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Abstract
In this paper, a new anticancer Pt (II) complex, cis-[Pt (NH3)2(tertpentylgly)]NO3, was
synthesized with glycine-derivative ligand and characterized. Cytotoxicity of this
water-soluble Pt complex was studied against human cancer breast cell line of
MCF-7. The interaction of human serum albumin (HSA) with Pt complex was studied
by using UV-Vis, fluorescence spectroscopy methods, and molecular docking at 27

and 37 °C in the physiological situation (I = 10 mM, pH = 7.4). The negative ΔH0
b

and positive ΔS0b indicated that electrostatic force may be a major mode in the
binding between Pt complex and HSA. Binding constant values were obtained through
UV-Vis and fluorescence spectroscopy that reveal strong interaction. The negative
Gibbs free energy that was obtained by using the UV-Vis method offers spontaneous
interaction. Fluorescence quenching the intensity of HSA by adding Pt complex
confirms the static mode of interaction is effective for this binding process. Hill
coefficients, nH, Hill constant, kH, complex aggregation number around HSA, <J>,
number of binding sites, g, HSA melting temperature, Tm, and Stern-Volmer constant,
kSV, were also obtained. The kinetics of the interaction was studied, which showed a
second-order kinetic. The results of molecular docking demonstrate the position of
binding of Pt complex on HSA is the site I in the subdomain IIA.
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Abbreviations
HSA Human serum albumin
PDB Protein Data Bank
Tertpentylgly 1,1-Dimethyl propyl glycine

Introduction

Human serum albumin (HSA), as the most plentiful carrier protein, has many significant
physiological activities. Among its functions, metallodrugs get free in targeting organs via
binding with albumin protein. Hence, HSA cannot protect metallodrugs after binding against
oxidation, aquation, distribution, and the stability of drug changes [1].

Metal drugs are bound and unbound to HSA in plasma circulation. The unbound drugs spread
in the blood, and they are metabolized distributed intracellularly via particular forwarding systems
[2]. Also, free drug molecules can interact effective with hurt targets [3]. In most case, the
unbound drug concentration in plasma should be determined and controlled [3].

Therefore, the investigation of reversible HSA-complex interactions is necessary for
following the pharmacokinetics and dynamics effects of drugs. Also, in more cases, the
solubility of hydrophobic drugs can be improved by interaction with serum albumin [4].
Hence, protein-drug binding study provides valuable data for understanding the effect of drug
in vivo processes. Platinum (II) complexes as anticancer drugs, for example, cisplatin, are
known and used with high chemotherapeutic affect for treatment of several types of cancer,
some tumors, and ovarian and head and neck carcinomas [5].

Binding of Pt complexes on serum albumin is necessary for their biotransformation in
biological fluids, but because of binding of platinum center with protein contains sulfur atoms,
serious side effects cause. Hence, more Pt complexes are designing, and new agents are being
synthesized with lower toxicity [6]. In this case, redox activity of metal center and selectivity bind
to bimolecular target should be attended. Some methods and several spectroscopic techniques
such as fluorescence and absorption employ conformational properties of the protein and drug-
protein [7, 8]. In recent years, various investigations have been done on the interaction of
anticancer platinum and palladium derivatives with human serum albumin [9–20].

In the present research, a platinum (II) complex, cis-[Pt (NH3)2(tertpentylgly)]NO3, was
synthesized and characterized (Scheme 1). The HSA interaction with this water-soluble Pt
complex was studied by using electronic absorption and fluorescence spectroscopies and also

Pt
OH3N

H3N NH NO3

OScheme 1 The proposed structure
of cis-[Pt
(NH3)2(tertpentylgly)]NO3

complex
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modeled by molecular docking. Based on these studies, the important information about
thermodynamic parameters and the modes and mechanism and also the location of the

connection were determined. Then, the enthalpy (ΔΗ°
b), entropy (ΔS°b), and Gibbs free energy

(ΔG°
b) changes, melting point of HSA in the absence and presence of complex, Tm, the

aggregation number complex around HSA, 〈J〉, computed and estimated the number of binding
sites, g, binding constants, Kb, Hill coefficient, nH, Stern-Volmer coefficient, Kb, quenching
constant, kq, and the mechanism of quenching. In addition, cytotoxicity of this new complex
has been tested against human breast cancer cell line of MCF-7. These results would be
expected to help realize the binding mode of this Pt (II) complex to protein.

