.9	89.9	85.3
13	D	= NOCO ₂ Et	0.1	93.2	98.8	98.0
14	D	=NOCONHMe	0.1	56.8	61.5	81.6
15	A_4	= NOCONMe ₂	0.05	93.0	93.4	97.7

 Table I.
 EFFECT OF MILBEMYCIN DERIVATIVES AGAINST MICROFILARIAE OF Dirofilaria immitis IN NATURALLY INFESTED DOGS^a

^a The dogs were obtained from Animal Protection Center of Kanagawa Prefecture.

^b Milbemycin.

^c Orally administrated (*p.o.*).

^d Percentage reduction of microfilariae found in blood samples = $((B - A)/B) \times 100\%$:

B = number of microfilariae before treatment; A = number of microfilariae after treatment.

^e A mixture of milberrycin A_4 and A_3 (A_4 : $A_3 = 80: 20$).

Experimental

IR spectra were recorded on a Perkin Elmer 1600 Series FT IR spectrometer. ¹H-NMR spectra were measured on a JOEL JNM-GX 270 FT NMR spectrometer with tetramethylsilane as an internal standard. MS spectra were measured on a JEOL JMS-D 300 spectrometer. Column chromatography was performed on silica gel (60 Merck, 230–400 mesh or Wakogel C-100, 40–100 mesh). Preparative TLC was performed on silica gel (Merck 60 PF₂₅₄) of 0.5 mm thickness.

1) 5-Ketomilbemycin D (4). To a solution of milbemycin D (1, 2.0 g) in acetone (50 ml) was added active MnO_2 (15.6g). The mixture was vigorously stirred for 2hr at room temperature, and the reaction mixture was filtered through Celite[®]. The filtrate was evaporated under reduced pressure to give a residue, which was purified by silica gel column chromatography with hexane-ethyl acetate (5:1) to afford 4 (1.59 g, 80%). IR v_{max} (KBr) cm⁻¹: 3470, 2961, 2928, 2870, 1739, 1715, 1685, 1641, 1457, 1435, 1384, 1368, 1336, 1315, 1275, 1244, 1181, 1119, 1046, 1009, 887. ¹H-NMR (CDCl₃) δ: 6.58–6.57 (1H, m, H-C(3)); 5.87 (1H, dt, $J_d = 11.3$ Hz, $J_1 = 2.4$ Hz, H-C(9)); 5.74 (1H, dd, J = 14.5and 11.3 Hz, H-C(10)); 5.49-5.35 (2H, m, H-C(11), H-C(19)); 4.99-4.93 (1H, m, H-C(15)); 4.75 (1H, dd, J = 14.5 and 2.4 Hz, CH-C(8)); 4.74 (1H, dd, J = 14.5 and 2.4 Hz, CH-C(8)); 4.02 (1H, s, HO-C(7)); 3.86 (1H, s, H-C(6)); 3.65-3.55 (2H, m, H-C(2), H-C(17)); 3.09 (1H, dd, J=9.7 and 2.0 Hz, H-C(25)); 2.51–2.34 (1H, m, H-C(12)); 2.26–2.15 (3H, m, H-C(13), H₂-C(16)); 2.05–1.99 (1H, m, H-C(20)); 1.95–1.79 (3H, m, H-C(13), H-C(18), CH-C(25)); 1.90–1.89 (3H, m, CH₃-C(4)); 1.69–1.41 (5H, m, H₂-C(22), H₂-C(23), H-C(24)); 1.53 (3H, s, CH₃-C(14)); 1.37 (1H, t, J=11.7 Hz, H-C(20)); 1.06 (3H, d, J=6.9 Hz, β -CH₃-C(25)); 1.01 (3H, d, J=6.9 Hz, CH₃-C(12)); 0.95–0.80 (1H, m, H-C(18)); 0.87 (3H, d, J=6.9 Hz, β -CH₃-C(25)); 0.81 (3H, d, J=6.0 Hz, CH₃-C(24)). MS m/z: 554 (M⁺, C₃₃H₄₆O₇), 536, 278, 259, 209, 181, 151. HR-MS m/z: calcd. for C₃₃H₄₆O₇–H₂O, 536.3138; found, 536.3130.

2) 5-Ketomilbemycin A_4 (5) and A_3 (6). By a MnO₂ oxidation similar to that just described, milbemycin A_4 (2) and A_3 (3) were converted to 5 and 6, respectively (70% and 78%).

