SYNTHESIS, BIOTRANSFORMATION AND STEREOCHEMISTRY OF 6β-SESQUITERPENE LACTONES: SYNTHESES OF 6β-ARTEPAULIN, 11,13-DIHYDRO-6β-TUBERIFERIN, 5,15-DIHYDRO-6β-OOPODIN, 4-EPI-6β-VULGARIN AND 6β-VULGARIN

Yolanda Amate¹, José L. Bretón², Andres García-Granados¹, Antonio Martinez¹, M^a Esther Onorato³ and Antonio Sáenz de Buruaga¹.

- 1.- Departamento de Química Orgánica. Facultad de Ciencias. Universidad de Granada. Spain.
- 2 Instituto de Productos Naturales Orgánicos (C.S.I.C.) La Laguna (Tenerife). Spain.
- 3.- Servicios Técnicos. Universidad de Granada. Spain.

(Received in UK 25 June 1990)

SUMMARY: 6*p*-Artepaulin, 11,13-dihydro-6*p*-tuberiferin, 4,15-dihydro-6*p*-oopodin, 4-epi-6*p*-vulgarin and 6*p*-vulgarin were obtained from α -santonin. Stereochemical studies showed that the configuration at C-6 is decisive in the chemical behaviour of the A ring. Blotransformation of 1-oxo-5,6 α H,4,11*p*H-eudesm-2-en-6,12-oilde with *Rhizopus nigricans* cultures probed to be a very efficient alternative way to obtain 4-*epi-6p*-vulgarin, which was then converted to 6*p*-vulgarin, a convenient starting material for biogenetical studies of pseudogualanolides. A new 8*b*-hydroxyl derivative obtained from this biotransformation constitutes a new approach to the synthesis of 8,12-eudesmanolides and other experiments.

INTRODUCTION

The biogenesis and reactivity of 6α -eudesmanolides have been extensively studied and processes of chemical¹, photochemical², biomimetic syntheses³ and biotransformation⁴ have been reported. These structures, despite their limited size, show versatile reactivity. The stereochemistry and the presence or absence of functional groups are decisive in their chemical behaviour⁵, which is of fundamental importance in the study of biomimetic processes. On the other hand the 6ß-sesquiterpene lactones, which are scarce in nature⁶, have rarely been studied. The synthesis of these compounds offers an interesting approach to biogenetic problems such as the biogenesis of pseudoguaianolides and elemanolides. In this article we present the results of a study designed to establish some synthetic methods of obtaining 6ß-lactones, which yielded the 6ß-analogues of artepaulin⁷, 11,13dihydrotuberiferin⁸, 5,15-dihydroopodin⁹, 4-epi-vulgarin and vulgarin¹⁰. We also report a biotransformation method which may constitute an alternative to some familiar chemical routes.

Y. AMATE et al.

RESULTS AND DISCUSSION

The epimerization at C-6 of $(-)-\alpha$ -santonin¹¹ (1) in an acidic medium has been described¹². The catalytic hydrogenation of 6B-santonin (2) thus obtained under the same conditions as described¹³ for 1 was problematic and caused cleavage of the lactone ring. Furthermore, catalytic hydrogenation in CH,Cl, (see Experimental section) yielded two ketone compounds (3, 60% and 68-artepaulin (4, 6%) and two alcohols (5, 6% and 6, 14%). The configuration at C-5 of ketone 3 epimerized spontaneously to give 4 (3/4, 1)70/30). The higher ¹H-nmr chemical shifts of methyl groups at C-4 of 3 than 4, and the relevant ¹³C nmr ¹³C n 4R- configuration and 4 to the S-configuration. The alcohols 5 and 6 were also trans-decalin compounds, as can be appreciated from the C-6 proton signal of both products in their 'H nmr spectra (see table I). The configuration at C-4 must be S because the H-4/H-15 coupling constants are similar to those described previously for 4 (see table I). Moreover, ¹³C nmr spectra for 5 and 6 corroborated this configuration at C-4 due to C-6 chemical shifts (see table II). The oxidation of 5 and 6 with 2,2'-bipyridinium chlorochromate¹⁴ yielded 4. Thus, the alcohols 5 and 6 are epimeres at C-3. The presence of the alcohols 5 and 6 indicated that the reduction took place through both sides of ketone 4.

Treatment of 4 with bromine in carbon tetrachloride solution (see Experimental section) yielded monobromine (7, 62%) and dibromine (8, 9%) derivatives. The nmr spectra of 7 indicated that the halogen was equatorial at C-2 and that the two bromines were situated at C-2 in 8. On the other hand, the configuration at C-4 was unaltered (see tables I and D) in both compounds. The dehydrobromation of 7, as described previously 15 , gave 11,13-dihydro-66-tuberiferin (9, 94%). A similar process in 8 gave 10. The Meerwein-Pondorf reduction of 9 yielded the alcohols 11 (72%) and 12 (25%). In the case of 6α -lactones, a similar reduction gave a mixture of non-isolated alcohols^{1a}. Thus the reduction occurred preferably on the α -side to give the equatorial alcohol. However, alcohol 11 showed an 'H nmr signal of the proton at C-3 with only one observable coupling constant (J=8.8 Hz, see table III) which could indicate that the functional group was situated at C-1 by means of allylic rearrangement. The irradiation at H-4 of 11 definitely indicated that the hydroxyl group was situated at C-3. By comparing the H-3/H-4 coupling constant for 11 and 12 (see table III), we were able to assign their configurations. The ¹³C nmr spectra of both epimere compounds 11 and 12 were similar with the exception of the chemical shift of C-5, which presented a difference of 15 ppm. Evidently a *y*-syn effect on C-5 was expected for the axial alcohol 12, but such a large difference must be due to some conformational effect.

Allylic rearrangement of a mixture of alcohols 11 and 12 was performed in acidic medium (see experimental section) to give the 1 α -hydroxyl derivative 13 (4,15-dihydro-68-oopodin, 71%). Moreover, 16% of equatorial alcohol 11 and 5% of the axial alcohol 12 were recovered unaltered from the reaction. The configuration at C-1 of 13 was not easy to determine. Oxidation of alcohol 13 gave the ketone 14. The comparison of ¹³C nmr spectra of 13 and 14 seemed to indicate that the hydroxyl group could be axial at C-1 in 13, if we assumed that the configuration at C-4 was the same for both products, because a μ -syn effect on C-5 was eliminated in ketone 14 (see table IV). Nevertheless the configuration of C-4 for both products 13 and 14 was also difficult to elucidate because the ¹H nmr signal

6941

of H-4 of 13 was not clear, and the coupling constant H-3/H-4 (measured on H-3 signal) was smaller (J = 1.3 Hz) than the allylic constant H-2/H-4 (J = 2.1 Hz). A NOESY experiment performed on ketone 14 indicated dipolar correlations between the lactone H-6, the C-15 methyl, C-13 methyl groups and H-5, hence all these groups were situated on the α -side. On the other hand, the coupling constant 3H-15/H-4 measured on the 3H-15 signal (J = 7.1 Hz) of 13 had the same value as the corresponding signal of ketone 14. This ketone 14 had a coupling constant of H-4/H-5 = 10.3 Hz, which indicated a trans-disposition between both atoms. The coupling constant 3H-15/H-4 measured on the 3H-15 signal (J = 7.1 Hz) had the same value for both products 13 and 14, and indicated that the C-4 configuration was the same for these products.

