

Available online at www.sciencedirect.com

Tetrahedron: *Asymmetry*

Tetrahedron: Asymmetry 18 (2007) 243-250

Enantioselective synthesis of a potential key intermediate for the total synthesis of fumagillin

Marisa Ciampini,^a Patrick Perlmutter^{a,*} and Keith Watson^b

^aSchool of Chemistry, Monash University, PO Box 23, Clayton, Victoria 3800, Australia ^bBiota Holdings Inc., Monash University, Clayton, Victoria 3800, Australia

Received 11 December 2006; accepted 27 December 2006

Abstract—Key intermediate, 7, of a projected total synthesis of the anti-angiogenesis compound *Fumagillin* 1 and the semi-synthetic analogue TNP-470 2, has been prepared in enantiomerically pure form by employing an early nucleophilic addition ring closure [NARC] sequence to construct the cyclohexene backbone.

Crown Copyright © 2007 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Angiogenesis is the process by which new blood cells are formed.^{1–4} Normally this process is regulated, however cancer describes a range of diseases in which abnormal cells proliferate and spread out of control. Surgery, radiotherapy, chemotherapy, hormonal therapy, immunotherapy, laser therapy and oral drugs can now treat cancer, alone or in combination.⁵ There are several compounds, which show inhibition of angiogenesis, which include fumagillin⁶ 1, TNP-470⁷ 2 a synthetic derivative of fumagillin, ovalicin⁸ 3, RK-850⁹ 4, as well as 5-dimethyovalicin¹⁰ 5 (Fig. 1). To date, seven syntheses of fumagillin 1 and fum-

Figure 1. Fumagillin and related analogues.

agillol 6, the saponification product of 1 have been reported.¹¹⁻¹⁷

2. Results and discussion

Due to the continuing importance of an anti-cancer drug, we have chosen to develop a flexible route for the synthesis of fumagillin 1 as well as new analogues. Our retrosynthesis, outlined in Figure 2, produced keto-acetonide 7 as a key target. The inclusion of a ketone at C1' (fumagillin numbering) was seen as important given the recent evidence that C1' planar fumagillin analogues, such as oximes, also exhibit potent anti-tumour activity¹⁸ as well as being angiogenesis inhibitors.¹⁹ Thus the development of a practical synthesis of 7 is the focus of this paper.

A central issue in this synthetic problem is the enantioselective construction of a cyclohexane bearing four contiguous stereogenic centres.²⁰ It was envisaged that this could be achieved by diastereoselective dihydroxylation²¹ of a cyclohexene such as **8**. In turn, **8** might be prepared using a simple 'NARC'²² sequence beginning with crotonyl sultam²³ **9**.

0957-4166/\$ - see front matter Crown Copyright © 2007 Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2006.12.018

^{*} Corresponding author. Tel.: +61 3 9905 4522; fax: +61 3 9905 4597; e-mail: patrick.perlmutter@sci.monash.edu.au

The successful execution of these ideas is outlined in this paper.

Hence the Z-boron enolate of **9** (formed by γ -deprotonation) reacted exclusively at the α -carbon²⁴ with aldehydes 5-phenyl-4-pentenal **10** or 4-pentanal **11** to give the corresponding *syn* aldol adducts **12** and **13** in excellent yields (Scheme 1).

Scheme 1. Reagents and conditions: (i) (a) Et_2BOTf , (*i*-Pr)₂NEt, CH₂Cl₂, (b) 10 or 11; (ii) (Cy₃P)₂(Cl)₂Ru=CHPh (cat.), CH₂Cl₂; (iii) H₂O₂, LiOH.

Surprisingly, ring closing metathesis of **12** failed. Fortunately no such problems were encountered with diene **13**, which closed smoothly under standard Grubbs' RCM conditions.²⁵ The X-ray crystal structure of **14** is shown in Figure 3. Hydrolysis of **14** provided enantiomerically pure cyclohexene **8** in 63% yield from **9**.

Figure 3. X-ray crystal structure of RCM product 14.