5. IR ν_{max} (KBr) cm⁻¹: 3464, 2961, 2928, 2873, 1737, 1715, 1684, 1641, 1455, 1436, 1377, 1336, 1315, 1274, 1244, 1181, 1102, 1031, 989, 887. ¹H-NMR (CDCl₃) δ : 6.55–6.54 (1H, m, H-C(3)); 5.87 (1H, dt, J_d =11.3 Hz, J_t =2.4 Hz, H-C(9)); 5.74 (1H, dd, J=14.7 and 11.3 Hz, H-C(10)); 5.48–5.41 (2H, m, H-C(11), H-C(19)); 4.99–4.95 (1H, m, H-C(15)); 4.75 (1H, dd, J=14.5 and 2.4 Hz, CH-C(8)); 4.73 (1H, dd, J=14.5 and 2.4 Hz, CH-C(8)); 4.03 (1H, s, HO-C(7)); 3.85 (1H, s, H-C(6)); 3.62–3.55 (2H, m, H-C(2)), H-C(17)); 3.08 (1H, td, J_t =9.8 Hz, J_d =2.9 Hz, H-C(25)); 2.50–2.37 (1H, m, H-C(12)); 2.26–2.16 (3H, m, H-C(13), H₂-C(16)); 2.05–2.01 (1H, m, H-C(20)); 1.91–1.80 (2H, m, H-C(13), H-C(13)), H-C(18)); 1.90–1.89 (3H, m, CH₃-C(4));

1.76–1.24 (8H, m, H-C(20), H₂-C(22), H₂-C(23), H-C(24), CH₂-C(25)); 1.53 (3H, s, CH₃-C(14)); 1.02–0.99 (6H, m, CH₃-C(12), β-CH₃-C(25)); 0.95–0.80 (1H, m, H-C(18)); 0.83 (3H, d, J=6.8 Hz, CH₃-C(24)). MS m/z: 540 (M⁺, C₃₂H₄₄O₇), 522, 414, 264, 195, 167, 151. HR-MS m/z: calcd. for C₃₂H₄₄O₇, 540.3087; found, 540.3073.

6. IR v_{max} (KBr) cm⁻¹: 3471, 2966, 2925, 2874, 1735, 1715, 1679, 1639, 1450, 1380, 1335, 1315, 1275, 1244, 1181, 1116, 1095, 1056, 1036, 996, 888. ¹H-NMR (CDCl₃) δ : 6.54–6.53 (1H, m, H-C(3)); 5.86 (1H, dt, $J_d = 11.2$ Hz, $J_t = 2.4 \text{ Hz}, \text{ H-C}(9)$; 5.74 (1H, dd, J = 14.6 and 11.2 Hz, H-C(10)); 5.49-5.39 (2H, m, H-C(11), H-C(19)); 5.02-4.98 (1H, m, H-C(15)); 4.75 (1H, dd, J = 14.5 and 2.4 Hz, CH-C(8)); 4.73 (1H, dd, J=14.5 and 2.4 Hz, CH-C(8)); 4.04 (1H, s, HO-C(7)); 3.85 (1H, s, H-C(6)); 3.59-3.52 (2H, m, H-C(2), H-C(17)); 3.32-3.24 (1H, m, H-C(25)); 2.50-2.36 (1H, m, H-C(12)); 2.26-2.20 (3H, m, H-C(13), H₂-C(16)); 2.04–1.99 (1H, m, H-C(20)); 1.93–1.80 (2H, m, H-C(13), H-C(18)); 1.90-1.89 (3H, m, CH₃-C(4)); 1.69-1.48 (4H, m, H2-C(22), H2-C(23)); 1.53 (3H, s, CH₃-C(14)); 1.37 (1H, t, J=11.7 Hz, H-C(20)); 1.34–1.20 $(1H, m, H-C(24)); 1.16 (3H, d, J=6.4 Hz, CH_3-C(25));$ 1.01 (3H, d, J = 6.8 Hz, CH₃-C(12)); 0.92–0.83 (1H, m, H-C(18)); 0.84 (3H, d, J = 6.8 Hz, CH₃-C(24)): MS m/z: 526 (M⁺, C₃₁H₄₂O₇), 508, 400, 250, 181, 153, 151. HR-MS m/z: calcd. for C₃₁H₄₂O₇, 526.2930; found, 526.2906.

