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Abstract—An efficient synthesis of 5'-homoaristeromycin has been developed. This permitted an extensive antiviral analysis, which
found potent activity toward vaccinia, cowpox, and monkeypox viruses. For comparative purposes, 5’-homoadenosine was made

available by a newly designed route and found to be inactive.
© 2004 Elsevier Ltd. All rights reserved.

Inhibitors of S-adenosyl-L-homocysteine (AdoHcy)
hydrolase have shown promise as antiviral agents'? by
disrupting essential viral macromolecular methylation
processes.? Carbocyclic nucleosides * represent a promi-
nent class of compounds whose antiviral potential has
been traced to such an effect.! Within that group, carbo-
cyclic adenosine (aristeromycin, 1) is at the center of
these investigations* but its promise is limited by a toxi-
city arising from 5’-phosphate formation.>

Structural modifications of 1 with the aim of reducing
phosphate-based toxicity have yielded meaningful drug
candidates.® An approach not explored, however, is
extension of the C-5' hydroxymethyl side chain by a
methylene group to provide the C-5’ homolog of ariste-
romycin (2). This analog can be expected’ to have dis-
placed the phosphate-susceptible hydroxyl from the
phosphate-transfer zone in the kinases responsible for
metabolism to 1 to its nucleotides. In support of this,
2 has been reported® to be inactive against HSV-1 and
HSV-2, possibly, due to its failure to be phosphorylated

(Fig. 1).

To investigate 2 more thoroughly as a possible antiviral
agent a more practical synthesis of it was necessary. For
comparative antiviral purposes, 5’-homoadenosine (3)
was also sought by a much more efficient way than exists
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Figure 1.

in the literature.® The results of this effort are communi-
cated here.

Existing methods®!%!! for preparing 5'-homoaristero-
mycin (2) suffer from too many steps, limited scale-up,
low yields and, in one case, resulting in a racemic prod-
uct. Therefore, an efficient and stereoselective synthesis
of 2 was needed. Starting from enone 4!> (Scheme 1),
1,4-addition of ethyl trimethylsilylacetate followed by
in situ cleavage of the trimethylsilyl group furnished,
stereoselectively, the ketone ester 5 as the only product.
The stereochemistry at C-4 of 5 was derived from the
fact (i) that a 1,4-addition to the concave structure of
5 can be expected'? to give a B (up) product and (ii) that
5 was converted into the known 2. Reduction of 5 with
sodium borohydride provided the coupling precursor 6,
which has been reported via a more tedious way.'4
Mitsunubo coupling reaction of 6 with 6-chloropurine
furnished 7. Selective reduction of 7 with diisobutylalu-
minum hydride (DIBAL) yielded the desired alcohol 8.
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Scheme 1. Reagents and conditions: (a) (i) ethyl (trimethylsilyl)acetate, n-BuLi, DIPA, HMPA/THF, —78°C, (ii) KF, EtOH/H,0, rt, 84% for two
steps from 4; (b) NaBH,4, MeOH, ice temp, 100%; (c) 6-chloropurine, Ph;P, DIAD, THF, 0-50°C, 52%; (d) DIBAL, CH,Cl,, —50°C, 80%; (¢) NH3/

MeOH, 94%; (f) HCI/McOH, 95%.
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Scheme 2. Reagents and conditions: (a) (i) DMSO, DIPEA, SO3-Py, CH,Cl,, 90%, (i) Ph;PCH;Br, -BuOK, Et,0, 75%; (b) 9-BBN, THF, then
NaOH, H,0,, 97%; (c) (i) 70% AcOH, 85°C; (ii) Ac,0, DMAP, pyridine, 85% for two steps from 12; (d) Adpiv, HMDS, TMSCI, TMSOTT, 60%; (e)

NH3/MeOH, 91%.

Ammonolysis of 8 (to 9) followed by hydrolytic
deprotection smoothly afforded 2 in good overall
yield.!®

The known syntheses of 6’-homoadenosine’ (3) either
involved many steps® or suffer a low yield of the final
product.”®¢ Our plan (Scheme 2) envisioned beginning
with homologation of 10.'° Side chain oxidation of 10
followed by Wittig olefination afforded 11. Submitting
11 to regioselective hydroboration with 9-BBN followed
by oxidative hydrolysis, smoothly provided 12 in high
yield. Hydrolysis of 12 with acetic acid produced a
tetrol, which was fully protected with acetic anhydride
to provide the anomeric acetate 13. The coupling reac-
tion of 13 with N-pivaloyl protected adenine under
Vorbriiggen glycosylation conditions yielded the desired
N-9 product 14 as the only isolated product. Deprotec-
tion of 14 with ammonia furnished 3 in good overall
yield!” from p-ribose.

Compounds 2 and 3 were evaluated against a wide vari-
ety of both DNA viruses and RNA viruses.'® From this,
very significant effects were seen for 2 toward vaccinia
(ICso 1.2 pg/mL), cowpox (ICso 0.12 pg/mL), and mon-
keypox (ICsg 0.12pg/mL) viruses, all in Vero 76 cells
with CCso > 100 pg/mL. This observation is particularly
noteworthy since it is well known that vaccinia is suscep-
tible to AdoHcy hydrolase inhibitors but cowpox was
thought not to be.!®¢ In any case, details of this investi-
gation and the, possibly, less notable activity of 2 to-
ward other viruses'® will be forthcoming, including its
potency toward variola.'® Analog 3 was inactive in all
of the assays employed.'®
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