Experimental

Materials and Instrumentation

Silver nitrate, potassium iodide, tertpentyl amine, ammonia, sodium bicarbonate, and potassium
tetrachloroplatinate were purchased fromMerck (Germany). Solvents such as acetone, ethanol,
and anhydrous diethyl ether were obtained fromMerck Co. (Germany). Human serum albumin
(HSA, purity > 99.0%) was bought from Sigma-Aldrich Co. (USA) and stored at 4.0 °C. The
stock solution of the Pt (II) complex (2 mM) was prepared with Tris-HCl buffer containing
NaCl (10 mM, pH 7.4). The HSA stock solution was diluted to 0.03 mMwith the same buffer.

Infrared spectra were measured on a FTIR 8400 Shimadzu spectrometer from 4000 to 400
cm−1using KBr pellets. 1H NMR (300 MHz) spectrum was collected on Bruker BRX-250
Avance spectrometer with reference as DMSO − d6 solvent. The melting point of complex was
determined on a Buchi (Flawil, Switzerland) melting point B-545. Conductivity measurement
was carried out by a TetraCon 325 electrode connected to a Terminal 740 (WTW, Germany)
with a cell constant of 0.951 using conductivity water as the solvent. Elemental analysis (C, H,
and N) of complex that was performed by a CHN has been analyzed by Elementar
Analysensysteme GmbH-Vario EL III.

All fluorescence spectra were carried out on a Scinco FS-2 fluorescence spectrophotometer
in 200–700 nm. UV spectra of free HSA and HSA in the presence of various concentrations of
Pt (II) complex were measured using the PerkinElmer Precisely Lambda 25 Spectrophotom-
eter in 200–700 nm.

Synthesis of cis-[Pt (NH3)2(tertpentylgly)]NO3

Tertpentyl glycine was synthesized the way it was previously published and used for synthesis of
complex [21]. Also cis− [Pt(NH3)2I2] was prepared according to the method described previously
[22]. 0.183mmol (0.088 g) cis− [Pt(NH3)2I2] and 0.367mmol (0.062 g) AgNO3were suspended in
18 mL double-distilled water under continuous stirring condition for 24 h at room temperature and
then refluxed at 50 °C for 30 min under darkness. Then, gray AgI precipitate was removed by
centrifugation. After that, the solution of 0.183mmol (0.033 g) tertpentyl glycine hydrochloride and
10mL solution of 0.366mmol (0.03 g) NaHCO3 in water were added to above centrifuged solution
and stirred at 40 °C for 4 h. The solution was evaporated to 1 mL until the brown precipitate
appeared. The obtained product was decanted and washed by chilly acetone and dried in a
desiccator. Scheme 2 shows the formation of complex.
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cis-[Pt (NH3)2(tertpentylgly)]NO3 (435.08 g/mol): the yield is 69%; mp (160–165 °C);
analytical calculated for C7H20N3O2Pt compound is C, 19.30, H, 4.59, N, 9.65%, analytical
found: C, 18.93, H, 4.20, N, 9.37%; UV: λmax nm (ƐM): 201 (28.8); molar conductance, ɅM
(10−4 M, H2O) = 120 Ω −1 cm2 mol−1; FTIR (cm−1, KBr disk): 3432 (s, N-H), 3283 (s, C-H),
1627 (s, C=O), 1361 (s, (NO3)−); 1H NMR (300 MHz, DMSO-d6, δ in ppm, J in Hz): 1.12 (t,
J = 9 Hz 3H), 1.21 (m, 2H), 1.62 (s, 6H), 2.07 (d, 2H), 4.4 (m, 7H NH).

