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Synthesis of Bacterial Metabolites of
Polycyclic Aromatic Hydrocarbons:

Benzochromenones,
o-Carboxyvinylnaphthoates, and

o-Substituted Aryl-a-Oxobutenoates

Young-Soo Keum, Jong-Su Seo, and Qing X. Li

Department of Molecular Biosciences and Bioengineering, University

of Hawaii, Honolulu, Hawaii, USA

Abstract: Bacterial metabolites of phenanthrene and anthracene include benzochrome-

nones, o-carboxyvinylnaphthoates, and o-substituted aryl a-oxobutenoates, which

were synthesized with the Wittig reaction, the Heck reaction, and coupling of

aromatic aldehyde with pyruvate.

Keywords: Polycyclic aromatic hydrocarbon, metabolite, benzochromene carbo-

xyvinylnaphthoate, oxobutenoate

Polycyclic aromatic hydrocarbons (PAHs) are global contaminants.

Numerous bacterial species have been reported as PAH degraders. Phenan-

threne (1) and anthracene (2) are frequently used as model compounds in

bacterial metabolism studies. Bacterial degradation usually starts with dioxy-

genation on 1,2-, 3,4-, or 9,10-C of phenanthrene and 1,2-C of anthracene

(Figure 1).[1,2] Dihydrodiols from dioxygenation are metabolized to

benzochromenones (3, 6) and o-hydroxynaphthyl-a-oxobutenoate (4, 7),

and o-carboxyvinylnaphthoates (5, 8), via meta- and ortho-cleavage
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pathways, respectively. Further degradations result in the formation of

2-(3-carboxy-3-oxoprop-1-enyl)-benzoic acid (9), o-carboxycinnamic acid,

or 4-(2-hydroxyphenyl)-2-oxobut-3-enoic acid (10). These metabolites are

usually identified by gas or liquid chromatography coupled with mass

spectrometry (GC-MS or LC-MS) in their intact form or their ether/ester

derivatives. However, the authentic standards of the intact chemicals

(1–10) or their ether/ester derivatives are not commercially available,

which limits the detailed study of their role in bacterial metabolism. In

addition, their stereochemistry (E- or Z-) is also vague. This study was

intended to provide proper synthetic methods of these metabolites or their

derivatives for more detailed biochemical studies and instrumental analysis.

Benzochromenones and coumarins are prepared by several methods

including a) coupling of trimethylsilylketene with o-hydroxynaphthaldehyde,[3]

b) cyclization of o-substituted cinnamates,[4,5] and c) thermal oxidation and

cyclization of o-hydroxyarylpropanoic acid.[6]

Benzochromenones 3 and 3a, which are common metabolites of phenan-

threne,[1] were prepared from o-hydroxynaphthaldehyde (11a and 11b)

through a Wittig reaction (Scheme 1). 2H-Benzo[g]chromen-2-one (6) was

synthesized from 11c.[7] The reaction yields were 70, 78, and 69% for 3,
3a, and 6, respectively. Mass spectra and melting points well coincided

with those in the literature.[1,2,7] Crude reaction mixtures of 3 and 3a were

analyzed with GC-MS. Approximately 20–30% of the aldehydes were

Figure 1. Bacterial metabolism of phenanthrene (1) and anthracene (2) via 3,4- and

1,2-dioxygenation.

Y.-S. Keum, J.-S. Seo, and Q. X. Li2686
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recovered as unreacted starting materials. o-Hydroxynaphthylpropenoates,

possible Wittig reaction products, were found only at the initial stage

of reaction (,2 h of reflux). Dubuffet et al.[7] prepared 3 and 3a from

o-methoxynaphthaldehyde via a Wittig reaction, followed by boron-

mediated dealkylative ring closure, the methods of which were applied on

the preparation of 6 in this study. Boron trihalide, which is very toxic

and air sensitive, is usually used for the ring closure of o-methoxyaryl

propenoates.[7,8] In this study, o-methoxynaphthldehyde was used for the

synthesis 3 and 3a instead of o-hydroxy analogues. Toluene (bp 1108C),

a commonly used solvent,[7] was replaced by higher boiling xylene

(bp 1388C). In the preliminary experiments for solvent selection, the

reaction yields in benzene and toluene were 10 and 45% of 3, respectively.

The results suggest that higher boiling-point solvents may increase thermal

rearrangement from o-hydroxynaphthyl propenoates to benzochromenones.

Several synthetic methods have been reported for the preparation of

aryl-a-oxobutenoic acids.[9,10] The method of Dujardin et al.[9] was very

simple but required a long reaction time (usually .36 h of reflux).