Several approaches for the conversion of 14 into 7 were explored. Initially 14 was protected as its BPS ether 15 (Scheme 2). Dihydroxylation then gave a single diastereomer, *cis*-diol 16, but in moderate yield under standard conditions²¹ (K_2OsO_4 ·H₂O) employing a 1:1 mixture of DMF and *t*-BuOH as solvent. Moving to a solvent consisting of a 3:1 mixture of *t*-BuOH and water gave an improved yield of 90%. Many attempts were made to chemically manipulate 16 and its corresponding acetonide²⁶ 17 (formed quantitatively from diol 16 using 2,2-dimethoxypropane/camphorsulfonic acid). However, only treatment of 17 with lithium aluminium hydride gave any new product, alcohol 18, but in very low yield.

Due to the problems encountered, dihydroxylation was delayed until the acyl sultam manipulations had first been completed. Thus **8** was converted into protected Weinreb amide²⁷ **21** by successive treatment with CH₃O(CH₃)NH/Al(CH₃)₃ and BPSCl/Et₃N. Dihydroxylation of **21** again occurred solely from the β-face (as drawn in Scheme 3) giving the new *cis*-diol **22** in 97% yield.

Scheme 2. Reagents and conditions: (i) BPSCl, imidazole, DMAP (cat.) DMF, rt; (ii) K_2OsO_4 ·H₂O, *t*-BuOH/H₂O (3:1); (iii) (CH₃O)₂C(CH₃)₂, CSA (cat.); (iv) H₂O₂, LiOH; (v) LiAlH₄.

Scheme 3. Reagents and conditions: (i) $CH_3O(CH_3)NH$, WSC hydrochloride; (ii) BPSCl, Im., DMAP (cat.) DMF, rt; (iii) $K_2OsO_4 \cdot H_2O$, *t*-BuOH/H₂O (3:1); (iv) (CH₃O)₂C(CH₃)₂, CSA (cat.); (v) CH₃Li.

cis-Diol **22** could then be converted into the target molecule **7** by first protecting the diol as its acetonide, followed by treatment with methyllithium.

The X-ray crystal structure of 7 is shown in Figure 4. The conversion of 7 into fumagillin 1 will be reported in due course.

Figure 4. X-ray crystal structure of target molecule 7.

3. Conclusion

A concise, eight-step enantioselective synthesis of a key precursor in our projected synthesis of *fumagillol* **6** and its derivatives has been developed. Important steps involve *syn*-selective aldol followed by ring closing metathesis and a completely facial-selective *cis*-dihydroxylation.

4. Experimental

Melting points were recorded on a Kofler hot stage apparatus and are uncorrected. Elemental microanalyses were performed by Chemical & Micro Analysis Services, Victoria or the University of Otago, New Zealand. Optical rotations were recorded at the sodium doublet on a Perkin Elmer 141 Polarimeter. Infrared spectra were recorded on a Perkin Elmer 1600 Series Fourier Transform spectrometer. Infrared band intensities of each frequency of absorption are expressed as s (strong), w (weak) or b (broad). ¹H and ¹³C NMR spectra were recorded on a Bruker M 300 spectrometer and the chemical shifts recorded on the δ scale in parts per million (ppm). Deuteriochloroform (CDCl₃) was used as the internal standard. Mass Spectrometries were performed in methanol on a Micromass Platform QMS spectrometer. High resolution mass spectra were recorded on a Bruker BioApex 47e FTMS. The principal ion peaks (m/z) are reported along with their intensities (in parentheses), expressed as a percentage of the base peak (100%). M^+ refers to the molecular ion. X-ray crystallography was performed either on a Nonius Kappa CCD or a Nicolet R3m/V diffractometer.