Cell Culture and Cell Proliferation Assay

Human breast cancer cell line of MCF-7 was purchased from the National Cell Bank of Iran
(NCBI), Pasteur Institute of Iran. The cells were grown on the DMEM medium (Sigma)
supplemented with L-glutamine (2 mM), streptomycin, penicillin (5 μg

mL), and 10% heat-

inactivated fetal calf serum at 37 °C under 50%: 95% CO2; air atmosphere. The cytotoxicity
activity of new synthesized complex was studied by MTT assay. The harvested cancer cells of

MCF-7 were seeded into a 96-well plate (1� 104cellmL) and incubated with various concentra-

tions of sterilized cis-[Pt (NH3)2(tertpentylgly)]NO3 (0–800 μM) for 24 h. IC50 value deter-
mination was done according to the published method in Ref [23].

Evaluation of Thermodynamic Parameters

Absorption recording is an easy and suitable method to investigate the complex-HSA forma-
tion [24, 25]. Aworking solution of HSA and Pt complex was diluted to 15 μM and 0.8 mM,
respectively. Then, the injection of complex to HSA solution was continued up to the point that
no further changes in the absorption were shown. The spectra were recorded from 200 to
700 nm in a quartz cuvette (total cuvette volume was 1000 μL) at 27 and 37 °C.

Fluorescence Studies

The fluorescence intensity of protein may be quenched by adding of metal complex, when
complex interacts with HSA. In this study, the fluorescence intensity was monitored by
excitation wavelength at 280 nm and emission wavelength limited area of 200–700 nm. In

[Pt(NH3)2I2]
Pt

OH2H3N

H3N OH2

(NO3)2 + 2AgI

HN

O
O

Pt
OH3N

H3N NH NO3

O

2AgNO3

Scheme 2 General procedure of complex formation
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each measurement, HSA-Pt complex was allowed to incubate for 5 min after the addition of
each complex. Both excitation and emission band cross were kept at 5 nm [26].

Electrochemical Measurement

Cyclic voltammetry (CV) study was done by Potentiostat/Galvanostat Autolab. Glassy carbon,
platinum wire, and the working auxiliary and the reference electrode were Ag/AgCl/3 M KCl,
respectively. This experiment was carried out at room temperature and 100 mV s−1 scan rate.
Concentration of Pt complex was 0.1 mM in Tris buffer with 10 μM and without HSA.

Docking

Docking study can determine the active binding site for Pt complex on HSA. The 3D structure
of the cis-[Pt (NH3)2(tertpentylgly)]NO3 was generated using HyperChem software, and its
geometry was optimized using Gaussian 03 software by theDFT-B3LYPmethod at the level of
6–31 g* [27]. The crystal structure of HSA (PDB ID: 5ORI) was selected from the Protein
Data Bank in pH = 7.4 (http://www.rcsb.org/pdb). Here, the R value and resolution of this file
were 0.218 and 0.25 Å, respectively. Water molecules of the 5ORI pdb file were removed, and
missing hydrogen atoms and Gasteiger charges were added. Also, the flexible-ligand docking
was done via the AutoDock 4.2 molecular docking program (http://autodock.scripps.edu) and
using experimental free energy function and the Lamarckian genetic algorithm [27].

Results and Discussion

In Vitro Cytotoxicity Studies

Anticancer activity of cis-[Pt (NH3)2(tertpentylgly)]NO3 against human breast cell line of
MCF-7 was done. MCF-7 cells as experimental metastasis model were incubated in the
absence and presence of various concentrations of Pt complex (0 − 800μM) at 37 °C for
24 h incubation times [28]. Figure 1 and cytotoxicity data show that the human breast cell line
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Fig. 1 Growth suppression
activity of Pt complex on MCF-7
cell lines incubated with varying
concentrations of the complex for
24 h using MTT assay
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is reduced by increasing the concentration of Pt complex. IC50value was calculated 175μM. In
this study, cisplatin was used as a common chemotherapy drug for positive control with IC50

equal to 80μM, which is lower than IC50 value of synthesized Pt complex. According to data,
it is obvious that cis-[Pt (NH3)2(tertpentylgly)]NO3 with tertpentyl hydrocarbon chain shows
anticancer activity against human breast cancer cell line of MCF7 not as good as cisplatin, but
the presence of bidentate N-O ligand in the structure of synthesized compound properly leads
to less side effect of clinical drug with the same or lower IC50 value. Also, similar compounds
aromatic N,N dentate have been reported with IC50 about 40~70 μm against breast cell line of
MDA-MB231 [21]. Then, it can be concluded that the presence of aliphatic N,N group or
amine groups can reduce anticancer activity, whereas the presence of aromatic N,N group
increased the cytotoxicity activity of Pt (II) complexes.