Alcohol 13 was also obtained by an alternative means. The epoxidation of ketone 9 with alkaline hydrogen peroxide¹⁶ (see Experimental section) yielded the epoxide 15 (58%). Epoxidation probably occurs on the α -face, with a lower steric hindrance, and without epimerization at C-4. To elucidate the configuration of epoxide carbons, several monodimensional nOe experiments, after COSY and C/H correlation spectra, were carried out. Irradiation at the C-10 methyl group proton signal frequency enhanced the H-1 and H-4 signals, thus suggesting an α -disposition for the epoxide group and an axial disposition for the C-4 proton. The H-4 signal was observable in this experiment and its coupling constant H-4/H-5 (J = 11.9 Hz) indicated that they were trans-disposed

Y. AMATE et al.

The reduction of 15 with hydrazine^{8d.} yielded 13 (28%). This route gave a lower yield than the route described above but was less time consuming and easier to perform. The oxidation of alcohol 13 with Jones' reagent yielded the ketone 14 (98%). In order to obtain similar vulgarin derivatives, the ketone 14 was treated with ethylene glycol in acidic medium to give the ethylenedioxy-derivative 16 (42%) in which migration of the C-C double bond occurred. Epoxidation of 6a-sesquiterpene lactones with similar functions was described as an α -epoxidation¹⁷ after taking into account the α -oxygen directional effect of the C-1 ethylenedioxy group; soon afterwards this epoxide in basic medium evolved to the 3a-hydroxy-4(15)-ene derivative. However, a 3B,4B-epoxy-eudesmane gave a 3a-hydroxy -4(15)-ene derivative after treating the epoxy compound with a catalytic amount of pyridinium p-toluensulphonate¹⁸. Epoxidation of 16 with MCPBA for 24 h then yielded the 38,48-epoxide 17 (94%). Treatment of 17 in acidic medium (see Experimental section) gave 14 (46%), 18 (32%) and the diene compound 19 (13%). To determine the configuration at C-4 of 18, (which must be the same as in the epoxide 17) several ¹H and ¹³C nmr monoand bidimensional experiments about were performed. Dipolar coupling between the C-15 methyl group protons and the C-6 proton was observed in the NOESY experiment, thus supporting an equatorial disposition for this methyl group. This dipolar coupling was also corroborated in the monodimensional nOe-difference experiment. Thus, irradiation at the C-15 methyl group proton frequency gave nOe on H-6 and H-5 but not on C-14 methyl group. Irradiation at this C-14 methyl group did not modify the C-15 methyl group signal. These experiments indicated a 4B-OH configuration for 18, although irradiation at H-6 failed to enhance the C-15 methyl group signal, hence the epoxidation of 16 occurred on the β -face. Thus, the directional effect of the ethylenedioxy group at C-1 seems not to be the determining factor in this epoxidation of eudesmanolides. Alternatively, the configuration at C-6 may be decisive in the stereochemistry of epoxidation if C-1 is a sp^3 carbon.

We have found an alternative route for obtaining 4-epi-6B-vulgarin (18) from ketone 14. Incubation of 14 with *Rhizopus nigricans* cultures for 6 days yielded the starting material 14 (48%), alcohol 20 (8%), 4-epi-6B-vulgarin 18 (8%) and the new 8B-hydroxyl derivative 21 (11%). Consistently, the obtention of 18 through our biotransformation route gave moderate yields approaching those of chemical approaches. A longer incubation period could improve the results, as a considerable quantity of unaltered starting material 14 was recovered. The metabolite 20 was the result of α , β -unsaturated keto group reduction on the β -face to give 1S-alcohol, as described in the biotransformation reported previously^{44,19}.

The most polar metabolite isolated (21) maintained the functional groups of ketone 14. The presence of a new hydroxyl group was deduced from MS, ¹H and ¹⁵C nmr data (see experimental section and tables III and IV). A ¹H nmr double resonance experiment with irradiation at the proton geminal to the new hydroxyl group showed that this new hydroxyl group was situated at C-8; a large coupling constant (J= 9.9 Hz) seemed to indicate that this new hydroxyl group at C-8 was equatorial. However, after taking into account the ¹H nmr coupling constants (J₁=9.9,J₂=4.2,J₃=3.7 Hz) and the Dreiding models we believe that the metabolite 21 had an 8\B-hydroxyl group, although ring B did not show a chair conformation by the steric interaction between the C-14 methyl group and the Bhydroxyl group at C-8. The coupling constants described above are totally consistent with a twist-boat conformation of the B ring and an 8\B-hydroxylation. The introduction of hydroxyl groups at this position is not easy to obtain by chemical methods and may involve a new route to the synthesis of 8,12-sesquiterpene lactones.

The synthesis of 6β -eudesmanolides as a step toward obtaining several types of 6β -sesquiterpene lactones such as guaianolides, elemanolides, germacranolides and pseudoguaianolides has been a challenge, as these decaline compounds with an equatorial hydroxy group at C-1 can be rearranged into azulene compounds²⁰. Hence 6β -vulgarin, which can be easily transformed to its 1 β -hydroxy-2,3-dihydro derivative, is an adequate starting material to attempt the biogenetical formation of pseudoguaianolides, the configuration at C-4 of precursors being of key importance^{21,30,34}.

Treatment of 18 with AcOH/Zn¹⁰ and subsequent epoxidation with MCPBA epimerized 18 at C-4 by means of the 1-keto-3-ene derivative^{4a} to give 22 (see tables II and IV for ¹H and ¹³C nmr data of 22). This process occurs by the epoxidation of the double bond and subsequent rearrangement to 22^{4a} . As can be seen from the resulting configuration at C-4 of 22, in this case epoxydation occurs on the α -face, in contrast to epoxidation of the ethylenedioxy derivative 16.