3) 5-Ketomilbemycin D 5-oxime (7; general procedure A). A solution of $NH_2OH-HCl$ (125 mg) in water (2 ml) was added dropwise to a solution containing 4 (166 mg) in methanol (2 ml)-dioxane (2 ml). The mixture was stirred at room temperature for 6 hr and then condensed under reduced pressure. The residue was dissolved in ether, washed with water, dried (Na2SO4), and concentrated in vacuo. After purification by silica gel column chromatography (3:1 hexane-ethyl acetate), 145 mg of 7 was obtained (85.0%). IR v_{max} (KBr) cm⁻¹: 3456, 2962, 2929, 2872, 1714, 1675, 1635, 1457, 1434, 1384, 1367, 1337, 1273, 1246, 1180, 1119, 1040, 1009, 1000, 985, 963, 867. ¹H-NMR $(CDCl_3) \delta$: 5.87 (1H, dt, $J_d = 11.3 \text{ Hz}, J_1 = 2.0 \text{ Hz}, \text{ H-C}(9)$); 5.83–5.82 (1H, m, H-C(3)); 5.75 (1H, dd, J = 14.5 and 11.3 Hz, H-C(10)); 5.45-5.36 (2H, m, H-C(11), H-C(19)); 4.98-4.93 (1H, m, H-C(15)); 4.76 (1H, dd, J=14.5 and 2.0 Hz, CH-C(8)); 4.73-4.66 (1H, m, CH-C(8)); 4.68 (1H, s, H-C(6)); 3.65-3.54 (1H, m, H-C(17)); 3.40-3.38 (1H, m, H-C(2)); 3.08 (1H, br.d, J = 9.3 Hz, H-C(25)); 2.50–2.34 (1H, m, H-C(12)); 2.26-2.14 (3H, m, H-C(13), H₂-C(16)); 2.03-1.97 (1H, m, H-C(20)); 1.94-1.93 (3H, m, CH₃-C(4)); 1.94-1.80 (3H, m, H-C(13), H-C(18), CH-C(25)); 1.68-1.40 (5H, m, H₂-C(22), H₂-C(23), H-C(24)); 1.53 (3H, s, CH₃-C(14)); 1.36 (1H, t, *J*=11.7 Hz, H-C(20)); 1.05 (3H, d, J = 7.3 Hz, β -CH₃-C(25)); 1.01 (3H, d, J = 6.8 Hz, CH₃-C(12)); 0.94–0.80 (1H, m, H-C(18)); 0.87 (3H, d, $J = 7.3 \text{ Hz}, \beta$ -CH₃-C(25)); 0.81 (3H, d, $J = 5.6 \text{ Hz}, \text{ CH}_3$ -C(24)). MS m/z: 569 (M⁺, C₃₃H₄₇O₇N), 551, 535, 497, 455, 292, 274, 259, 209, 181, 151. HR-MS m/z: calcd. for C₃₃H₄₇O₇N-H₂O, 551.3247; found, 551.3245.

4) 5-Ketomilbemycin A_4 5-oxime (8) and 5-ketomilbemycin A_3 5-oxime (9). Compounds 8 and 9 were synthesized according to general procedure A (91.4% and 90.4%).

8. IR v_{max} (KBr) cm⁻¹: 3446, 2960, 2927, 2874, 1714, 1674, 1632, 1456, 1435, 1375, 1337, 1272, 1246, 1180, 1168, 1115, 1103, 1057, 1031, 989, 963, 866. ¹H-NMR (CDCl₃) δ : 5.87 (1H, dt, $J_d = 11.3$ Hz, $J_t = 2.0$ Hz, H-C(9)); 5.80 (1H, s, H-C(3)); 5.75 (1H, dd, J=14.4 and 11.3 Hz, H-C(10)); 5.48-5.35 (2H, m, H-C(11), H-C(19)); 4.99-4.93 (1H, m, H-C(15)); 4.76 (1H, dd, J=14.5 and 2.0 Hz, CH-C(8)); 4.73-4.66 (1H, m, CH-C(8)); 4.67 (1H, s, H-C(6)); 3.62-3.52 (1H, m, H-C(17)); 3.40-3.38 (1H, m, H-C(2)); 3.08 (1H, td, $J_t = 9.3$ Hz, $J_d = 2.4$ Hz, H-C(25)); 2.51–2.35 (1H, m, H-C(12)); 2.26–2.17 (3H, m, H-C(13), H₂-C(16)); 2.04–1.97 (1H, m, H-C(20)); 1.93 (3H, s, CH₃-C(4)); 1.93-1.80 (2H, m, H-C(13), H-C(18)); 1.76-1.25 (8H, m, H-C(20), H₂-C(22), H₂-C(23), H-C(24), CH₂-C(25)); 1.53 (3H, s, CH₃-C(14)); 1.02–0.97 (6H, m, CH₃-C(12), β -CH₃-C(25)); 0.95–0.80 (1H, m, H-C(18)); 0.83 (3H, d, $J = 6.5 \text{ Hz}, \text{ CH}_3\text{-C}(24)$). MS m/z: 555 (M⁺, C₃₂H₄₅O₇N), 537, 520, 292, 274, 245, 195, 151. HR-MS m/z: calcd. for C₃₂H₄₅O₇N, 555.3196; found, 555.3188.