HSA Binding Data

The absorption spectra of HSA before and after the addition of Pt complex are shown in Fig. 2.
This figure demonstrates that the absorption values are reduced by increasing the concentration
of Pt complex because due to the interaction between protein and complex, the protein-
complex is formed with certain new formal structures [29].

The values of the concentration of complex in the midpoint of transition of natural HSA to
the binding state, L1

2
, were decreased by increasing the temperature. It is due to the descending

stability of the HSA-Pt complex. The values of L1
2
show that complex could be bind to HSA in

low concentrations. Cytotoxicity results also show this synthesized Pt (II) complex can
probably be used as anticancer agents with low dosage and few side effects [30]. This diagram
is shown in Fig. 3.

The value of binding constant, Kb, was obtained by using Eq. 1.

1

A−A0
¼ 1

A∞−A0
þ 1

Kb A∞−A0½ � :
1

complex½ � ð1Þ

where A0is the primal absorption of HSA at 278 nm in the absence of metal complex. A∞is the
terminal absorption of HSA, and A is the recorded absorption at various concentrations of the
complex. The binding constant (Kb) can be calculated through the intercept to the gradient of
the linear curve of 1

A−A0
vs. 1

complex½ � [31]. This diagram is shown in Fig. 4.

Binding free energy, ΔG°
b, was obtained at 298 K using Eq. 2 [32].

ΔG°
b ¼ −RT lnKb ð2Þ

Also, the thermodynamic parameters can be obtained by using the equation of van′t Hoff as
follows:

ln
K2

K1
¼ −

ΔH
R

1

T2
−

1

T 1

� �
ð3Þ

ΔG°
b ¼ ΔH°

b−TΔS°b ¼ −RT lnKb ð4Þ
Here, K and T are considered at two temperatures. The thermodynamic parameters of a binding
reaction between Pt complex and HSA such as enthalpy change (ΔH°), entropy change (ΔS°),
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and free energy change (ΔG°) are the principal evidence which can be used to determine the

binding type (Eq. 4). The negative amounts of ΔG°
b indicate complex-protein binding

procedure is spontaneous. As usual, ΔH° > 0 and ΔS° > 0 imply a hydrophobic interaction;
ΔH° < 0 and ΔS° < 0 display the van der Waals force or hydrogen bond formation, and
ΔH° > 0 and ΔS° > 0 offer an electrostatic force [4].

The negative ΔH°
b and positiveΔS°bamounts offer electrostatic force that plays the main

role in the complex-HSA interaction [33]. These parameters are listed in Table 1.

Binding Isotherm

The binding isotherm of protein with complex can be easily obtained by carrying out titration
in several different concentrations of Pt complex at 27 and 37 °C. These plots are shown in
Fig. 5. Comparing these binding isotherms with binding isotherm of oxygen to hemoglobin, it
is obvious that the binding of Pt complex to HSA has one binding set [34].

Structural changes upon ligand binding first revealed by X-ray crystallography for hemo-
globin have now been for several other proteins. These findings emphasize the general nature
of structure and of ligand control or allosteric effect. The conformation suitability of HSA
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(NH3)2(tertpentylgly)]NO3 in Tris-
HCl buffer-10 mM NaCl (pH=
7.4) at 27 and 37 °C
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involves more than the immediate affinity of the binding site(s). This is related to the observed
ligand-dependent allosteric conformational transition(s) [35].