	1	2~	3	4	5 ~	é	Z	8	~	10
	6.66 d	6.74 d						2.88 948	6.63 d	7.12 s
H-1a	• • • •			1.66 ddd			1.86 dd			••
H-1B		••••					2.30 dd		••••	••••
Í	6.12 d	6.23 d			••••	••••	••••	••••	5.83 d	
H-2at			2.24 ddd	2.39 ddd			••••			
H-28	••••		2.79 ddd	2.58 ddd			4.89 ddd			
i					••••			••••		
н-За					••••	3.06 ddd				
H-38					3.89 ddd	••••				
H-4a		••••	2.60 ddq		••••					•
H-48		• • • •		2.70 dq			2.86 dq	3.49 dq	2.74 dq	2.91 dq
H-5α j		••••		1.27 dd			1.32 dd	1.48 dd	1.72 dd	
н-ба		5.52 d	4.50 dd	4.62 dd	4.59 dd	4.62 dd	4.59 dd	4.59 dd	4.68 dd	4.67 dd
н-68 ј	4.76 d	••••					••••			••••
i		2.15 ddd	1.99 ddd	1.98 ddd			2.00 ddd	2.00 ddd	2.04 ddd	2.07 ddd
H-8ar		1.86 dddd	i i	1.75 ddd	1		1.77 dddd	1.75 dddd	l	
н-88								1.47 dddd	I	
н-9аг							1.15 ddd	1.06 ddd		
H-98				1.57 ddd			1.59 ddd	1.62 ddd		
i	2.39 dq	2.52 q	2.33 q	2.39 q	2.33 q	2.29 q	2.40 q	2.41 q	2.40 q	2.42 q
i	1.22 d	1.37 d	1.26 d	1.29 d	1.26 d	1.28 d	1.30 d	1.30 d	1.31 d	1.32 d
i	1.28 s	2.03 s	1.28 s	1.84 s	0.93 s	0.94 s	1.23 s	1.38 s	1.17 s	1.23 б
Ì	2.07 s	1.26 s	1.39 d	1.12 d	1.03 d	1.07 d	1.20 s	1.33 d	1.25 d	1.33 d
	H-1a H-1a H-2a H-2a H-3a H-3a H-3a H-4a H-4a H-4a H-6a H-6a H-8a H-8a H-9a 	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							

I ABLA I

 $J(R_2)$ 1: 6,7=11; 7,11=11.9; 11,13=6.9. 3: $2\alpha_1$,4=1.6; 4,5=5.1; 4.15=7.7; 5,6=4. 4: $1\alpha_1$,18=13.2. 3 and 4: $1\alpha_2$,2 α_2 =6.6; $1\alpha_2$,28=14.1; 18,2 α =5; 18,28=6.6; $2\alpha_2$,28=14.1. 5: $2\alpha_2$,3=2.6; 28,3=5.3; 3,4=5.3. \pounds : $2\alpha_2$,3=5; 28,3=10.5; 3,4=10.5. χ : $1\alpha_2$ =13.4; 18,2=6.3; $1\alpha_1$,18=12.9; 2,4=0.7. \pounds : $1\alpha_1$,18=15.7. 1,2 and 9; 1,2=9.8. 2-10: 6,7=4.6; 7,8 α =6.8; 7,8 θ =11.4; 11,13=7.6. $\frac{4}{2}$ ·10: 4,5 =12.8; 4,15=6.6; 5,6=4.1. $2,4,\chi$ and $\frac{8}{2}$: $8\alpha_2$,8 θ =13.8; $8\alpha_2$,9 α = 8 α_2 ,9 θ = 3.4. $\frac{4}{2}$, $\frac{7}{2}$ and $\frac{8}{2}$: $8\theta_2$,9 θ =6.6; 9 α_2 ,9 θ =13.2. χ and $\frac{8}{2}$: $8\theta_2$,9 α =10.2.

	TABLA II												
	1	2	3	4	5	é ~	7	8 ~	~	10			
C- 1	154.95	157.29	41.64	41.76	36.20	40.40	54.12	63.90	159.30	159.19			
C- 2	125.83	125.82	34.86	38.01	29.12	30.93	53.54	64.21	126.22	122.05			
C- 3	186.30	186.00	214.25	211.85	72.08	76.91	201.98	196.94	201.43	193.30			
C- 4	128.63	137.49	50.00	42.98	33.22	36.87	43.04	38.40	40.46	41.21			
٤- 5	151.06	148.52	47.83	50.39	43.03	48.97	50.45	49.04	48.43	47.94			
C-6	81.38	76.19	81.35	77.00	77.78	77.10	76.50	76.19	76.45	76.03			
C- 7	53.53	43.42	43.02	41.78	42.41	42.19	41.40	41.38	41.48	41.21			
C- 8	23.04	23.00	24.07	23.54	23.76	23.58	23.26	22.62	23.47	23.28			
C- 9	37.83	34.43	41.22	38.55	39.27	39.24	37.87	38.79	35.71	35.59			
C-10	41.36	39.15	32.63	32.57	32.72	¥2.¥2	35.27	35.48	35.Z	38.33			
C-11	 40.97	43.82	43.48	44.49	44.63	44.52	44.31	44.29	44.40	44.23			
C-12	177.61	179.47	180.11	179.90	180.84	180.53	179.53	174.37	179.79	179.80			
C-13	12.49	14.70	15.97	14.61	14.61	14.64	14.58	14.62	14.64	14.60			
C-14	25.12	24.84	20.39	18.07	17.82	18.58	18.55	19.13	19.15	18.96			
C-15	10.89	11.01	14.03	10.85	15.35	14.41	11.47	12.34	11.30	12.03			