4.1. (4Z)-5-Phenyl-4-pentenal 10

To a chilled solution $(0-5 \,^{\circ}\text{C})$ of (3-ethoxycarbonylprop-1-)yl)triphenylphosphonium bromide (10.27 g, 0.02 mol) in THF (70 ml), NaN(TMS)₂ (1 M, 25.0 ml, 25 mmol) was added and stirred for 30 min. A solution of freshly distilled benzaldehyde (2.8 ml, 0.03 mol) in THF (7 ml) was then added and after 3 h was guenched with water (20 ml) and poured into an ethyl acetate/water mixture (200/180 ml). The organic phase was extracted and the aqueous layer re-extracted with ethyl acetate (200 ml). The organic extracts were combined, dried over MgSO₄ and reduced in vacuo. The crude product was purified using flash column chromatography (SiO₂, 15:1 light petroleum/ethyl acetate) to yield ethyl (4Z)-5-phenyl-4-pentenoate as a colourless oil (3.28 g, 71%). Found 205.123. $C_{13}H_6O_2(H^+)$ requires 205.123. IR (CH₂Cl₂): 3510m, 3153w, 3086m, 3063m, 2893m, 2964m, 2929m, 2856m, 2739w, 2361w, 2342w, 2254m, 1728s, 1704s, 1599m, 1585m, 1494m, 1448m, 1419m, 1375s, 1350m, 1270m, 1204m, 1182m, 1169m, 1110w, 1097m, 1072w, 1056m, 1028m, 912s, 828w, 738s, 701m cm⁻¹. ¹H NMR (CDCl₃): δ 1.22 (t, J 7.17 Hz, 3H, CH₃CH₂); 2.38–2.45 (m, 2H, CH₂, H4); 2.60–2.68 (m, 2H, CH₂, H3); 4.11 (q, J 7.17 Hz, 2H, OCH₂CH₃); 5.61 (dt, J 11.75, 7.17 Hz, 1H, CH, H2); 6.44 (br d, J 11.60 Hz, 1H, H1); 7.17–7.34 (m, 5ArH). 13 C NMR (CDCl₃): δ 14.23, CH₃; 24.07, CH₂; 60.36, CH₂; 125.38, CH, C2; 126.56, 128.03, 128.52, 129.92, ArCH (C2', C3', C4', C5'); 134.27, CH, C1; 136.99, ArC, C1'; 172.76, CO.

To a cooled solution (-78 °C) of the above ester (3.00 g, 14.7 mmol) in toluene (60 ml), DIBAL-H (1.5 M solution in toluene, 15.6 ml, 23.5 mmol) was added. After completion of the reaction (TLC, 2 h), a 1:1 mixture of acetone/

water (24 ml total) was added and the reaction allowed to warm up to room temperature. It was poured into ethyl acetate/water (200 ml total), extracted and the organic phase washed with water (80 ml), dried over MgSO₄ and reduced in vacuo to give title compound **7** (2.34 g, 99%) as a colourless oil, which was used without purification. IR (CH₂Cl₂): 3068m, 3050m, 3023s, 3006s, 2928s, 1957m, 1885w, 1721m, 1684m, 1600m, 1574w, 1444s, 1447s, 1409m, 1358w, 1333w, 1202w, 1177w, 1137s, 1072s, 1028s, 968m, 916m, 787m, 688s, 668m cm⁻¹. ¹H NMR (CDCl₃): δ 2.51–5.58 (m, 2H, CH₂, H4); 2.59–2.74 (m, 2H, CH₂, H3); 5.60 (dt, *J* 11.60, 11.67 Hz, 1H, H2); 6.47 (br d, *J* 11.60 Hz, 1H, H1); 7.24–7.26 (m, 5ArH; 9.75, t, *J* 1.45 Hz, 1H, CHO).

4.2. (2*S*)-*N*-[(2*S*,3*R*,7*Z*)-2-(Ethenyl)-3-(hydroxy)-7-phenyl-6-heptenoyl]bornane-10,2-sultam 12