Due to these points, the above binding represents one binding set with allosteric effect. This
kind of binding causes positive cooperativity. The binding capacity diagram consists of a series
of sequential maxima, which should be equal to the number of binding sets. The positions of
the maxima determine the binding sites in each binding set [34].

θ ¼ nHν g−νð Þ
gRT

ð5Þ

RTθ
ν

¼ nH−
nHν
g

ð6Þ

Equations 5 and 6 offer that the plot of RTθ
ν vs. v for a system should be linear (Fig. 6) with g

identical and dependent binding sites [34].

Scatchard Plot on Interaction of HSA with Complex

TheScatchard plots ( v
complex½ � f vs. v) are shown inFig. 7 for the interaction ofHSAwith complex at both

temperatures of 27 and 37 °C. v is the ratio of complex½ �
HSA½ � in transition regionwith cooperative binding [36].

The Scatchard equation is as follows [30]:

ν
complex½ � ¼ K0 g−νð Þ ð7Þ

Table 1 Thermodynamic parameters and L1=2
value of HSA binding with platinum (II) complex

Complex Temperature
(°C)

L1/2
(mM)

ΔGb°
(kJ mol−1)

ΔHb°
(kJ mol−1)

ΔSb°
(J mol−1 K1)

cis-[Pt
(NH3)2(tertpentylgly)]NO3

27 0.12 − 20.4 − 5.5 + 49.7

Fig. 5 The binding isotherm of
HSAwith complex at 27 °C (●)
and 37 °C (○)
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The number of binding sites (g) of Pt complex on HSA can be obtained. Also, Hill plot of the
interaction of HSA with complex has been shown in Eq. 8 [30] (Fig. 8).

ln
ν

g−ν

� �
¼ lnKH þ nH ln complex½ � f ð8Þ

Fig. 6 The plot of RTθ
ν vs. ν for the

interaction of complex with HSA
at 27 (a) and 37 °C (b)

Fig. 7 Scatchard plot for HSA
binding with complex at
temperature of 27 °C (●) and
37 °C (○)
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By plotting the ln ν
g−ν

� �
vs. the ln[complex]f, Hill plot is obtained, and several parameters of

the cooperative binding interaction can be determined, as shown in Fig. 8. The obtained Hill
coefficient is more than one, which means the type of cooperativity is positive [37]. Results are
summarized in Table 2.

The molar intrinsic site-site interaction Gibbs free energy change of cis-[Pt
(NH3)2(tertpentylgly)]NO3-HSA is usually calculated by the following relationship (Eq. 9) [38] as
shown in Fig. 9, where [complex]fin Eq. 9 is free cis-[Pt (NH3)2(tertpentylgly)]NO3 concentration.

ΔG0
b ¼ −RTnH 1nKH þ RT 1−nHð Þ1n complex½ � f ð9Þ

Eventually, we can conclude that all of the binding processes show positive cooperativity in
the binding set [33].

Thermal Stability of HSA

This experiment was carried out by monitoring the UV-Vis absorption of HSA (7.5 μM) in
Tris buffer (pH 7.4) at 278 nm in the absence and presence of the complex (0.8 mM) and
heated from 25 to 75 °C with 1 °C min−1. It is shown in Fig. 10. Data show the stability of
HSAwas increased in the presence of complex [39]. Tm values (the melting temperature) were
defined 46 and 53 °C in the absence and presence of Pt complex (ΔTm = 7 ° C ± 1 ° C).

Tm was taken for the free HSA without ligand and in a molar ratio of Pt complex to HSA
upper than L1/2.The results of such studies for Pt complex-HSA complex are shown in Fig. 11.

By using Igor software and determining ∂Δε
∂ΔT, Tm is obtained and listed in Table 3. Data show

the increasing of Tm by adding the complex concentration and the denaturation process
between two states, that is, from the native state (N) to a denatured state (D).