6944

		11	12 ~	1 <u>3</u>	14 ~	15 ~	16 ∼	17 ~	18 ~	20	21 ~	22
H-1		5.48 QAB	5.58 d									•
	H-1α ∣		••••					·····				••••
	н-16	••••	••••	3.39 d		3.16 d	••••	••••		3.34 bs	••••	
H-2	İ	5.48 QAB	5.64 dd	5.77 m	5.85 dd			2.15 AB	6.66 d		5.88 dd	6.73 d
	H-22ar											
	н-28					3.32 d		···••	••••		••••	
H-3	1			5.72 m	6.71 dd		5.38 bm	·····	5.91 d		••••	6.01 d
	н-За	3.80 d	••••								••••	••••
	H-36	• • • •	4.03 dd					••••				
	H-402					••••					••••	
	н-48	1.96 dep	2.15 dq		2.86 ddd	7					2.85 m	
	H-5oc				1.58 dd	1.92 dd	2.53 bm	2.34 dd	1.91 d		1.62 dd	2.74 d
	н-6α	4. <i>6</i> 9 dd	4.71 dd	4.79 dd	4.73 dd	4.67 dd	4.87 dd	4.91 dd	5.04 dd	4.78 dd	4.46 dd	4.99 dd
	H-66		••••						••••		••••	
H-7	Í		2.02 ddd	2.01 dd		2.02 ddd		1.97 ddd			1.86 dd	
	н-8а					1.83 ddd	d	1.70 ddd	1.85 ddd		••••	
	н-88										3.72 ddd	
	H-9az										2.27 dd	
	н-98							2.00 ddd				
H-11	· • •	2.36 q	2.37 q		2,40 q	2.41 q		2.34 q	2.42 q	2.34 q	2.91 q	2.378 q
3H-13	i i	1.29 d	1.29 d	1.30 d	1.30 d	1.29 d	1.30 d	1.29 d	1.34 d	1.29 d	1.37 d	1.31 d
3H- 14	r j	1.05 s	0.98 s	0.90 s	0.93 s	1.02 s	1.01 s	1.07 s	1.38 s	0.94 6	1.16 8	1.28 s
3H-15	i	1.18 d	1.14 d	1.11 d	1.23 d	1.22 d	1.83 bs	1.51 s	1.53 s	0.97 s	1.27 d	1.53 s

TABLA III

J (Hz) 1j: 3,4=8.8. 12: 2,3=4.1; 3,4=3.9. 11 and 12: 1,2=9.8. 13: 1,2=4.6; 2,3=9.9; 2,4=2.1; 3,4=1.3. 16: 2,3=10.1; 2,4=2.8; 3,4=2;4,5=10.3. 13 and 14: 4,15=7.1. 15: 1,2=4.1. 16: H-3,MV2=9; H-5,MV2=7.5. 17: 2a, 28=15.7; 2a, 3= 28,3=2.9. 18 and 21: 2,3=10.2. 21: 7,8=4.2; 8,9a=9.9; 8,98=3.7. 11-22: 5,6=4; 6,7=4.6; 11,13=7.6. 11,12,15 and 20: 4,5=12.6; 4,15=6.6. 12,13,15 and 18: 7,8a=6.8. 12,13,15 and 17: 7,88=11.4. 15,17 and 18: 8a,88=13.8; 8a,9a= 8a,98=3.4. 18: 88,98=6.4; 9a,98=12.8. 21: 2,4=2.8; 3,4=2: 4,5=10.4; 4,15=7.1; 7,8=4.2; 8,9a=9.9; 8,98=3.7; 9a,98=13.2. 22: 2,3=10.4; 5,6=2.6; 6,7=3.8.

	TABLA IV										
	ų	12	13	14	15	16 ~	17	18	ž	21 ~	22
	141 02	142 96	72.98	203.75	63.48	111.54	111.32	205.60	75.50	202.43	202.49
C-2	127 30	175 20	125.85	126.25	55.75	26.71	26.89	126.00	28.88	126.00	128.39
r. 3	76 16	69 12	138.03	154.37	206.99	120.85	60.79	150.45	30.28	154.51	151.43
r- 4	35.98	32.98	30.05	30.80	40.42	132.64	77.30	69.40	28.55	30.84	82.83
C-5	47.19	32.13	42.57	48.56	41.45	45.24	45.37	47.99	43.85	50.38	44.33
C-6	76.74	77.34	77.11	76.49	76.34	78.04	78.11	76.67	77.88	77.74	75.87
c∙ 7	42.04	42.25	41.80	41.68	40.11	41.72	42.39	42.60	42.30	41.79	42.45
c- 8	23.75	23.82	23.30	Z3.00	23.34	23.62	23.13	22.92	23.62	67.74	3. 5
C- 9	36.61	36.59	31.97	30.13	34.28	34.52	32.39	31.40	32.88	39.89	33.02
C-10	34.49	35.04	35.93	43.29	33.16	39.89	39.59	43.41	36.99	44.97	43.99
c-11	44.57	44.50	44.52	44.38	44.38	44.66	44.32	42.98	44.61	48.35	43.77
C-12	180.44	180.65	180.31	179.75	179.46	180.39	180.10	178.63	180.71	179.55	179.97
C-13	14.74	14.73	14.42	14.46	14.42	14.50	13.91	14.47	14.58	14.80	13.92
C-14	21.60	20.08	18.53	17.59	17.12	15.64	16.29	20.68	19.40	18.35	20.51
C-15	15.00	13.25	18.20	17.54	14.31	20.73	21.76	29.16	18.85	17.69	20.30
C - 16						*65.73	ద.వ	••••			
C-17	ſ					*65.06	65.15				

* (These values could be interchangeables)

EXPERIMENTAL

Meiting points (Kofler apparatus) are uncorrected. The nmr spectra were obtained with a Bruker AM-300 spectrometer equipped with a process controller and an "array processor". Samples were solved in CDCI3 with SIMe4 as the internal standard. Bruker's programs were used for COSY (45°) NOESY, C/H correlation and CONDESY (90°). Monodimensional nOe difference experiments were performed by irradiation for 4 s in series of 8 scans with alternarting on-resonance and off- resonance. Distortionless enhancement by polarization transfer (DEPT) was made using a "flip angle" of 135°. The optical rotations were measured on a Perkin-Elmer 240 polarimeter. IR spectra were recorded with a FT-IR-Nicolet 20SX spectrophotometer. Mass spectra were carried out with a Hewlett-Packard 5968-A spectrometer. Merck 7729 silica gel (less than 0.08 mm) was used for flash chromatography. CH₂Cl₂ containing increasing amounts of acetone was used as the eluent. Analytical plates (Merck G silica gel) were visualized by spraying with H₂SO₄-AcOH, followed by heating for 5 min.

Conversion of (-)-a-santonin 1 into the epimeric (-)-6-epi-a- santonin 2 by the Ishikawa procedure.-

(-)- α -santonin (1)(10 g, 40 mmol) was dissolved in anhydrous N,N'-dimethylformamide (100 mil) containing 5% anhydrous hydrogen chloride. The solution was heated to 85°C for 3 h. The mixture was allowed to stand at room temperature overnight, then diluted with water and extracted with CH₂Cl₂. The organic layer was washed with sat NaCl aq, sat NaHCO₃ aq. and water. The solvent was removed under reduced pressure. The viscous red oil obtained was chromatographed over silica gel. Elution with CHCl₃ containing increasing amounts of acetone, yielded (-)-6-epl- α - santonin (2)(6g, 60%) as light-yellow blocks; m.p.:103-105°C; [a]_D:-292.6° (CHCl₃, c 1); Ir μ_{max} (CHCl₃): 1769, 1659 and 1628 cm-1; ¹H nmr (300 MHz): see table I; ¹³C nmr: see table II; ms, m/z(%): 247(M⁺+1, 20%), 246(M⁺)(100).