9. IR v_{max} (KBr) cm⁻¹: 3436, 2966, 2927, 2876, 1713, 1674, 1638, 1451, 1378, 1337, 1274, 1246, 1181, 1169, 1116, 1096, 1084, 1056, 1036, 994, 964, 853. ¹H-NMR $(CDCl_3) \delta$: 8.13 (1H, br.s, HO-N=C(5)); 5.87 (1H, dt, $J_d = 11.3 \text{ Hz}, J_1 = 2.4 \text{ Hz}, \text{ H-C}(9)$; 5.80–5.71 (2H, m, H-C(3), H-C(10)); 5.51-5.33 (2H, m, H-C(11), H-C(19)); 5.01–4.96 (1H, m, H-C(15)); 4.76 (1H, dd, J = 14.5 and 2.4 Hz, CH-C(8)); 4.72-4.67 (1H, m, CH-C(8)); 4.67 (1H, s, H-C(6)); 4.11 (1H, br.s, HO-C(7)); 3.60-3.51 (1H, m, H-C(17)); 3.39-3.37 (1H, m, H-C(2)); 3.32-3.22 (1H, m, H-C(25)); 2.52-2.36 (1H, m, H-C(12)); 2.26-2.20 (3H, m, H-C(13), H2-C(16)); 2.04-1.80 (3H, m, H-C(13), H-C(18), H-C(20)); 1.94-1.93 (3H, m, CH₃-C(4)); 1.69-1.48 (4H, m, H₂-C(22), H₂-C(23)); 1.53 (3H, s, CH₃-C(14)); 1.37 (1H, t, J=11.7 Hz, H-C(20)); 1.34–1.20 (1H, m, H-C(24)); 1.15 (3H, d, J=6.0 Hz, CH₃-C(25)); 1.01 (3H, d, J = 6.8 Hz, CH_3 -C(12)); 0.95–0.80 (1H, m, H-C(18)); 0.84 (3H, d, J = 6.4 Hz, CH₃-C(24)). MS m/z: 541 (M⁺, C₃₁H₄₃O₇N), 541, 523, 507, 292, 274, 231, 181, 153. HR-MS m/z: calcd. for C₃₁H₄₃O₇N, 541.3040; found, 541.3057.

5) Oximation of 5-ketomilbemycin D (4) with free hydroxylamine. To a solution of hydroxylamine hydrochloride (209 mg) and sodium acetate (245 mg) in methanol (10 ml) was added compound (4, 554 mg) in an ice bath. After stirring for 2 hr at 0°C, the mixture was concentrated *in vacuo* and diluted with ethyl acetate (100 ml) and benzene (100 ml). The resulting mixture was washed with H₂O and brine, dried over Na₂SO₄, and evaporated under reduced pressure. Silica gel column chromatography of the residue (3:2 hexane–ethyl acetate) gave 130 mg of 7 (22.8%) and 210 mg of 10 (34.9%). 10. IR ν_{max} (KBr) cm⁻¹: 3381, 2962, 2930, 2873, 1723, 1674, 1640, 1457, 1434, 1384, 1376, 1334, 1273, 1246, 1185, 1165, 1119, 1040, 1009, 980, 964, 814.

¹H-NMR (CDCl₃) δ : 5.88 (1H, br. d, J = 11.3 Hz, H-C(9)); 5.73 (1H, dd, J=14.5 and 11.3 Hz, H-C(10)); 5.39 (1H, dd, J=14.5, and 10.1 Hz, H-C(11)); 5.31-5.18 (1H, m, H-C(19)); 4.98-4.92 (1H, m, H-C(15)); 4.61 (1H, s, CH-C(8)); 4.60 (1H, s, CH-C(8)); 4.16–4.04 (1H, m, H-C(4)); 3.99 (1H, s, H-C(6)); 3.63-3.53 (1H, m, H-C(17)); 3.46-3.43 (1H, m, H-C(3)); 3.09-3.05 (2H, m, H-C(2), H-C(25)); 2.50–2.35 (1H, m, H-C(12)); 2.25–2.15 (3H, m, H-C(13), H₂-C(16)); 2.12–2.04 (1H, m, H-C(20)); 1.93–1.83 (3H, m, H-C(13), H-C(18), CH-C(25)); 1.67-1.40 (5H, m, H₂-C(22), H₂-C(23), H-C(24)); 1.54 (3H, s, CH₃-C(14)); 1.36–1.23 (1H, m, H-C(20)); 1.26 (3H, d, J=7.3 Hz, CH₃-C(4)); 1.04 (3H, d, J = 6.9 Hz, β -CH₃-C(25)); 1.00 $(3H, d, J=6.4 Hz, CH_3-C(12)); 0.93-0.80$ (1H, m, H-C(18)); 0.87 (3H, d, J = 6.9 Hz, β -CH₃-C(25)); 0.80 (3H, d, J = 5.6 Hz, CH₃-C(24)); MS m/z: 602 (M⁺, C₃₃H₅₀-O₈N₂), 586, 570, 256, 209, 181, 149. HR-MS m/z: calcd. for C₃₃H₅₀O₈N₂, 602.3568; found, 602. 3558.