Coupling of a-ketoylide to arylaldehyde is another possible choice of

the synthesis of aryl-a-oxobutenoates.[11] The previous studies, however,

were limited to the synthesis of nonsubstituted or p-substituted aryl

analogues.[9 – 11] PAH metabolites, conversely, usually have o-hydroxy or

o-carboxy substituents on their aromatic ring (e.g., 4, 5, 7–10). We

tested the reactivity of five arylaldehydes with o-hydroxy (11a and b),

-methoxy (11c, 12a and b, 14a), and methoxycarbonyl group (14b) in

two different reaction conditions (Scheme 2). The yields of method A or

B with o-methoxy- or o-carboxy-substituted arylaldehyde were 27–40%

(Table 1). o-Hydroxyaryl aldehyde (11a and b) did not react to produce

a-oxobutenoates after 36 h of reflux (Table 1). Longer heating (.72 h)

Scheme 1.
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did not improve the yield. Instead of 4a and 13a, approximately 1–2% of

benzochromenone (3 and 3a) was recovered from reaction mixtures.

Reaction yields of method A with 11c, 12a and b, and 14a and b were

lower than those of nonsubstituted or p-substituted aldehydes,[7] which

may be due to steric effects of ortho-substituents. Among the products

derived from method A, only a single peak in each experiment, except

Scheme 2.

Table 1. Reaction condition, yield, and GC retention time of o-substituted aryl-a-

oxobutenoates

Reactant Product Method

Reaction

time (h)

GC retention

time (min) Yield (%)a

11a 4a A 36 — NDb

11b 13a A 36 — ND

11c 7a A 36 58.6 32

12a 4b A 48 54.78 31

4b B 5 54.79 34

12b 13b A 48 56.66 27

13b B 5 56.71 38

14a 10a A 36 34.28 32

14b 9a-trans A 36 38.25 40

9a-cis A 36 35.01 1

aReaction yield after column chromatography or thin-layer chromatography.
bNot detected.

Y.-S. Keum, J.-S. Seo, and Q. X. Li2688

D
ow

nl
oa

de
d 

by
 [

H
ar

va
rd

 C
ol

le
ge

] 
at

 1
5:

47
 2

1 
Ju

ne
 2

01
3 



the synthesis of 9a, showed an expected mass spectrum of o-substituted aryl

oxobutenoate 2[M]þ 220 or 270, fragments of m/z [M-15 (Me)], [M-31

(MeO)], [M-59 (COOMe)]. In addition to these peaks, a trace amount of

benzochromenones (3 and 3a) was observed. In consideration of the

reaction condition,[11] the C-C double bond in oxobutenoates from

method A may have an E-configuration. Two peaks (GC retention time

[Rt], 35.01 and 38.25 min) with nearly identical mass spectra were found

in the reaction mixture for the synthesis of 9a, which suggests cis- and

trans-isomer, respectively.

The yields from the Wittig reaction (method B) were comparable

with those in literature.[11] Although both methods A and B gave similar

yields, large differences were observed in the chemical profile of reaction

mixtures. More complex reaction mixtures were obtained from method

A—more than 10 reaction products—and were detected in GC-MS analysis.

In comparison with method A, only four to five peaks were observed in GC-

MS chromatograms of reaction mixtures from method B, which can be easily

assigned as unreacted aldehyde, ylide, triphenylphosphine oxide, and

expected products (4b and 13b). The selectivity for E- and Z-isomers in the

Wittig reaction is dependent on various conditions.[12–14] Because ylide

usually exists as a mixture of E- and Z-isomers, isomeric mixture of products

were expected in method B. However, only a single isomer was found (4b)

or one of isomers was the dominant product (13b). Because of the high steric

hindrance of ortho-substituents, the dominant isomer may be the E-isomer.

o-Carboxyvinyl naphthoates (5a, 8a, and 8b) were prepared from a

typical Heck reaction with o-bromonaphthoic acid methyl esters

(Scheme 3). Among the peaks in GC-MS chromatograms of a crude

reaction mixture (5a), only a single peak (Rt 49.50 min) showed a

typical MS spectrum of the predicted product (Mþ, 270). In case of the

synthesis of 8a (Rt 53.93 min), one additional peak (Rt 47.08 min) also

showed a similar MS pattern. In consideration of the reaction mecha-

nisms,[15 – 17] the double bond in the propenoic acid group of the dominant

product (5a and 8a) may be an E-configuration. The reaction yields were 68

and 73% for 5a and 8a, respectively. Approximately 30% of the reactant

was recovered at the end of reaction. No other products were detected with

GC-MS.