Catalytic hydrogenation of 3-oxo-6aH, 11AH-eudesm-1, 4-dien-6, 12-olide (2).-

A solution of 3-oxo-6aH,11*β*H-eudesm-1,4-dien-6,12-olide (2)(1 g, 4 mmol) in CH₂Cl₂(30 ml) was hydrogenated for 5 h with H₂ (5 atm) on Pt-charcoal (150 mg). The reaction mbture was filtered and the solvent was removed by distillation at reduced pressure, which yielded 890 mg of yellow oil which was chromatographed over silica gel and eluted with Cl₂CH₂-(CH₃)₂CO. The first run gave 3-oxo-4,5,6aH,11*β*H-eudesman-6,12-olide (3)(610 mg, 60%), m.p.: 130-132°C; [a]_D:-60° (CHCl₃, c 1); ir μ_{max} (CHCl₃): 1763 cm-1; ¹H nmr (300 MHz): see table I; ¹³C nmr: see table II. Further elution yielded 3-oxo-5,6aH,4,11*β*H-eudesman-6,12-olide (4)(65 mg, 6%); m.p.: 162-164°C; [a]_D:-70.4°(CHCl₃, c 1); ir μ_{max} (CHCl₃): 1760 cm-1; ¹H nmr (300 MHz): see table I; ¹³C nmr: see table II. Further elution yielded 3-oxo-5,6aH,4,11*β*H-eudesman-6,12-olide (4)(65 mg, 6%); m.p.: 162-164°C; [a]_D:-70.4°(CHCl₃, c 1); ir μ_{max} (CHCl₃): 1760 cm-1; ¹H nmr (300 MHz): see table I; ¹³C nmr: see table II. Further elution yielded 1, 250 (100). The third run gave 3a-hydroxy-5,6aH,4,11*β*H-eudesman-6,12-olide (5)(60 mg, 5%); syrup; [a]_D:-26.4° (CHCl₃, c 1); ir μ_{max} (CHCl₃): 3479 and 1765 cm-1; ¹H nmr (300 MHz): see table I; ¹³C nmr: see table I; ms, m/z(%): 253(M⁺ + 1, 27%), 235 (M⁺ - 17)(100). Continued elution yielded 3*μ*-hydroxy-5,6aH,4,11*μ*H-eudesman-6,12-olide (6)(140 mg, 14%), syrup; [a]_D: -121.4° (CHCl₃, c 1); ir μ_{max} (CHCl₃): 3241 and 1755 cm-1; ¹H nmr (300 MHz): see table I; ¹³C nmr: see table II; ms, m/z(%): 253 (M⁺ + 1, 7%), 252 (M⁺, 44%), 234 (M⁺ - 17)(100).

Oxidation of 3a-hydroxy-5,6aH,4,11BH-eudesman-6,12-olide (5) and 3B-hydroxy-5,6aH,4,11BH-eudesman-6,12-olide (6).-

A solution of a mixture (5 and 6) (500 mg, 2 mmol) in CH_2CL_2 (3 mi) was added to a stirred suspension of 2,2'- bipyridinium chlorochromate (870 mg, 3 mmol) in CH_2CL_2 (4 ml). Stirring was continued at room temperature for 12 h. Ether was added and the reaction mixture was filtered through cellte and washed with ether. The solvent was evaporated under reduced pressure to give a crude product (350 mg) which was chromatographed over silica gel. 290 mg (58%) of 3-oxo- 5,6 α H,4,11 μ H-eudesman-6,12-olide (4) was isolated.

Bromation of 3-oxo-5,6aH,4,11pH-eudesman-6,12-olide(9).-

0.93 m bromine-carbon tetrachloride solution (4.5 ml) was added all at once to a solution of 3-oxo-5,6aH,4,11*µ*H- eudesman-6,12-olide (4) (1 g, 4 mmol) in 30 ml CHCl₃. The mbture was stirred for 10 min at room temperature, after which water was added and extracted with CHCl₃. The extract was washed with sat. NaHCO₃ and aat NaCl aq, dried over Na₂SO₄ and concentrated to give 970 mg of crude crystalline material. Chromatographic separation yielded 2,2-dibromo-3-oxo-5,6aH,4,11*µ*H- eudesman-6,12-olide (8)(140 mg, 8%), M.p.: 170- 171°C; $[a]_D$: +8° (CHCl₃ c 1); ir μ_{max} (CHCl₃): 1771, 1729 and 1189 cm1; ¹H nmr: see table I; ¹³C nmr: see table II; ms, m/2(%): 408 (M⁺ +2, 66%), 406 (M⁺, 42%), 328 (100%). The second band gave 2a-bromo-3-oxo-5,6aH,4,11*µ*H- eudesman-6,12-olide (7) (800 mg, 61%) as a crystalline material; m.p.: 168-169°C; $[a]_D$: -46.3° (CHCl₃, c 1); ir μ_{max} (CHCl₃: 1759, 1717, 1166 an 1205 cm-1; ¹H nmr (300 MHz): see table I; ¹³C nmr: see table II; ms, m/2(%): 330 (M⁺+2, 63%), 329(M⁺+1, 15%), 78 (100).

Dehydrohalogenation of 2,2-dibromo-3-oxo-5,6aH,4,11aH- eudesman-6,12-olide(8).-

Lithium carbonate (75 mg) and lithium bromide (53 mg) were added to a solution of 2,2-dibromo-3-oxo-5,6aH,4,11*k*H-eudesman-6,12-olkde (8) (140 mg, 0.34 mmol) in dry N,N'-di methylformamide. The suspension was stirred at 120°C under nitrogen for 90 min. The reaction mbxture was cooled, poured into diluted acetic acid and extracted thoroughly with methylene chloride. The organic layer was washed with water and sat NaCl aq, dried over MgSO₄ and concentrated in vacuo to give a crude semisolid product which was chromatographed to yield 105 mg (92%) of 2-bromo-3-oxo-5,6aH,4,11*k*H-eudesm-1-en-6,12-olide (10); m.p.: 187-188°C; [a]₀: -138° (CHCl₃, c 1); Ir μ_{max} (CHCl₃): 1771, 1684 and 1170 cm -1; ¹H nmr (300MHz): see table I; ¹³C nmr: see table II; ms, m/z(%): 327 (M*+1)(100).