6) 5-Ketomilbemycin D 5-O-acetyloxime (11; general procedure B). To a solution of 7 (64.0 mg) in acetonitrile (1 ml) in an ice bath was added DABCO (1,4diazabicyclo[2.2.2]octane, 15.1 mg) and acetyl chloride (10 µl). After 30 min, the reaction mixture was poured into ice-cold water and extracted with ethyl acetate. The extract was washed with water, dried over Na₂SO₄, and evaporated in vacuo. The residue was purified by preparative TLC (3: 1 hexane-ethyl acetate) to give 63.2 mg of 11 (92.4%). IR v_{max} (KBr) cm⁻¹: 3466, 2962, 2929, 2872, 1781, 1740, 1714, 1674, 1639, 1456, 1434, 1384, 1366, 1336, 1316, 1272, 1190, 1183, 1119, 1047, 1009, 1000, 963, 944. ¹H-NMR (CDCl₃) δ: 6.03–6.02 (1H, m, H-C(3)); 5.88 (1H, dt, $J_d = 11.3$ Hz, $J_t = 2.0$ Hz, H-C(9)); 5.75 (1H, dd, J = 14.0and 11.3 Hz, H-C(10)); 5.47-5.35 (2H, m, H-C(11), H-C(19)); 5.00-4.91 (1H, m, H-C(15)); 4.75 (1H, dd, J=14.5 and 2.0 Hz, CH-C(8)); 4.71 (1H, dd, J=14.5 and 2.0 Hz, CH-C(8)); 4.60 (1H, s, H-C(6)); 3.96 (1H, s, HO-C(7)); 3.66-3.53 (1H, m, H-C(17)); 3.42-3.39 (1H, m, H-C(2)); 3.08 (1H, dd, J=9.6 and 2.0 Hz, H-C(25)); 2.52-2.35 (1H, m, H-C(12)); 2.24 (3H, s, COCH₃); 2.26-2.13 (3H, m, H-C(13), H₂-C(16)); 2.06-2.05 (3H, m, CH₃-C(4)); 2.05–1.97 (1H, m, H-C(20)); 1.93–1.78 (3H, m, H-C(13), H-C(18), CH-C(25)); 1.67-1.40 (5H, m, H₂-C(22), H₂-C(23), H-C(24)); 1.53 (3H, s, CH₃-C(14)); 1.36 (1H, t, J=11.6 Hz, H-C(20)); 1.05 (3H, d, J=7.0 Hz) β -CH₃-C(25)); 1.01 (3H, d, J = 7.0 Hz, CH₃-C(12)); 0.93-0.79 (1H, m, H-C(18)); 0.87 (3H, d, J=7.0 Hz, β -CH₃-C(25)); 0.80 (3H, d, J = 5.8 Hz, CH₃-C(24)). MS m/z: 611 (M⁺, C₃₅H₄₉O₈N), 569, 551, 274, 209, 181, 151. HR-MS m/z: calcd. for C35H49O8N, 611.3458; found, 611.3471.

7) 5-Ketomilbemycin A_4 5-O-acetyloxime (12). This compound was prepared from 8 (57.1 mg) in an 85% yield by the procedure described for 11. IR ν_{max} (KBr) cm⁻¹: 3465, 2960, 2927, 2872, 1780, 1740, 1714, 1674, 1638, 1455, 1436, 1367, 1336, 1317, 1272, 1243, 1190, 1182, 1115, 1103,

1080, 1045, 1030, 990, 964, 944, 907. ¹H-NMR (CDCl₃) δ : 6.01–6.00 (1H, m, H-C(3)); 5.88 (1H, dt, $J_d = 11.3 \, \text{Hz}$, $J_t = 2.4 \text{ Hz}, \text{ H-C(9)}; 5.75 (1\text{H}, \text{ dd}, J = 14.1 \text{ and } 11.3 \text{ Hz},$ H-C(10)); 5.49-5.38 (2H, m, H-C(11), H-C(19)); 4.99-4.94 (1H, m, H-C(15)); 4.75 (1H, dd, J=14.1 and 2.4 Hz,CH-C(8)); 4.70 (1H, dd, J=14.1 and 2.4 Hz, CH-C(8)); 4.60 (1H, s, H-C(6)); 3.98 (1H, br.s, HO-C(7)); 3.62-3.52 (1H, m, H-C(17)); 3.41-3.38 (1H, m, H-C(2)); 3.08 (1H, td, $J_t = 9.7 \text{ Hz}$, $J_d = 2.4 \text{ Hz}$, H-C(25)); 2.51–2.36 (1H, m, H-C(12)); 2.26-2.17 (3H, m, H-C(13), H₂-C(16)); 2.24 (3H, s, COCH₃); 2.06-2.04 (3H, m, CH₃-C(4)); 2.05-1.98 (1H, m, H-C(20)); 1.92–1.78 (2H, m, H-C(13), H-C(18)); 1.74-1.23 (8H, m, H-C(20), H2-C(22), H2-C(23), H-C(24), CH₂-C(25)); 1.54 (3H, s, CH₃-C(14)); 1.02–0.97 (6H, m, CH₃-C(12), β -CH₃-C(25)); 0.95–0.80 (1H, m, H-C(18)); 0.83 (3H, d, J = 6.4 Hz, CH₃-C(24)). MS m/z: 597 (M⁺, C₃₄H₄₇O₈N), 539, 395, 274, 195, 167, 151. HR-MS m/z: calcd. for C₃₄H₄₇O₈N, 597.3302; found, 597.3311.