Freshly distilled triflic acid (156 µl, 1.76 mmol) was added to triethylborane (1.76 ml, 1.76 mmol), which was vigorously stirred, under a flow of N2. It was allowed to stir for 0.5 h after which time the reaction became a homogeneous vellow solution. If not, the reaction was stirred at 40 °C for 0.5 h to help initiate the reaction. The reaction was cooled to 0 °C and a solution of acyl sultam 6 (520 mg, 0.88 mmol) in CH₂Cl₂ (4.2 ml) was added and the resulting mixture stirred for 10 min. N,N-Diisopropyl(ethyl)amine (323 µl, 1.85 mmol) was then added dropwise while maintaining the internal temperature at 0 °C. The reaction was stirred for 0.5 h after which time it was cooled to -78 °C and a solution of 7 (282 mg, 1.76 mmol) in CH_2Cl_2 (2 ml) was added. After stirring at -78 °C for 2 h, aqueous phosphate buffer (pH 7, 4 ml) was added and the mixture allowed to warm to room temperature and then poured into Et₂O (20 ml). The aqueous phase was washed with Et₂O (2×15 ml). The combined organic extracts were dried over MgSO₄ and the solvent was removed in vacuo to afford a yellow solid. The crude product was purified by flash column chromatography (SiO₂, 5:1light petroleum/ethyl acetate) to firstly give a 3:1 (291 mg, 56%, $R_{\rm f}$ 0.53) inseparable mixture of unreacted 6 and its isomerised product followed by title compound 12 (152 mg, 39%, $R_f (0.17)$) as a colourless oil. IR (CH₂Cl₂): 3510m, 3086w, 3046w, 3006m, 2959s, 2925s, 2885m, 2845m, 1684m, 1634m, 1600w, 1494m, 1456m, 1443m, 1412m, 1376m, 1334s, 1267m, 1236m, 1214s, 1166m, 1135s, 1117m, 1063m, 992m, 929w, 878w, 765m, 668w cm⁻¹. ¹H NMR (CDCl₃): δ 0.93 (s, 1H, CH₃, H8 or H9); 1.09 (s, 1H, CH₃, H8 or H9); 1.27-1.43 (m, 2H and 1.51-1.61, m, 1H and 1.65-1.77, m, 2H and 1.85-2.02, m, 4H, total 9H, 1(CH), H4 and 4(CH₂), H3, H5, H6, H16); 2.38-2.53 (m, 2H, CH₂, H17; 3.26, br s, 1H, OH); 3.45, 3.48 (ABq, J 13.81 Hz, 2H, CH₂, H10); 3.74 (dd, J 8.70, 3.51 Hz, 1H, CHN, H2) 3.89 (t, J 6.18 Hz, 1H, CH, H12) 4.03-4.09 (m, 1H, CH, H15); 5.33-5.41 (m, 2H, CH2, H14); 5.62–5.71 (m, 1H, H18); 5.92 (gd, J 17.40, 9.92, 8.70 Hz, 1H, H13); 6.41-6.49 (m, 1H, H19); 7.18-7.42 (m, 5ArH). ¹³C NMR (CDCl₃): δ 19.90, CH₃, C8 or C9; 20.75, CH₃, C8 or C9; 24.93, CH₂, C17; 26.42, CH₂, C5; 32.82, CH₂, C6; 34.34, CH₂, C16; 38.15, CH₂, C3; 44.63, CH, C4; 47.70, C(CH₃)₂, C7; 48.35, C, C1; 53.10, CH₂, C10; 54.62, CH, C12; 64.85, CH, C2; 70.39, CH, C15;

121.44, CH₂, C14; 126.31, CH, C18; 127.96, ArCH (C2', C6' or C3', C5'); 128.60, ArCH (C2', C6' or C3', C5'); 129.12, ArCH (C4'); 130.66, CH, C13; 131.86, CH, C19; 137.35, ArC (C1'); 173.08, CO, C11. MS: 444.3 ([M+H]⁺, 20%), 466.2 ([M+Na]⁺, 100). HRMS calcd for C₂₅H₃₃NO₄S(H⁺) requires 444.221, found 444.220. C₂₅H₃₃NO₄S(Na⁺) requires 466.203, found 466.201. Anal. Calcd (443.2): C, 67.69; H, 7.50; N, 3.16. Found: C, 67.79; H, 7.35; N, 3.22. $[\alpha]_D^{25} = +12.5$ (*c* 2, CHCl₃).

4.3. (+)-(2*S*)-*N*-[(2*S*,3*R*)-2-(Ethenyl)-3-(hydroxy)-6-heptenoyl]bornane-10,2-sultam 13