Dehydrohalogenation of 2-bromo-3-oxo-5,6aH,4,11#H-eudesman- 6,12-olide (7).-

Lithium carbonate (440 mg) and dry lithium bromide (330 mg) were added to a solution of 2-bromo-3-oxo-5,6aH,4,11*a*H- eudesman-6,12-olide (7)(800 mg, 2 mmol) in dry N,N'- dimethylformamide. The suspension was stirred at 120°C under nitrogen for 75 min. The reaction mbture was cooled, poured into diluted acetic acid and extracted thoroughly with methylene chloride. The organic layer was washed with water and sat. NaCl aq., dried over MgSO₄ and concentrated in vacuo. Chromatographic separation yielded 3-oxo-5,6aH,4,11*a*H-eudesm-1-en-6,12-olide (9)(570 mg, 94%). M.p.: 168-169°C; [a]_D: -189.3° (CHCl₃, c 1); ir μ_{max} (CHCl₃): 1772 and 1667 cm-1; ¹H nmr (300 MHz): see table I; ¹³C nmr: see table II; ms, m/z(%): 249 (M + 1. 17%), 248(M⁺)(100).

Aluminum isopropoxide reduction of 3-oxo-5,6aH,4,11#H- eudesm-1-en-6,12-olide (9).-

A suspension of 3-oxo-5,6aH,4,11*g*H-eudesm-1-en-6,12- olide (9)(1g, 4 mmol) in dry isopropyl alcohoi (60 ml) and aluminium isopropoxide (3.7 g, 17.6 mmol) was stirred and boiled gently in a flask fitted with a vigreaux column while the acetone vapor was allowed to escape. After 6 h the reaction mbture was poured over cold 2M HCl solution (57 ml) and extracted with chioroform. The combined extracts were washed with sat. NaHCO₃ aq and sat NaCl aq, dried over MgSO₄ and evaporated under reduced pressure to give 990 mg of an olly mixture which was chromatographed over silica gel. Elution of the column yielded 3a-hydroxy-5,6aH,4,11*g*H- eudesm-1-en-6,12-olide (12) (250 mg, 25%); syrup; $[\alpha]_D$: -183° (CHCl₃ c 1); ir μ_{max} (CHCl₃): 3436 and 1767 cm-1; ¹H nmr (300 MHz): see table III; ¹³C nmr: see table IV; ms, m/z(%): 251 (M⁺+1, 54%), 250 (M⁺, 7%), 233 (M⁺-17)(100). Further elution yielded 3*a*-hydroxy-5,6aH,4,11*g*Heudesm-1-en-6,12-olide (11) (370 mg, 72%), syrup; $[\alpha]_D$ -90° (CHCl₃, c 1; ir μ_{max} , (CHCl₃): 3175 and 1754 cm-1; ¹H nmr (300 MHz): see table III; ¹³C nmr: see table III; ¹⁴C HCl₃): 251 (M⁺+1, 54%), 250 (M⁺, 7%), 233 (M⁺-17) (100).

Allylic rearrangement of 3a-hydroxy-5,6aH,4,11fH-eudesm-1- en-6,12-olide (12) and 3f-hydroxy-5,6aH,4,11fH-eudesm-1-en-6,12- olide (11).-

A solution of mbture (11 and 12)(500 mg, 1.9 mmol) in THF (40 mł) and 2 M HCi solution (30 mł) were refluxed under nitrogen for 3 h. The cooled solution was poured over sat NaCl aq, extracted successively with CHCl₃, washed with sat NaHCO₃ aq and sat ClNa aq, dried over MgSO₄ and concentrated in vacuo. The crude off was chromatographed to give 1a-hydroxy -5,6aH,4,11 β H-eudesm-2-en-6,12-olide (13) (358 mg, 71%); syrup; [a]₀: -29.4° (CHCl₃, c 1); ir μ_{max} (CHCl₃): 3455 and 1768 cm-1; ¹H nmr (300 MHz): see table III; ¹³C nmr: see table IV; ms, m/z(%): 250 (M⁺ +1, 32%), 232 (M⁺-18)(100). The second run gave a starting material mbture: 3a-hydroxy-5,6aH,4,11 β H-eudesm-1-en-6,12-olide (12) (23 mg, 5%) and 3 β -hydroxy-5,6aH,4,11 β H-eudesm-1-en-6,12-olide (11) (82mg, 16%).

Oxidation of 1a-hydroxy-5,6aH,4,11pH-eudesm-2-en-6,12-olide (13).-

Jones reagent was added to a stirred solution of 1^{α} -hydroxy-5,6 $^{\alpha}$ H,4,11 $^{\beta}$ H-eudesm-2-en-6,12-olide (13) (500 mg, 2 mmol) in acetone (10 mi) at 0°C until an orange color persisted. Methanol was then added and the reaction mbture was diluted with water and extracted with CHCl₃. The organic layer was washed with sat NaCl aq, dried over MgSO₄ and evaporated to dryness. Chromatographic separation yielded 1-oxo-5,6aH,4,11 $^{\beta}$ H-eudesm-2-en-6,12-olide (14)(487 mg, 98%). M.p.: 115-116°C; [a]₀: -91.5° (CHCl₃, c 1); ir μ_{max} (CHCl₃): 1771 and 1677 cm-1; ¹H nmr (300 MHz): see table III; ¹³C nmr: see table IV; ms, m/z(%): 249 (M⁺ + 1, 6%), 248 (M⁺, 35%), 78(100).

Epoxidation of 3-oxo-5,6aH,4,11#H-eudesm-1-en-6,12-olide (9) with alkaline hydrogen peroxide.-

Anhydrous sodium carbonate (30 mg), 30% hydrogen peroxide (0.16mi) and water (0.73 ml) were added to a solution of 3-oxo-5,6 α H.4,11 β H-eudesm-1-en-6,12-olide (9)(200 mg, 0.8 mmol) in THF (10 ml). The mixture was heated to 35-40°C for 2 h. The solution was cooled, poured into water, and extracted with CH₂Cl₂. The organic layer was washed with diluted acetic acid and sat NaCi aq and dried over MgSO₄. The solvent was removed and the residue (180 mg) was chromatographed over silica gel. The first band gave 1 α ,2 α -epoxy-3-oxo-5,6 α H,4,11 β H-eudesman-6,12-olide (15) (123 mg, 57%); m.p.: 123-124°C; [a]₀: 42.8° (CHCl₃): c 1); if μ_{max} (CHCl₃):1767, 1707, 1190 and 1159 cm-1; ¹H nmr (300 MH2): see table II; ¹C nmr: see table IV; ms, m/z(%): 264 (M⁺)(100). Continued elution yielded the starting compound: 3-oxo-5,6 α H,4,11 β H-eudesm-1-en-6,12-olide (9) (42 mg, 21%).