8) 5-Ketomilberrycin D 5-O-ethoxycarbonyloxime (13). By an analogous method to that used for the preparation of 11, compound 7 (63.4 mg) in acetonitrile (1 ml) was treated with ethyl chloroformate $(13 \,\mu l)$ in the presence of DABCO (15 mg), and purified by preparative TLC (3:1 hexane-ethyl acetate) to give 13 (68.4 mg, 96.4%). IR v_{max} (KBr) cm⁻¹: 3468, 2962, 2929, 2871, 1785, 1740, 1714, 1674, 1636, 1457, 1435, 1383, 1369, 1335, 1317, 1272, 1224, 1180, 1119, 1068, 1046, 1008, 998, 965, 942, 862.¹H-NMR (CDCl₃)δ: 6.03-6.02 (1H, m, H-C(3)); 5.87 (1H, dt, $J_{d} = 11.1 \text{ Hz}, J_{t} = 2.3 \text{ Hz}, \text{ H-C(9)}; 5.74 (1\text{ H}, \text{ dd}, J = 14.0 \text{ Hz})$ and 11.1 Hz, H-C(10)); 5.46-5.33 (2H, m, H-C(11), H-C(19)); 4.99-4.92 (1H, m, H-C(15)); 4.78 (1H, dd, J=14.5 and 2.3 Hz, CH-C(8)); 4.70 (1H, dd, J=14.5 and 2.3 Hz, CH-C(8)); 4.61 (1H, s, H-C(6)); 4.37-4.28 (2H, m, $CH_2OCO-N = C(5)$; 3.92 (1H, br. s, HO-C(7)); 3.65–3.55 (1H, m, H-C(17)); 3.42-3.38 (1H, m, H-C(2)); 3.08 (1H, dd, J=9.3 and 2.0 Hz, H-C(25)); 2.52-2.35 (1H, m, H-C(12)); 2.26-2.16 (3H, m, H-C(13), H2-C(16)); 2.06 (3H, s, CH₃-C(4)); 2.04–1.97 (1H, m, H-C(20)); 1.92–1.77 (3H, m, H-C(13), H-C(18), CH-C(25)); 1.70-1.31 (6H, m, H-C(20), H2-C(22), H2-C(23), H-C(24)); 1.53 (3H, s, CH₃-C(14)); 1.36 (3H, t, J = 7.0 Hz, CH₃CH₂OCO-N = C(5)); 1.05 (3H, d, J = 7.0 Hz, β -CH₃-C(25)); 1.01 (3H, d, J = 7.0 Hz, CH₃-C(12)); 0.93–0.80 (1H, m, H-C(18)); 0.87 (3H, d, J = 7.0 Hz, β -CH₃-C(25)); 0.80 (3H, d, $J = 5.8 \text{ Hz}, \text{ CH}_3\text{-C}(24)$). MS m/z: 641 (M⁺, C₃₆H₅₁O₉N), 598, 569, 551, 274, 209, 181, 151. HR-MS m/z: calcd. for C36H51O9N, 641.3564; found, 641.3564.

9) 5-Ketomilbemycin D 5-O-methylcarbamoyloxime (14). Triethylamine (40 μ l) and methylisocyanate (20 μ l) were added to a solution of 7 (70.4 mg) in CH₂Cl₂ (2 ml). The solution was stirred at room temperature for 6 hr, and condensed *in vacuo*. The residue was purified by preparative TLC (1:1 hexane–ethyl acetate), affording 60.7 mg of 14 (78.2%). IR v_{max} (KBr) cm⁻¹: 3439, 3385, 2961, 2929, 2873, 1732, 1674, 1636, 1507, 1457, 1384, 1367, 1336, 1317, 1274,

