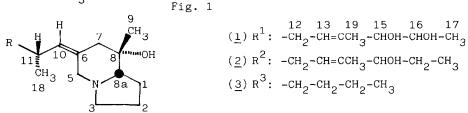
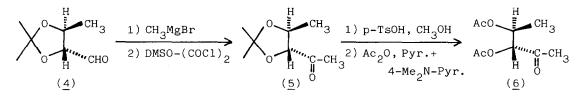
THE ABSOLUTE CONFIGURATION OF THE SIDE CHAIN DIOL MOIETY OF THE POISON-FROG ALKALOID PUMILIOTOXIN B

Motokazu Uemura, Katsuhiko Shimada and Takashi Tokuyama* Faculty of Science, Osaka City University, Sugimoto-3, Sumiyoshi-ku, Osaka, Japan 558

John W. Daly

Bldg. 4, Room 212, National Institute of Arthritis, Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, U.S.A., 20205


Summary: The absolute configuration of the diol moiety in the side chain of pumiliotoxin B has been established by comparison of the ozonolysis product from pumiliotoxin B diacetate with the synthetic 3,4-diacetoxy-2-pentanone derived from L-(+)-tartaric acid. This indicates the absolute configuration (R, R) of C-15, C-16 diol of pumiliotoxin B.


Pumiliotoxin B (<u>1</u>) was first isolated from the Panamanian frog <u>Dendrobates</u> <u>pumilio</u> together with a close analog pumiliotoxin A (<u>2</u>).¹⁾ The key to the structure of pumiliotoxin A class of dendrobatid alkaloids was obtained through X-ray analysis of a relatively simple member, pumiliotoxin 251D (<u>3</u>), isolated from Ecuadorian frog, <u>Dendrobates tricolor</u>.²⁾ The structure of pumiliotoxin A and B were deduced from magnetic resonance studies to be as in Fig. 1 with a single hydroxyl group in the side chain of pumiliotoxin A (<u>2</u>) and a diol moiety in the side chain for pumiliotoxin B (<u>1</u>). A recent study revealed the Econfiguration for the a^{13} -double bond and three-relation for the C-15, C-16 diol of the pumiliotoxin B side chain.³⁾ Independently, Overman and McCready also defined the three-configuration for the diol moiety of pumiliotoxin B.⁴⁾ The present communication reports the absolute configuration of the C-15, C-16 diol group of pumiliotoxin B.

2,3-Isopropylidene-2,3-dihydroxylbutanal (4) was obtained from L-(+)-

4369

tartaric acid according to the reported procedures⁽⁵⁾ and then converted to methyl ketone $(\underline{5}) [\alpha]_{D} +75^{\circ}$ (c 1.6 CHCl₃) by the treatment of CH₃MgBr and subsequent DMSO-(COCl)₂ oxidation. Treatment of the methyl ketone $(\underline{5})$ with p-TsOH in MeOH, and acetylation with Ac₂O gave 3,4-diacetoxy-2-pentanone $(\underline{6}) [\alpha]_{D} -36^{\circ}$ (c 0.5 CHCl₃).

Ozonolysis in methanol of pumiliotoxin B diacetate (m/z 407(27), 348(100), 288(26), 194(72), 166(63), 70(69); $\delta_{\rm H}$ of the acetyls, 2.03, 2.04; $[\alpha]_{\rm D}$ +17.8° (c 0.47 CH₃OH) gave 3,4-diacetoxy-2-pentanone identical with the synthetic sample (<u>6</u>) in ir and nmr. The ozonolysis product shows $[\alpha]_{\rm D}$ +42° (c 0.09 CHCl₃) and a positive maximum at 280 nm in CD spectrum, while the synthetic sample shows a negative maximum at the same wavelength. The present data complete the total structure assignment of pumiliotoxin B by defining the absolute configuration of the C-15, C-16 diol group.

References:

- J.W. Daly, T. Tokuyama, G. Habermehl, I.L. Karle and B. Witkop, Justus Liebigs Ann. Chem., <u>729</u>, 198 (1969).
- J.W. Daly, T. Tokuyama, T. Fujiwara, R.J. Highet and I.L. Karle, J. Am. Chem. Soc., 102, 830 (1980).
- T. Tokuyama, K. Shimada, M. Uemura and J.W. Daly, Tetrahedron Lett., <u>23</u>, 2121 (1982).
- 4) L.E. Overman and R.J. McCready, Tetrahedron Lett., 23, 2355 (1982).
- 5) C. Fuganti, P. Grasselli and G. P-Fantoni, Tetrahedron Lett., <u>22</u>, 4017 (1981) and references cited therein.

(Received in Japan 23 July 1982)