In a manner similar to that for 12, aldol addition of acyl sultam 9 (320 mg, 1.13 mmol) with 4-pentenal 11 (124 mg, 1.47 mmol) afforded, upon work-up, a yellow solid. Purification by flash column chromatography (SiO₂, 4:1 light petroleum/ethyl acetate) gave title compound 13 $(393 \text{ mg}, 87\%, R_{f} 0.31 \text{ in } 3:1 \text{ light petroleum/ethyl acetate}),$ as colourless crystals (mp 140-141 °C). IR (CH₂Cl₂): 3519m, 3072m, 2961s, 2890s, 1728m, 1682s, 1640s, 1478m, 2961s, 2890s, 1728m, 1682s, 1640s, 1478m, 1456m, 1415m, 1376m, 1334s, 1267s, 1237s, 1215s, 1166s, 1135s, 1064m, 994m, 924w, 877w, 824w, 764w, 738m, 703m cm⁻¹. ¹H NMR (CDCl₃): δ 0.95 (s, 1H, CH₃, H8 or H9); 1.08 (s, 1H, CH₃, H8 or H9); 1.15-2.31 (m, 11H, 5(CH₂) H16, H17, H6, H5, H3 and 1(CH), H4); 3.31 (br s, 1H, OH); 3.45, 3.48 (ABq, J 13.81 Hz, 2H, CH₂, H10); 3.73 (dd, J 3.51, 8.70 Hz, 1H, CHN, H2); 3.89 (br t, J 6.26 Hz, 1H, CH, H12); 3.98–4.05 (m, 1H, CH, H15); 4.94 (dp, J 10.22, 2.14,1.98 Hz, 1H, CH of CH₂; H19a); 5.03 (dq, J 3.51, 1.68 Hz, 1H, CH of CH₂, H19b); 5.31-5.41 (m, 2H, CH₂, H14); 5.80, ddt (J 17.90, 14.70, 10.38 Hz, 1H, H18); 5.91 (qd, J10.07, 8.70 Hz, 1H, H13). ¹³C NMR (CDCl₃): δ 19.91, CH₃, C8 or C9; 20.75, CH₃, C8 or C9; 26.45, CH₂, C5; 29.81, CH₂, C17; 32.83, CH₂, C6; 32.23, CH₂, C16; 38.16, CH₂, C3; 44.64, CH, C4; 47.72, C(CH₃)₂, C7; 48.36, C, C1; 53.11, CH₂, C10; 54.35, CH, C12; 64.87, CHN, C2; 70.19, CH, C15; 114.75, CH₂, C19; 121.39, CH₂, C14; 130.60, CH, C18; 137.93, CH, C13; 173.25, CO, C11. MS: 390.3 ([M+Na]⁺, 137.55, CH, CI3, 175.25, CO, CH1 MS. 550.5 ([M+17a], 80%), 757.3 ([2M+Na]⁺, 100). HRMS calcd for $C_{19}H_{29}NO_4S(H^+)$ requires 368.190, found 368.190. $C_{19}H_{29}NO_4S(Na^+)$ requires 390.172, found 390.172. Anal. Calcd (367.2): C, 65.10; H, 7.95; N, 3.81. Found: C, 65.60; H, 8.18; N, 3.73. $[\alpha]_D^{24} = +95.35$ (*c* 1.3, CHCl₃).

4.4. (+)-(2*S*)-*N*-[(1*R*,2*S*)-1-Hydroxy-3-cyclohexen-2-carbonyl]bornane-10,2-sultam 14

Grubbs' catalyst (231 mg, 0.27 mmol), in degassed CH₂Cl₂ (50 ml), was added to a solution of **13** (2.00 g, 5.44 mmol) in degassed CH₂Cl₂ (450 ml) under a flow of argon and the resulting solution was stirred at room temperature for 24 h. The solvent was removed in vacuo and the crude material was purified by column chromatography (SiO₂, 4:1 light petroleum/ethyl acetate) to give title compound **13** (1.62 g, 88%, R_f 0.16) as colourless crystals (mp 139–140.5 °C). IR (CH₂Cl₂): 3526s, 3053s, 3024s, 2981s, 2880s, 3841s, 1686s, 1478m, 1456m, 1429m, 1410m, 1391m, 1377m, 1332s, 1267s, 1237s, 1213s, 1165m, 1134s, 1122m, 1078m, 1064s, 991m, 977m, 953w, 893m, 871w,

856m, 805w, 765m, 737s, 703m cm⁻¹. ¹H NMR (CDCl₃): δ 0.97 (s, 1H, CH₃, H8 or H9); 1.18 (s, 1H, CH₃, H8 or H9); 1.21-2.54 (m, 11H, 5(CH₂), H16, H15, H6, H5, H3 and 1(CH), H4); 3.45 (d, J 3.51 Hz, 1H, OH); 3.49, 3.52 (ABq, J 13.88 Hz, 2H, CH₂, H10); 3.86–3.96 (m, 2H, 2(CH), H2, H12); 4.12–4.20 (m, CH, H17); 5.54 (dp, J 5.80, 2.14 Hz, 1H, CH, H14); 5.92 (dq, J 5.95, 3.36 Hz, 1H, CH, H13). ¹³C NMR (CDCl₃): δ 19.21, CH₃, C8 or C9; 20.96, CH₃, C8 or C9; 22.83, CH₂, C15; 26.45, CH₂, C5; 27.06, CH₂, C16; 32.88, CH₂, C6; 38.39, CH₂, C3; 44.63, CH, C4; 46.87, CH, C12; 47.77, C(CH₃)₂, C7; 48.27, C, C1; 53.19, CH₂, C10; 65.33, CHN, C2; 66.52, CH, C17; 120.97, CH, C14; 130.89, CH, C13; 172.62, CO, C11. MS: 340.3 ($[M+H]^+$, 5%), 362.2 ($[M+Na]^+$, 100), 701.4 ($[2M+Na]^+$, 90). HRMS calcd for $C_{17}H_{25}NO_4S(H^+)$ requires 340.158, found 340.159. $C_{17}H_{25}NO_4S(Na^+)$ requires 362.140, found 362.140. Anal. Calcd (339.2): C, 60.15; H, 7.94; N, 4.13; S, 9.45. Found: C, 59.94; H, 7.94; N, 4.07; S, 9.25. $[\alpha]_D^{24} = +270.0$ (*c* 0.7, CHCl₃).