Hydrazine reduction of 1a,2a-epoxy-3-oxo-5,6aH,4,11gH- eudesman-6,12-olide (15).-

100% hydrazine hydrate (0.045 mmol) was added dropwise to a solution of $1\alpha_2a$ -epoxy-3-oxo-5,6aH-eudesman-6,12-olde (15) (100 mg, 0.37 mmol) in THF (5 mi). The mbxture was heated refluxed for 5 min. while nitrogen evolved. After cooling, the reaction was diluted with water and extracted with chloroform. Evaporation of the dried solution furnished an oily crude material (36 mg). Chromatographic separation yielded 27 mg (28%) of 1α -hydroxy-5,6aH,4,11 β H-eudesm-2-en-6,12-olde (13).

Acetalization of 1-oxo-5,6aH,4,11pH-eudesm-2-en-6,12-olide (14).-

A mbxture of 1-oxo-5,6 α H,4,11 β H-eudesm-2-en-6,12-olide (14)(250 mg, 1 mmol), pyridinium p-toluensulphonate (30 mg) and ethylene glycol (3 ml) in dry benzene was refluxed for 24 h under nitrogen. The reaction mbxture was cooled and washed with sat NaCl aq and NaHCO₃ aq. The benzene layer was drawn off, and the aqueous layer was extracted with CHCl₃ and dried over MgSO₄. The extracts were evaporated under reduced pressure to give a crude material (220 mg) which was chromagraphied over silica gel: 125 mg (42%) of 1,1-ethylenedioxy-5,6 α H,11 β H-eudesm-3-en-6,12- olide (16), syrup, ir μ_{max} (CHCl₃): 1769, 1680 and 893 cm-1; ¹H nmr (300 MHz): see table III; ¹³C nmr: see table IV; ms, m/z(%): 293 (M⁺ + 1)(100).

Epoxidation of 1,1-ethylenedioxy-5,6aH,11#H-eudesm-3-en- 6,12-olide (16) with MCPBA.-

50 mg (0.28 mmol) of MCPBA was added to a solution of 1,1-ethylenedioxy-5,6aH,11,8H-euclesm-3-en-6,12-olide (16) (89 mg, 0.27 mmol) in dry dichloromethane (3 ml), and the reaction mbture was stirred at room temperature and monitored by TLC. After 4 days, the reaction was complete An aqueous solution of FeSO₄ was then added and after extraction with CH₂Cl₂, the dried extract was washed with sat NaHCO₃ aq. The dried extract was concentrated to give a residue (82 mg) which was chromatographed over silica gel. Elution of the column yielded 3,8,4*B*-epoxy-1,1-ethylenedioxy-5,6aH,11,8H-euclesman-6,12-olide (17) (80 mg, 94%), syrup, [a]_D: 42.6° (CHCl₃, c 1); ir μ_{max} (CHCl₃): 1772. 1672, 1067. 909 and 835 cm-1; ¹H nmr (300 MHz): see table III; ¹³C nmr see table IV; ms, m/z(%): 308 (M⁺ + 1)(100).

Deacetalization and epoxide ring opening of 3*p*,4*p*-epoxy-1,1- ethylene dioxy-5,6aH,11*p*H-eudesman-6,12-olide (17).-

A mbxture of 3 β ,4 β -epoxy-1,1-ethylenedioxy-5,6 α H,11 β H- eudesman-6,12-olide (17) (50 mg, 0.17 mmol), H₂O (0.5 ml) and a catalytic amount of pyrdinium p-toluenesulphonate in THF (2 ml) was refluxed for 24 h under N₂, cooled, poured into sat NaCl aq and extracted successively with chloroform. After the combined extracts had been dried over anhydrous sodium sulphate, the chloroform was removed under reduced pressure, giving 47 mg of a crude material which was chromatographed over silica gel. The first run gave 1-oxo-5,6 α H,11 β H-eudesm-2-en-6,12-olide (14) (20 mg, 46%) as a starting compound. The second band yielded 1-oxo-eudesm-2,4-dien-6,12- olide (19) (8 mg, 13%). Continued elution yielded 4β -hydroxy-1-oxo-5,6 α H,11 β H-eudesm-2-en-6,12-olide (19) (8 mg, 13%). Continued elution yielded 4β -hydroxy-1-oxo-5,6 α H,11 β H-eudesm-2-en-6,12-olide (19) (8 mg, 13%). Continued elution yielded 4β -hydroxy-1-oxo-5,6 α H,11 β H-eudesm-2-en-6,12-olide (19) (8 mg, 13%). Continued elution yielded 4β -hydroxy-1-oxo-5,6 α H,11 β H-eudesm-2-en-6,12-olide (19) (8 mg, 13%). Continued elution yielded 4β -hydroxy-1-oxo-5,6 α H,11 β H-eudesm-2-en-6,12-olide (19) (8 mg, 13%). Continued elution yielded 4β -hydroxy-1-oxo-5,6 α H,11 β H-eudesm-2-en-6,12-olide (19) (15 mg, 32%); m.p.: 150-151°C; [a] - 32.6° (CHCl₃, c 1); Ir μ_{max} (CHCl₃): 3464, 3433 3402 and 1771 cm-1; ¹H mmr (300 MHz): see table III; ¹³C mmr: see table IV; ms, m/z(%): 265 (M⁺ + 1, 64%), 247 (M⁺-17)(100).

Fermentation of 1-oxo-5,6aH,4,118H-euclesm-2-en-6,12-olide (14) with Rhizopus nigricans cultures.-

Substrate (14) (25 mg) was dissolved in EtOH (1 ml), distributed in erlenmeyer flask and incubated for 6 days after which the culture was filtered and pooled; the cells were washed twice with water. The liquid was saturated with NaCl and extracted with CH_2Cl_2 . Both extracts were dried over $MgSO_4$ and evaporated under reduced pressure to give a mixture which was chromatographed over silka gel. The first band gave a starting material (14) (12 mg, 48%). Further elution yielded 1a-hydroxy-5,6aH,4,11*p*H-eudesman-6,12-olide (20) (2 mg, 7.8%); ¹H nmr (300 MHz): see table III; ¹³C nmr: see table IV; ms, m/z(%): 253 (M⁺ + 1, 62%), 235 (M⁺ -18)(100). The third band gave 4*p*-hydroxy-1-oxo-5,6aH,4,11*p*H-eudesm-2-en-6,12-olide (21) (3 mg, 7.5%). Continued elution yielded 8*p*-hydroxy-1-oxo-5,6aH,4,11*p*H-eudesm-2-en-6,12-olide (21) (3 mg, 11.2%); ¹H nmr (300 MHz): see table III; ¹³C nmr: see table IV; ms, m/z(%): 265 (M⁺ + 1, 50%), 79 (100).