Fig. 8 Hill plot of HSA binding
with complex at temperature of
27 °C (●) and 37 °C (○)

Table 2 Hill parameter and binding constant of HSA interaction with complex

Complex Temperature (°C) g Kb (M−1) KH(M−1) nH

cis-[Pt (NH3)2(tertpentylgly)]NO3 27 1.9 3.6 × 103 391.9 22.0
37 9.0 3.3 × 103 7.9 5.35
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The protein stability is usually stated by the Gibbs free energy values sinceΔGDis the work
required for disruption of the native protein structure. Hence, by using Gibbs-Helmholtz (Eq.
10), the difference in Gibbs energy can be expressed at a given temperature.

ΔGD Tð Þ ¼ ΔHm 1−
T
Tm

� �
−ΔCp Tm−Tð Þ þ T ln

T
Tm

� �
ð10Þ

Also, other parameter as the equation constant (k) can be obtained based on spectroscopic
techniques, in transition region and it is deduced from Eq. 11 [40].

k ¼ D½ �
N½ � ¼

AN−A0ð Þ
A0−ADð Þ ð11Þ

where AN, AD, and A0 are the absorption of native, denatured, and observed area at any
temperature. For at least errors, all the experimental data points were obtained and fitted in
the equation as follows:

Fig. 9 The variation of ΔG0
b;v vs.

ln[complex]ffor HSA interaction
with complex at 27 °C (●) and
37 °C (○)

Fig. 10 Melting curve of HSA in
the absence (●) and the presence of
cis-[Pt (NH3)2(tertpentylgly)]NO3

(○) in Tris-HCl buffer at 25 to
84 °C
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A0 ¼ AN þ KADð Þ
1þ Kð Þ ð12Þ

On the other hand, the equilibrium constant can be determined by Eq. 13, where R is the gas
constant and T is the study temperature.

K ¼ exp
−ΔG0

RT

� �
ð13Þ

By substituting the k value in Eq. 12, Eq. 14 is gotten, and also in continuation by substituting
the ΔGD(T) in Eq. 14, Eq. 16 is obtained.

A0 ¼ AN þ ADe

�
−ΔG0

RT

1þ e
−ΔG0
RTð Þ

2
664

3
775 ð14Þ

A ¼
AN þ ADexp

−ΔH
R

1

T
−

1

Tm

� �
−ΔCp

Tm

T
−1þ ln

T
Tm

� �� �� �

1þ exp
−ΔH
R

1

T
−

1

Tm

� �
−ΔCp

Tm

T
−1þ ln

T
Tm

� �� �� � ð15Þ

Fig. 11 Predicted changes absorption in λ = 278 nm vs. temperature using SigmaPlot software in the absence (○)
and the presence (●) of Pt complex

Table 3 Fitted thermodynamic parameters of thermal denaturation of HSA and HSA-Pt complex

Fitting
parameters

aN × 10−3
(M−1 cm−1)

mN
(M−1 cm−1 K−1)

aD × 10−3
(M−1 cm−1)

mD
(M−1 cm−1 K−1)

Tm (K) ΔHm (kJ/
mol)

HSA 1.61 − 54.74 − 22.94 25.86 321.71 292
HSA-Pt

complex
6.42 − 21.48 5.19 − 180 326.99 6268
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Since AN = aN +mNT and AD = aD +mDT are linear functions at temperature, and also Δε280 is
an adsorption coefficient change in any temperature (298 K) in λmax = 278 nm for HSA in the
absence and presence of Pt complex, Eq. 16 can be written as follows:

−Δε280 ¼
ΔεN þΔεDexp

−ΔH
R

1

T
−

1

Tm

� �
−ΔCp

Tm

T
−1þ ln

T
Tm

� �� �� �

1þ exp
−ΔH
R

1

T
−

1

Tm

� �
−ΔCp

Tm

T
−1þ ln

T
Tm

� �� �� � ð16Þ

All parameters in Eq. 16 can be determined by fitting and using SigmaPlot software. By using
summarized data in Table 3, ΔGD(T) at 25 to 75 °C by Eq. 10 can be calculated. The result is
represented in Figs. 11 and 12. The result shows more stable state about Ts = 319.15 to
327.15 K.

Kinetic Study

Kinetic studies prepare the information about the possible mechanism of HSA interaction with
Pt complex by the time scanning that recorded 1 min at 278 nm until 1 h [42].