4.5. (+)-(1S,2R)-2-Hydroxy-5-cyclohexenecarboxylic acid 8

Hydrogen peroxide (0.51 ml, 30% solution, 4.50 mmol) was added to a chilled (0 °C) solution of 14 (318 mg, 0.94 mmol) in THF/H₂O (6:1, total 21 ml). This was followed by incremental addition of lithium hydroxide (51.0 mg, 1.22 mmol). The reaction was warmed to room temperature overnight, quenched with Na₂SO₃·7H₂O $(940 \text{ mg}, 9.4 \text{ ml} \text{ H}_2\text{O})$ and CH_2Cl_2 (15 ml) added. The aqueous phase was washed with CH_2Cl_2 (2 × 10 ml). The organics were combined, dried over MgSO4 and reduced under vacuum to yield a quantitative recovery of camphorsultam (203 mg). The aqueous layer was acidified with 1 M HCl and extracted with ethyl acetate $(5 \times 10 \text{ ml})$. The organics were combined, dried over MgSO₄ and reduced in vacuo to give title compound 8 (110 mg, 82%) as an orange oil ($R_{\rm f}$ 0.44 in ethyl acetate), which was used without further purification. IR (CH₂Cl₂): 3442m, 3339m, 3055s, 2987m, 2899m, 2306m, 1711s, 1431m, 1422s, 1265s, 1087m, 1070m, 1034m, 982w, 936w, 896m, 865w, 643m, 738s, 704s cm⁻¹. ¹H NMR (CDCl₃): δ 1.73–1.82, m, 1H, CH of CH₂, H4 or H5; 1.93–1.21, m, 2H, H4 or H5; 2.22-2.30, m, 1H, CH of CH2, H4 or H5; 3.33, br s, 1H, CH, H1; 4.28, br s, 1H, CH, H6; 5.70, br d, *J* 10.07 Hz, 1H, CH, H3; 5.87, qd, *J* 10.07, 2.43 Hz, 1H, CH, H2, 6.83; br s, 2H, 2(OH). ¹³C NMR (CDCl₃): δ 21.88, CH₂, C4; 27.70, CH₂, C5; 38.73, CH, C1; 66.43, CH, C6; 121.15, CH, C3; 129.58, CH, C2; 167.66, CO. MS: 142.7 $([M]^+, 5\%)$, 164.8 $([M+Na]^+, 100)$. HRMS calcd for $C_7H_{10}O_3(Na^+)$ requires 165.053, found 165.052. Anal. Calcd (142.1): C, 59.14; H, 7.09. Found: C, 58.58; H, 6.87. $[\alpha]_D^{22} = +95.45$ (*c* 4, CHCl₃).

4.6. (+)-(2*S*)-*N*-[(1*R*,2*S*)-1-(((*tert*-Butyldiphenyl)silyl)oxy)-3-cyclohexen-2-carbonyl]bornane-10,2-sultam 15

