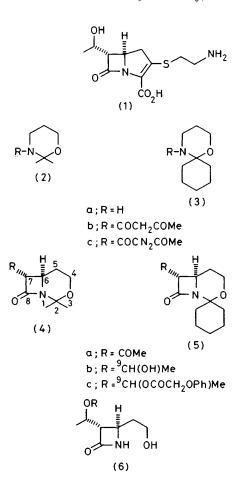
J.C.S. Снем. Сомм., 1979

Preparation of 8-Oxo-7-(1-hydroxyethyl)-3-oxa-1-azabicyclo[4.2.0]octane Derivatives: Intermediates for Thienamycin Synthesis

By Roger J. Ponsford and Robert Southgate*


(Beecham Pharmaceuticals, Research Division, Brockham Park, Betchworth, Surrey RH3 7A])

Summary Readily available tetrahydro-1,3-oxazines on acylation with diketen followed by diazo exchange, irradiation, and reduction give 8-oxo-7-(1-hydroxyethyl)-3-oxa-1-azabicyclo[4.2.0]octane derivatives having transsubstituents about the β -lactam ring.

THIENAMYCIN¹ (1) is a novel β -lactam antibiotic having a 6α -hydroxyethyl substituent on the β -lactam ring. The total synthesis² of (1), via (4b), provides for hydroxyethylation by an aldol reaction α to the β -lactam carbonyl of unsubstituted (4; R = H). A similar method has been used to prepare novel C-6(7) substituted penicillins and cephalosporins.³ Interest in these compounds prompts us to report an alternative preparation of (4b) and also the new derivative (5b), starting from the tetrahydro-1,3-oxazines (2a)⁴ and (3a),⁵ readily available from 3-amino-propan-1-ol and acetone or cyclohexanone.

Reaction of (2a) with diketen gave the oily acetoacetamide (2b) (60%). Diazo exchange with toluene-*p*sulphonyl azide and triethylamine readily occurred forming (2c) (89%), which on irradiation⁶ cyclised† to give exclusively the *trans*-substituted β -lactam product (4a) (55%), ν_{max} (CHCl₃) 1750 cm⁻¹ (β -lactam carbonyl). Reduction of the ketone with sodium borohydride (0 °C, ethanol) resulted in a mixture of the two isomers of the alcohol (4b), which on acylation with phenoxyacetyl chloride led to (4c) seen as a 1:1 mixture of isomers in the ¹H n.m.r. spectrum.⁷ The isomers of (4b) correspond to the same mixture prepared by the aldol route.²

Similarly the tetrahydro-1,3-oxazine (3a) was converted via (3b) into (3c). Irradiation of (3c) gave a 73% yield of the trans- β -lactam (5a). Reduction and acylation

 \dagger Cyclisation of the diazo compounds (2c) and (3c) has also been successful (75%) using $Rh_2(OAc)_4$ in dichloromethane (room temperature); with Cu in toluene (90 °C) yields were lower (25%).

provided the two isomers of $(\mathbf{5c})$, which could be separated by chromatography on silica gel. Both (4c) and (5c) gave the same mixture of isomers of the azetidin-2-one (6; R =COCH₂OPh) on treatment with aqueous acid. All compounds gave satisfactory i.r., n.m.r., and mass spectral data.

(Received, 13th June 1979; Com. 629.)

¹ U.S.P. 3,950,358. Abstracts, Sixteenth Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, 1976.

² D. B. Johnston, S. M. Schmitt, F. A. Bouffard, and B. G. Christensen, J. Amer. Chem. Soc., 1978, 100, 313.
³ F. DiNinno, T. R. Beattie, and B. G. Christensen, J. Org. Chem., 1977, 42, 2960.
⁴ J. S. Eden, U.S.P. 2,960,433; (Chem. Abs., 1961, 55, P8437f).
⁵ E. M. Hancock, E. M. Hardy, D. Heyl, M. E. Wright, and A. C. Cope, J. Amer. Chem. Soc., 1944, 66, 1747.
⁶ At - 60 °C using a Hanovia 450W medium-pressure lamp. See D. M. Brunwin, G. Lowe, and J. Parker, J. Chem. Soc. (C), 1971, 350 **37**56.

⁷ In CDCl₃ using Me₄Si as internal standard; as judged by the intensity of the C7-H signals; δ 2.86 (dd, $J_{6,7}$ 2 Hz, $J_{7,9}$ 8.5 Hz) and δ 2.98 (dd, $J_{6,7}$ 2 Hz, $J_{7,9}$ 5 Hz). See also ref. 2.