The rate of HSA interaction with complex can be calculated by using Eqs. 17 and 18.

1

A∞−A
¼ ak2t

A∞−A
þ 1

A∞−A0
ð17Þ

ln A∞−Að Þ ¼ −ak1t þ ln A∞−A0ð Þ ð18Þ

Plots of ln(A∞ − A) vs. time (s) and 1
A∞−A vs. time (s) time at 27 and 37 °C show that the kinetics

is a quadratic reaction (Fig. 13).

Fig. 12 HSA denaturation Gibbs free energy changes vs. temperature in the absence (○) and the presence (●) of
Pt complex
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Also, the diagram of absorption vs. time (Fig. 14) at 27 and 37 °C shown at first time
scanning absorption is high and then it is fixed because the incubation process is completed at
27 °C. Increasing absorption is continued to 1500 s at 37 °C.

Fluorescence Titration Studies

Figure 15 displays the fluorescence quenching of HSA (7.5 μM) in the presence of different
amounts of the cis-[Pt (NH3)2(tertpentylgly)]NO3 (0 to 210 μM). Figure 15 shows by Pt (II)
complex addition to HSA solution, reducing emission of fluorescence spectra was seen due to
the primary interaction between synthesized Pt (II) complex and HSA. The mechanism (static
or dynamic) of fluorescence quenching was determined by using the Stern-Volmer equation
(Eqs. 19 and 20) [43], and F0/F against [complex] was drowning at 298 K in the inset of Fig. 15.

F0

F
¼ 1þ KSV complex½ � ð19Þ

Fig. 13 Plot of ln(A∞ − A) (a) and
1

A∞−A (b) vs. time (s) for HSA-
complex interaction at 27 and
37 °C
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KSV ¼ kqτ0 ð20Þ

Here, the fluorescence intensities of protein without and with quencher are F0 and F,
respectively, and also [complex] is quencher concentration, and KSV is the Stern-
Volmer quenching constant; kq is the quenching velocity constant of HSA; τ0 is the
average lifetime of the HSA lacking any quencher and the fluorescence lifetime of the
biopolymer is 10−8 s [43]. The linearity of this diagram offers a single type of
quenching process [5]. Giving kq from the rank 1011 M−1 s−1, which is higher than
maximal dynamic quenching constant(2 × 1010M−1S−1). This means that by complex
formation of a complex with static quenching is dominant in HSA-Pt complex [5].

Also, the binding constant (Kb) and the binding stoichiometry (g) for Pt complex-HSA
formation were measured using Eq. 21.

log
F0−F
F

� �
¼ logKb þ glog complex½ � ð21Þ
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Fig. 14 Time scanning of HSA
solution in the presence of

complex at ri: complex½ �
HSA½ � ¼ 12:4 at

27 °C (a) and 37 °C (b)
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Binding data is summarized in Table 4. The Kb and g can be computed by the intercept and the
slope of the double logarithm regression log(F0 − F)/F vs. log [complex] [44]. According to
the values of binding constant (Kb), as shown in Table 4, the platinum complex interacts with
HSA moderately with values of around 104 M−1.

The number of the binding site on HSA, g, is about one (Table 2), which indicates complex
binds to HSA with the molar ratio of 1:1. In fact, binding complex on carrier protein and
release it throughout the body should be done with suitable affinity. Also, to release a drug in
its target, Kb should not be very high. The obtained HSA-binding constant of complex is in a
good range (1 − 6 × 104M−1) [36].

The average aggregation number of HSA, <J>, potentially induced by complex can be
determined by quenching data analysis [45]. It is shown in Eq. 22.

1−
F
F0

¼ Jh i complex½ �
HSA½ �0

ð22Þ

Figure 16 shows the changes of 1− F
F0

vs. complex½ �
HSA½ �0 molar ratio.

The <J> values, obtained by the slope of the lines in Fig. 16, that are listed in Table 3 indicate
that cis-[Pt (NH3)2(tertpentylgly)]NO3 binding does not induce any aggregation in HSA mole-
cules and consequently confirm the 1:1 stoichiometry for complex-HSA complex [45].