Scheme 3.
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EXPERIMENTAL

General Procedures for the Preparation of Benzochromenones

Benzochromenones 3 and 3a were prepared from 11a and b, respectively, by

the procedure of Dubuffet et al.[7] with some modification. Methyl triphenyl-

phosphoranylidene acetate (10 mmol) was added to a solution of o-hydroxy-

naphthaldehyde (10 mmol) in xylene (50 ml). The mixture was refluxed for

4 h. After removing the solvent, the residues were triturated with isopropyl

ether. Insoluble triphenylphosphine oxide was removed and the filtrate was

concentrated. Residue was purified with silica-gel column chromatography

(hexane/ethyl acetate 1/1, v/v). Purities of synthetic compounds were deter-

mined with GC-MS. Melting points were measured with a Fisher-Johns

melting-point apparatus and reported without correction.

3-Methoxy-2-naphthaldehyde (11c) was prepared from (3-methoxy-

naphthalen-2-yl)-methanol by an established method.[18] 2H-Benzo[g]chro-

men-2-one (6) was prepared from 11c, according to the established

procedure.[7]

2H-Benzo[h]chromen-2-one (3). GC-MS Rt (min): 39.53; m/z 196 (Mþ,

72), 168 (100), 139 (46); 1H NMR: 6.51 (d, 1H), 7.51 (d, 1H), 7.65 (m, 2H),

7.70 (d, 1H), 7.83 (d, 1H), 7.88 (m, 1H), 8.47 (m, 1H); purity, 98%; mp:

138–1418C, lit.: 140–1418C.[19]

3H-Benzo[f]chromen-3-one (3a). GC-MS Rt (min): 41.80; m/z 196

(Mþ, 88), 168 (100), 139 (56); 1H NMR: 6.65 (d, 1H), 7.45 (d, 1H), 7.59

(m, 1H), 7.68(t, 1H), 7.91 (d, 1H), 7.98 (d, 1H), 8.32 (d, 1H), 8.50 (d, 1H);

purity, 99%; mp: 116–1188C, lit.: 115–1168C.[7]

2H-Benzo[g]chromen-2-one (6). GC-MS Rt (min): 41.49; m/z 196 (Mþ,

100), 168 (73), 139 (60); 1H NMR: 6.40 (d, 1H), 7.52(m, 1H), 7.68–7.79

(m, 3H), 7.90–8.00 (m, 1H), 8.20 (s, 1H); purity, 97%; mp: 124–1258C.

General Procedures for the Preparation of 4-(o-Methoxyaryl)-2-

oxobut-3-enoates and Related Compounds

Method A: 4-(o-Methoxnaphthyl)-2-oxobut-3-enoates (4b, 7a, and 13b) were

prepared from o-methoxynaphthaldehyde (11c, 12a, and b) according to the

literature method.[9] 4-(o-substituted pheny)-2-oxobut-3-enoates (9a and

10a) were synthesized by the same method, using 14a and b, respectively.

Copper triflate [Cu(OTf)2, 0.2 mmol] and trimethyl orthoformate (1.2 mmol)

were added to a solution of methyl pyruvate (2 mmol) and o-substituted

aldehyde (1 mmol) in dichloromethane (80 ml), and the mixture was heated

to reflux for 36–48 h. After solvent removal, an oily residue was purified by

silica-gel thin-layer chromatography (hexane/ethyl acetate 2/1, v/v).

Method B: Methyl 2-oxo-3-(triphenylphosphoranylidene)propanoate

(TPPP) was prepared by a literature method.[20] TPPP (50 mmol) was added

Y.-S. Keum, J.-S. Seo, and Q. X. Li2690
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to a solution of aldehyde (10 mmol, 12a and b) in toluene (50 ml), and the

mixture was stirred at 808C for 5 h. After removing the solvent under

reduced pressure, the residue was triturated with isopropyl ether. Insoluble

oxide was removed and the extracts were purified with silica-gel column

chromatography (hexane/ethyl acetate 1/1, v/v).

Methyl (3E)-4-(1-methoxy-2-naphthyl)-2-oxobut-3-enoate (4b). m/z

270 (Mþ, 6), 255 (2), 239 (100), 211 (53), 196 (57), 168 (34); 1H NMR:

3.86 (s, 3H), 3.95 (s, 3H), 7.32 (d, 1H), 7.47 (d, 1H), 7.49–7.60 (m, 3H),

7.85–7.90 (m, 2H), 8.41 (d, 1H); purity 96%; mp 35–368C.

Methyl (3E)-4-(2-methoxy-1-naphthyl)-2-oxobut-3-enoate (13b). m/z

270 (Mþ, 55), 239 (97), 211 (61), 196 (100), 168 (82); 1H NMR: 3.84

(s, 3H), 3.94 (s, 3H), 6.37 (d, 1H), 7.52–7.62 (m, 3H), 7.75 (d, 1H), 7.99

(d, 1H), 8.04 (d, 1H), 8.42 (d, 1H); purity 98%; mp 41–428C.