Imidazole (20.2 mg, 0.30 mmol) and BPSCl (40.8 mg, 37.0 μ l) were added to a solution of **14** (310.0 mg, 0.91 mmol) in CH₂Cl₂ (2 ml) at room temperature. Following stirring overnight the reaction was quenched with water (1 ml) and then poured into Et₂O (5 ml). The aqueous

phase was washed with Et_2O (2 × 5 ml). The organic extracts were combined, dried (MgSO₄) and the solvent was removed in vacuo to afford a white solid. The crude product was purified by flash column chromatography (SiO₂, 5:1 light petroleum/ethyl acetate) to yield the title compound 15 (455 mg, 87%, $R_{\rm f}$ 0.55 in 8:1 light petroleum/ethyl acetate) as colourless crystals (mp 158-159 °C). IR (CH₂Cl₂): 3066m, 3046m, 2959s, 2946s, 2957s, 1707s, 1472w, 1458w, 1428m, 1391m, 1362w, 1332s, 1268s, 1236m, 1219m, 1199m, 1164m, 1133s, 1111s, 1063m, 990w, 895w, 840w, 822w, 788w, 766w, 740w, 704m cm⁻¹. ¹H NMR (CDCl₃): δ 0.98 (s, 3H, CH₃, H8 or H9); 1.04 (s, 9H, 3(CH₃) –BPS; 1.09, s, 3H, CH₃, H8 or H9); 1.22– 2.60 (m, 11H, 5(CH₂), H16, H15, H6, H5, H3 and 1(CH), H4); 3.49, 3.51 (ABq, J 13.89 Hz, 2H, CH₂, H10); 3.91-4.02 (m, 3H, 3(CH), H2, H12, H17); 5.61-5.65 (m, 1H, H14); 5.72–5.76 (m, 1H, H13); 7.32–7.46 (m, 6ArH –BPS); 7.71–7.79 (m, 4ArH –BPS). 13 C NMR (CDCl₃): δ 19.24, C(CH₃)₃ -BPS; 19.98, CH₃, C8 or C9; 20.93, CH₃, C8 or C9; 24.92, CH₂, C15; 26.52, CH₂, C5; 26.93, C(CH₃)₃ –BPS; 27.32, CH₂, C16; 32.85, CH₂, C6; 38.35, CH₂, C3; 44.59, CH, C4; 47.56, CH, C12; 47.78, C(CH₃)₃ -BPS, C7; 48.20, C, C1; 53.13, CH₂, C10; 65.20, CHN, C2; 70.39, CH, C17; 122.29, CH, C14; 127.22, 127.39, ArCH, 2(C2', C6' or C3', C5') -BPS; 129.23, 129.23, ArCH, 2(C4') -BPS; 130.87, CH, C13; 133.47, 134,85, ArC, 2(C1') -BPS; 135.87, ArCH, 2(C2', C6' or C3', C5') -BPS; 169.25, CO, C11. MS: 578.4 ([M+H]⁺, 40%), 600.4 $([M+Na]^+, 90)$. HRMS calcd for $C_{33}H_{43}NO_4SSi(Na^+)$ requires 600.258 found 600.256. Anal. Calcd (577.3): C, 68.59; H, 7.50; N, 2.42. Found: C, 68.66; H, 7.32; N, 2.53. $[\alpha]_D^{22} = +81.0 \ (c \ 0.2, \ CHCl_3).$

4.7. (+)-(2*S*)-*N*-[(1*R*,2*R*,3*S*,4*R*)-1-(((*tert*-Butyldiphenyl)silyl)oxy)-3,4-(dihydroxy)cyclo-hexan-2-carbonyl]bornane-10,2-sultam 16