Fig. 15 The quenching intensity of HSA (λex = 280 nm), in the presence (0 to 210 μΜ) of complex. In the inset:
the Stern-Volmer plot of HSA quenching by metal complex

Table 4 The quenching and binding data of HSA-complex formation

Complex KSV(M)−1 kq(MS)−1 R2 Kb(M)−1 n R2 〈J〉 R2

cis-[Pt (NH3)2(tertpentylgly)]NO3 4.50 × 103 4.50 × 1011 0.98 3.99 × 104 1.22 0.98 0.01 0.98

Applied Biochemistry and Biotechnology



Cyclic Voltammetry Results

For understanding the HSA-binding modes, the cyclic voltammogram of the complex in the
absence and presence of HSA is recorded and shown in Fig. 17. Complex showed one anodic
peak at − 0.366 V with corresponding peak current 2.475 × 10−5 μA in Tris buffer of pH 7.4−

and cathodic peak at − 0.923 V with 3.757 × 10−5 μA. Also, in the presence of HSA, the
anodic peak potential was shown at − 0.528 V with corresponding peak current 5.41 × 10−5 μA
cathodic peak at − 0.894 V with corresponding peak current 4.64 × 10−5 μA. This negative
shift at anodic peak was considered as evidence for the binding of complex on HSA via
electrostatic interaction [42].

Fig. 16 Determination of the
average aggregation number of
HSA (<J>) in the presence of cis-
[Pt (NH3)2(tertpentylgly)]NO3. .
λex = 280 nm, λem = 590 nm, and
spectral bandwidth is 5 nm for
both excitation and emission slits

Fig. 17 Cyclic voltammogram of
[Pt (NH3)2(tertpentylgly)]NO3

complex (0.1 mM) in the absence
(blue) and presence of HSA (red)
in 10 mM Tris-HCl, pH 7.4

Applied Biochemistry and Biotechnology



Molecular Docking

For calculating the grids, AutoGrid was used by adding the Gasteiger charges to provide the
5ORI input file for docking.

Fig. 18 a Docking site of the most negative cluster in the complex-HSA system. b Amino acid residues
surrounding Pt complex

Fig. 19 Two-dimensional interactions between complex and HSA generated by LIGPLOT
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Docking building with 126 lattice points along the axes X, Y, and Z was done to determine
the active site of the Pt complex on HSA. After designation of the active site, the dimensions of
the grid map were chosen as 80 points on a side with a grid point spacing of 0.375 Å, to allow
the complex to rotate freely. One hundred docking runs with 25,000,000 energy valuation for
each run were performed [46, 47]. The value of the binding energy for complex-HSA
formation is − 16.2 kcal mol−1, and also complex binds with hydrogen interaction in the site
I subdomain IIA of HSA (Asp13, Asp254, Asp258, His3, His9). Figures 18 and 19 show
molecular docking analysis by AutoDock Tools and LIGPLOT. Both figures show binding site
and analysis of the molecular docking.

Conclusions

In the present article, the synthesis and characterization of complex were accomplished.
This water-soluble compound was evaluated for its anticancer activity against human
breast cancer cell line. IC50 value of Pt complex in MCF-7 cell line was calculated
175 μL, which is higher than that of the cisplatin with IC50 = 80 μM. Then, binding of
HSA with a complex was studied under simulated physiological conditions by using the
fluorescence, UV-Vis, cyclic voltammetry, and molecular docking methods. According to
the results from different spectroscopic methods, cis-[Pt (NH3)2(tertpentylgly)]NO3 binds
to HSA with high affinity through a static mode because kq is more than 2 × 1010 M−1 s−1.
The standard Gibbs free energy of binding of Pt complex to HSA was negative, and then

this interaction was spontaneous. The negative ΔH°
b and positive ΔS°b indicate electro-

static interactions are the main role during the complex binding on HSA as CV result
indicates this interaction too. The molecular docking study indicates complex binds to
the site I subdomain IIA of HSA.
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