1243, 1215, 1181, 1118, 1089, 1069, 1044, 1009, 998, 964, 950, 908, 870. ¹H-NMR (CDCl₃) δ: 6.22–6.17 (1H, m, NH); 6.05–6.03 (1H, m, H-C(3)); 5.85 (1H, dt, $J_d = 11.3$ Hz, $J_1 = 2.4 \text{ Hz}, \text{ H-C(9)}; 5.74 (1\text{ H}, \text{ dd}, J = 14.5 \text{ and } 11.3 \text{ Hz},$ H-C(10)); 5.46-5.33 (2H, m, H-C(11), H-C(19)); 4.98-4.93 (1H, m, H-C(15)); 4.76 (1H, dd, J=14.5 and 2.4 Hz,CH-C(8)); 4.68 (1H, dd, J = 14.5 and 2.4 Hz, CH-C(8)); 4.67 (1H, s, H-C(6)); 3.91 (1H, s, HO-C(7)); 3.65-3.55 (1H, m, H-C(17)); 3.41-3.39 (1H, m, H-C(2)); 3.08 (1H, br, d, J = 9.3 Hz, H-C(25); 2.93 (3H, d, $J = 4.8 \text{ Hz}, \text{ NCH}_3$); 2.52-2.35 (1H, m, H-C(12)); 2.26-2.14 (3H, m, H-C(13), H₂-C(16)); 2.04–1.77 (4H, m, H-C(13), H-C(18), H-C(20), CH-C(25)); 2.00-1.99 (3H, m, CH₃-C(4)); 1.68-1.40 (5H, m, H₂-C(22), H₂-C(23), H-C(24)); 1.53 (3H, s, CH₃-C(14)); 1.36 (1H, t, J=11.7 Hz, H-C(20)); 1.05 (3H, d, J=6.9 Hz, β -CH₃-C(25)); 1.02 (3H, d, J = 6.8 Hz, CH₃-C(12)); 0.93-0.80 (1H, m, H-C(18)); 0.87 (3H, d, J=6.9 Hz, β -CH₃-C(25)); 0.81 (3H, d, J=5.6Hz, CH₃-C(24)). MS *m*/*z*: 569 (M – CH₃NCO, C₃₃H₄₇O₇N), 551, 535, 497, 292, 274, 259, 209, 181, 151, 57. HR-MS m/z: calcd. for C₃₃H₄₇O₇N, 569.3352; found, 569.3352.

10) 5-Ketomilbertycin A_4 5-O-dimethylcarbamoyloxime (15). By using ClCONMe₂ (16.0 µl), DABCO (15.0 mg) and acetonitrile (1 ml), 8, (61.8 mg) was converted to 63.8 mg of 15 (91.9%) by an analogous method to that described for 11. IR v_{max} (KBr) cm⁻¹: 3470, 2958, 2928, 2873, 1744, 1675, 1639, 1488, 1453, 1381, 1336, 1316, 1272, 1245, 1165, 1115, 1103, 1046, 1016, 990, 964, 944, 907, 861, 821, 754. ¹H-NMR (CDCl₃) δ: 5.94-5.86 (2H, m, H-C(3), H-C(9)); 5.74 (1H, dd, J=14.5 and 11.3 Hz, H-C(10)); 5.49-5.38 (2H, m, H-C(11), H-C(19)); 4.99-4.94 (1H, m, H-C(15)); 4.71 (2H, d, J = 2.0 Hz, CH₂-C(8)); 4.57(1H, s, H-C(6)); 4.00 (1H, s, HO-C(7)); 3.63-3.53 (1H, m, H-C(17)); 3.41-3.38 (1H, m, H-C(2)); 3.08 (1H, td, $J_t = 9.7 \text{ Hz}, J_d = 2.4 \text{ Hz}, \text{ H-C}(25)$; 2.99 (6H, s, N(CH₃)₂); 2.51-2.35 (1H, m, H-C(12)); 2.26-2.17 (3H, m, H-C(13), H₂-C(16)); 2.08–2.07 (3H, m, CH₃-C(4)); 2.05–1.98 (1H, m, H-C(20)); 1.92-1.78 (2H, m, H-C(13), H-C(18)); 1.74-1.23 (8H, m, H-C(20), H₂-C(22), H₂-C(23), H-C(24), CH₂-C(25)); 1.54 (3H, s, CH₃-C(14)); 1.02–0.97 (6H, m, CH₃-C(12), β -CH₃-C(25)); 0.95–0.80 (1H, m, H-C(18)); 0.83 (3H, d, J = 6.9 Hz, CH₃-C(24)). MS m/z: 626 (M⁺, C35H50O8N2), 608, 539, 537, 395, 274, 195, 167, 151. HR-MS m/z: calcd. for C₃₅H₅₀O₈N₂-H₂O, 608.3461; found, 608.3459.