Conversion of 4p-hydroxy-1-oxo-5,6aH,11pH-eudesm-2-en-6,12- olide (18) into 4a-hydroxy -1-oxo-5,6aH,11pH-eudesm-2-en-6,12- olide (22).-

4 β -hydroxy-1-oxo-5,6 α H,11 β H-eudesm-2-en-6,12-olide (18) (40 mg) was dissolved in 3 ml of acetic acid. When the mbture was boiling, 90 mg of powdered zinc was added over a period of 20 min. The solution was cooled and filtered, and the residue was washed with chloroform. The organic layer was subsequently washed with a sodium bicarbonate and water, dried and evaporated to give 20 mg of material which was dissolved in dry dichloromethane (2 ml). MCPBA (14 mg, 0.08 mmol) was then added and the reaction mbture was stirred at room temperature for 48 h. An aqueous solution of FeSO₄ was added and extracted with CH₂Cl₂. The organic solution was washed with sat NaHCO₃ aq. The dried extract was evaporated to give a reaction product which was chromatographed over silica gel to give 4α -hydroxy-1-oxo-5,6\alphaH,11 β H-eudesm-2- en-6,12-olide (22) (22 mg, 55%); ¹H nmr (300 MHz): see table III; ¹³Cnmr:see table V; ms, m/z(%): 265 (M⁺ + 1)(100).

ACKNOWLEDGEMENTS

We thank Isabel J. Macdonald and Ms Karen Shashck for their assistance in the translation of the text. This work was supported by a grant from the Comision Asesora de Investigación Clentifica y Tecnica.

REFERENCES

- 1. a) Ando, M., Akahane, A. and Takase, K. (1978) Bull. Chem. Soc. Japan 51(1), 283. b) Jain, T.C. and Banks, C.M. (1980) Can. J. Chem. 58, 447.
- c) Ando, M., Talima, K. and Takase, K. (1983) J. Org. Chem. 48, 1210.
- 2. Lange, G.L. and Lee, M. (1987) J. Org. Chem. 52, 325.
- 3. a) Bordoloi, M.J., Sharma, R.P. and Sarmah, J.C. (1986), Tetrahedron Lett. 27, 4633.
 - b) Parodi, F.J. and Fischer, N.H. (1986) J. Chem. Soc. Chem. Comm. 1405.
 - c) G. Gonzalez, A., Galindo, A., Alonso, M.M., Mansilla, H. and Lopez, H. (1988) Tetrahedron 44, 4585. d) G. Gonzalez, A., Galindo, A., Alonso, M.M., Mansilla, H. and Palenzuela, J.A. (1988) Tetrahedron 44,4575.
 - e) Harapanhalli, R.S. (1968) J. Chem. Soc. Perkin Trans. I, 2633.
 - f) Bordolol, M., Sarmah, J.C. and Sharma, R.P. (1989) Tetrahedron 45, 289.
 - g) Ortega, A. and Maldonado, E. (1989) Heterocycles 29, 635.
- 4. a) Arias, J.M., Breton, J.L., Gavin, J.A., García-Granados, A., Martinez, A. and Onorato, M.E. (1987) J. Chem. Soc. Perkin Trans I, 471.
- b) Arias, J.M., Garcia-Granados, A., Martinez, A., Onorato, M.E. and Rivas, F. (1988) Tetrahedron Lett. 29, 4471.
- 5. Herz, W. (1988) Israel Journal of Chemistry 16, 32.
- 6. "Progress in the Chemistry of Organic Natural Products". Zechmeister, L Ed. Herz, W., Grisebach, H. and Kirby, G.W.. Springer-Verlag. Wien New York.
- 7. Adekenov, S.M., Kagarlistskil, A.D., Mukhametzhanov, M.N. and Kapriyanov, A.N. (1983) Khim. Prir. Soedin 238
- 8. a) Kovacs, O., Herout, V., Horak, M. and Sorm, F. (1956) Collect. Czech. Chem. Comm. 21, 225 b) Barrera, J.B., Breton, J.L., Falardo, M. and Gonzalez, A.G. (1967) Tetrahedron Lett. 3475
 - c) Grieco, P.A. and Nishizawa, M. (1976) Chem. Comm. 582
 - d) Yamakawa, K., Nishitani, K. and Tominaga, T. (1975) Tetrahedron Lett. 2829.
 - e) Yamakawa, K., Tominaga, T., and Nishitani, K. (1975) Tetrahedron Lett. 4137.
- 9. Serkerov, S.V. (1972) Khim. Prir. Soedin. 8, 63.
- 10. Geissman, T.A. and Ellestad, G.A. (1962) J. Chem. Soc. 27, 1855. 11. a) Coker, W. and MacMurry, T.B.H. (1961) Tetrahedron Lett. 8, 181.
- b) Barton, D.H.R., Le Visalles, J.E.D. and Pinhey, J.T. (1962) J. Chem. Soc., 3472.
- 12. Ishikawa, H. and Zasshi, Y. (1956) J. Chem. Soc. 76, 504.
- 13. Corey, E.J. and Hortmann, A.G. (1965) J. Am. Chem. Soc. 5736.
- 14. Corey, E.J. and Suggs, J.W. (1975) Tetrahedron Lett., 2647.
- 15. a) Holysz, R.P. (1953) J. Am. Chem. Soc. 75, 4432.
- b) Joly, R. and Warnant, J. (1958) Bull. Soc. Chim., 367.
- 16. Fleser, L.F. (1940) J.Biol. Chem. 133, 391.
- 17. Ando, M., Akahane, A. and Takase, K. (1982) J. Org. Chem. 47, 3909.
- 18. G. Granados, A., Cabrera, E. and Quecuty, M.A. (1988) J. Nat. Prod. 51, 475.
- 19. Jones, J.B., Sih, C.F. and Perlman, D. in "Applications of Biochemical Systems in Organic Chemistry". Wiley. New york, 1976, Part 1.
- 20. Heathcock, C.H. and Ratcliffe, R. (1971) J. Am. Chem. Soc. 93. 1746.
- 21. Fisher, N.H., Wu-Shih, Y.F., Chiari, G., Fronczek, F.R. and Watkius, S.F. (1981) J. Nat. Prod. 1, 104.