Methyl (3E)-4-(3-methoxy-2-naphthyl)-2-oxobut-3-enoate (7a). m/z

270 (Mþ, 25), 255 (1), 239 (5), 211 (100), 196 (45), 168 (24); 1H NMR:

3.74 (s, 3H), 3.87 (s, 3H), 7.22 (d, 1H), 7.44 (t, 1H), 7.48 (d, 1H), 7.67

(t, 1H), 7.82 (m, 2H), 8.08 (d, 1H), 8.42 (d, 1H); purity 95%; yellow oil.

Methyl 2-[(1E)-4-methoxy-3,4-dioxobut-1-enyl]benzoate (9a-trans).

m/z 248 (Mþ, 4), 233 (3), 217 (2), 189 (100), 145 (50); 1H NMR: 3.89

(s, 3H), 3.92 (s, 3H), 7.18 (d, 1H), 7.48 (m, 1H), 7.51 (m, 1H), 7.64

(m, 1H), 7.90 (d, 1H), 8.37 (d, 1H); purity 95%; yellow oil.

Methyl 2-[(1Z)-4-methoxy-3,4-dioxobut-1-enyl]benzoate (9a-cis). m/z

248 (Mþ, 4), 233 (4), 217 (2), 189 (100), 145 (44); 1H NMR: 3.90 (s, 3H), 3.95

(s, 3H), 6.28 (d, 1H), 7.46–7.53 (m, 2H), 7.57 (m, 1H), 7.91 (d, 1H), 8.22

(d, 1H); purity 97%; mp 34–378C.

Methyl (3E)-4-(2-methoxyphenyl)-2-oxobut-3-enoate (10a). m/z 220

(Mþ, 7), 205 (1), 189 (1), 161 (100); 1H NMR: 3.86 (s, 3H), 4.30 (s, 3H),

7.44 (d, 1H), 7.06–7.66 (m, 4H), 7.87 (d, 1H); purity 94%; yellow oil.

General Procedures for the Preparation of

o-Carboxyvinylnaphthoates and Benzoates

Methyl esters of o-bromonaphthoic acids (15a and b) were prepared according

to the methods of Look et al.[21] and Seki et al.,[22] followed by esterification

with methyl iodide. Methyl acrylate (60 mmol), triethylamine (TEA,

60 mmol), palladium acetate (1 mmol), and tri-o-tolylphosphine (10 mmol)

were added successively to a solution of o-bromonaphthoate (50 mmol)

in N,N-dimethylformamide (50 ml). The mixture was stirred at 908C for 5 h.

After cooling, the mixture was poured into water (200 ml) and extracted

with dichloromethane (80 ml � 3). After removing the solvent, residues

were purified by column chromatography (silica gel, hexane/ethyl acetate).

1-[(E)-2-Carboxyvinyl]-2-naphthoic acid dimethyl ester (5a). GC-MS

Rt (min): 49.50; m/z 270 (Mþ, 8), 239 (9), 223 (7), 211 (100), 196 (10), 179

(10), 168 (12); 1H NMR: 3.81 (s, 3H), 3.92 (s, 3H), 6.52 (d, 1H), 7.44–7.50

Bacterial Metabolites 2691
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(m, 2H), 7.65 (m, 1H), 7.83 (d, 1H), 7.95 (d, 1H), 8.15 (d, 1H), 8.43 (d, 1H);

purity 97%; mp 54–568C.

3-[(E)-2-Carboxyvinyl]-2-naphthoic acid dimethyl ester (8a). GC-MS

Rt (min): 53.93; m/z 270 (Mþ, 14), 255 (3), 239 (9), 223 (26), 211 (100), 196

(13), 168 (16); 1H NMR: 3.55 (s, 3H), 3.82 (s, 3H), 6.13 (d, 1H), 7.44–7.74

(m, 3H), 7.84–8.06 (m, 2H), 8.21 (d, 1H), 8.43 (s, 1H); purity 97%; mp

77–788C.

3-[(Z)-2-Carboxyvinyl]-2-naphthoic acid dimethyl ester (8b). GC-MS

Rt (min): 47.08; m/z 270 (Mþ, 24), 255 (5), 239 (8), 223 (29), 211 (100), 196

(18), 168 (16); purity 91%.

Instrumental Analysis

GC-MS analyses were performed with a Varian QP-5000 gas chromatograph

and a Saturn-2000 Ion trap mass spectrometer. ZB-1 column (60 m, 0.25mm)

was used. Initial column temperature was set at 1208C (held for 2 min) and

raised to 2808C at a rate of 28C/min (held for 10 min). Injector and detector

temperatures were 270 and 2808C, respectively. Helium was the carrier gas

at a rate of 2 ml/min. Melting point was measured with a Fisher-Johns

melting-point apparatus and is reported without correction. 1H NMR spectra

were recorded on a Varian Mercury-Plus 300-MHz NMR for solutions in

CDCl3.
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