Acknowledgments. We warmly thank Dr. M. Ishida, a director of Sankyo Company, Dr. T. Jojima, a director of Agricultural Chemicals Research Laboratories of Sankyo Company for their support of this work.

References and Notes

 H. Mishima, M. Kurabayashi, C. Tamura, S. Sato, H. Kuwano, A. Saito and A. Aoki, Abstracts of Papers, 18th Symp. Chem. Natural Products, Kyoto, 1974, p. 309; Y. Takiguchi, H. Mishima, M. Okuda,
M. Terao, A. Aoki and R. Fukuda, J. Antibiot., 33, 1120 (1980); T. Okazaki, M. Ono, A. Aoki and R. Fukuda, J. Antibiot., 36, 438 (1983); Y. Takiguchi,
M. Ono, S. Muramatsu, J. Ide, H. Mishima and M. Terao, J. Antibiot., 36, 502 (1983); M. Ono, H. Mishima, Y. Takiguchi and M. Terao, J. Antibiot., 36, 509 (1983); H. Mishima, J. Ide, S. Muramatsu and M. Ono, J. Antibiot., 36, 980 (1983).

- For a resembling series of 16-membered ring lactones, avermectins, ivermectin and nemadectins, see G. Albers-Schönberg, B. H. Arison, J. C. Chabala, A. W. Douglas, P. Eskola, M. H. Fisher, A. Lusi, H. Mrozik, J. L. Smith and R. L. Tolman, *J. Am. Chem. Soc.*, **103**, 4216 (1981); G. T. Carter, J. A. Nietsche, M. R. Hertz, D. R. Williams, M. M. Siegel, G. O. Morton, J. C. James and D. B. Borsers, *J. Antibiot.*, **41**, 519 (1988); W. C. Campbell, M. H. Fisher, E. O. Stapley, G. Albers-Schönberg and T. A. Jacob, *Science*, **221**, 823 (1983).
- Y. Tsukamoto, J. Ide and N. Kitano, Abstracts of Papers, 16th International Symposium on the Chemistry of Natural Products, Kyoto, May 1988, p. 537, PC81.
- J. Ide, S. Muramatsu, Y. Nakada and N. Kitano, Japan Kokai Tokkyo Koho, 85,142,991 (Sep. 29, 1985).
- There has been similar interest focused on the 5) microbial and chemical transformation of milbemycins and related macrolactonic compounds. See G. M. R. Tombo, O. Ghisalba, H.-P. Schär, B. Frei, P. Maienfisch and A. C. O'Sullivan, Agric. Biol. Chem., 53, 1531 (1989); K. Nakagawa, A. Torikata, K. Sato and Y. Tsukamoto, J. Antibiot., 43, 1321 (1990); H. Mrozik, P. Eskola, M. H. Fisher, J. R. Egerton, S. Cifelli and D. A. Ostlind, J. Med. Chem., 25, 658 (1982); T. L. Shih, H. Mrozik, J. Ruiz-Sanchez and M. H. Fisher, J. Org. Chem., 54, 1459 (1989); H. Mrozik, B. O. Linn, P. Eskola, A. Lusi, A. Matzuk, F. A. Preiser, D. A. Ostlind, J. M. Schaeffer and M. H. Fisher, J. Med. Chem., 32, 375 (1989); T. L. Shin, H. Mrozik, M. A. Holmes and M. H. Fisher, Tetrahedron Lett., 31, 3529 (1990); T. A. Blizzard, H. Mrozik, F. A. Preiser and M. H. Fisher, Tetrahedron Lett., 31, 4965 (1990); M. V. J. Ramsay, S. M. Roberts, J. C. Russell, A. H. Shingler, A. M. Z. Slawin, D. R. Sutherland, E. P. Tiley and D. J. Williams, Tetrahedron Lett., 28, 5353 (1987); C. E. Mowbray, M. V. J. Ramsay and S. M. Roberts, J. Chem. Soc., Perkin Trans., 1, 1990, 1813.
- J. Ide, Y. Nakada and S. Muramatsu, Japan Kokai Tokkyo Koho, 84,033,288 (Feb. 23, 1984).
- K. Bowden, I. M. Heilbron, E. R. H. Jones and B. C. L. Weedon, *J. Chem. Soc.*, **1946**, 39.
- A. J. Moncuso, S.-L. Huang and D. Swern, J. Org. Chem., 43, 2480 (1978).

- 9) J. C. Collins, W. W. Hess and F. J. Frank, *Tetrahedron Lett.*, 9, 3363 (1968).
- 10) For methods to examine the activity of the milbemycins, see ref. 4; and A. Takiyama, M. Tagawa

and K. Kurokawa, J. Jpn. Vet. Med. Assoc., 40, 491 (1987).

11) N. Kitano, Japan Kokai Tokkyo Koho, 82,139,012 (Aug. 27, 1982).