NMO (332 mg, 2.84 mmol) followed by $K_2OsO_4 H_2O$ (52.2 mg, 0.142 mmol) was added to a solution of 15 (480 mg, 1.42 mmol) in a 3:1 mixture of t-BuOH/H₂O (12 ml total), at room temperature and allowed to stir overnight. The pale orange solution was quenched with $Na_2S_2O_3$ (1 M, 1.5 ml) and allowed to stir for an additional 0.5 h. The solution was evaporated to dryness, and an ethyl acetate (20 ml) and water (5 ml) mixture added. The aqueous phase was washed with ethyl acetate $(2 \times 20 \text{ ml})$. The organic extracts were combined, dried over MgSO₄ and the solvent was removed in vacuo to afford a yellow solid. The crude product was purified using flash column chromatography (SiO₂, 4:1 light petroleum/ethyl acetate) to yield title compound 16 (470 mg, 92%, R_f 0.14, mp 215-216 °C), as colourless crystals. IR (CH₂Cl₂): 3484s, 3073s, 3072s, 2932s, 2858, 1702m, 1472m, 1428s, 1391w, 1362w, 1332m, 1266s, 1199w, 822s, 739s, 703s cm⁻¹. ¹H NMR (CDCl₃): δ 0.92 (s, 3H, CH₃, H8 or H9); 1.08 (9H, 3CH₃) -BPS); 1.09 (s, 3H, CH₃, H8 or H9); 1.18–2.36 (m, 11H, 5(CH₂), H16, H15, H6, H5, H3 and 1(CH), H4); 3.23, 3.46 (ABq, J 13.73 Hz, 2H, CH₂, H10); 3.34–3.41 (m, 2H, 2(CH), H2, H12); 4.08 (br d, J 2.59 Hz, 1H, CH, H14); 4.54 (dd, J 10.07, 2.90 Hz, 1H, CH, H17); 4.82 (br s, 1H, CH, H13); 7.31-7.44 (m, 6ArH -BPS); 7.61-7.71 (m, 4ArH – BPS). ¹³C NMR (CDCl₃): δ 19.44, C(CH₃) -BPS; 19.84, CH₃, C8 or C9; 20.97, CH₃, C8 or C9; 25.00, CH₂, C15; 26.20, CH₂, C5; 26.33, 3(CH₃) -BPS; 27.20, CH₂, C16; 32.82, CH₂, C6; 38.57, CH₂, C3; 44.64, CH, C4; 47.65, CH, C12; 48.32, $C(CH_3)_2$, C7; 50.46, CH, C17; 52.91, CH, C1; 53.02, CH₂, C10; 65.27, CHN, C2; 68.75, CH, C14; 68.97, CH, C13; 69.41, CH, C14; 127.35, 127.45, ArCH, 2(C2', C6' or C3', C5) -BPS; 129.52, 129.57 ArCH, 2(C4') -BPS; 134.02, 134.96, ArC, 2(C1') -BPS; 136.24, 138.64, ArCH, 2(C2', C6' or C3', C5) -BPS; 169.79, CO, C11. MS: 612.4 ([M+H]⁺, 25%), 634.3 ([M+Na]⁺, 100), 644.3 ([M+MeOH(H)]⁺, 50). HRMS calcd for C₃₃H₄₅NO₆SSi(Na⁺) requires 634.264, found 634.262. Anal. Calcd (611.4): C, 64.78; H, 7.41; N, 2.29. Found: C, 64.57; H, 7.26; N, 2.29. [α]_D²² = +5.4 (*c* 0.73, CHCl₃).

4.8. (+)-(2*S*)-*N*-[(3a*S*,4*S*,5*R*,7a*R*)-2,2-Dimethyl-5-(((*tert*butyldiphenyl)silyl)oxy)hexahydro[1,3]benzodioxol-4-carbonyl]bornane-10,2-sultam 17

2,2-Dimethoxypropane (80.4μ l, 0.65μ mol) followed by camphorsulfonic acid (2.0 mg, 0.0082 mmol) was added to a solution of 16 (50 mg, 0.082 mmol) in acetone (0.5 ml), which contained 4 Å molecular sieves at room temperature. After completion of the reaction (TLC 1 h), NEt₃ (0.1 ml) was added. Stirring for a further 15 min was followed by evaporation under vacuum. Water (1 ml) and Et_2O (5 ml) were added and the aqueous phase was further washed with $Et_2O(3 \times 5 \text{ ml})$. The organic extracts were combined, dried over MgSO₄ and evaporated in vacuo. The crude product was purified using flash column chromatography (SiO₂, 4:1 light petroleum/ethyl acetate) to yield title compound 17, as colourless crystals (50 mg, 94%, R_f 0.75, mp 203–205 °C). IR (CH₂Cl₂): 3077w, 3049w, 2946s, 2932s, 2890m, 2857m, 1698s, 1459w, 1471w, 1428m, 1407w, 1392m, 1330s, 1265m, 1234m, 1213s, 1164m, 1134m, 1112s, 1067s, 1047s, 1000w, 982w, 874w, 860w, 824w, 799w, 767w, 735m, 703s cm⁻¹. ¹H NMR (CDCl₃): δ 0.92 (s, 3H, CH₃, H8 or H9); 1.08 (s, 9H, 3(CH₃) –BPS); 1.11 (3H, CH₃, H8 or H9); 1.32 (3H, CH₃, C(CH₃)₂); 1.44 (3H, CH₃, C(CH₃)₂); 1.56–2.18 (m, 11H, 5(CH₂), H16, H15, H6, H5, H3 and 1(CH), H4); 3.16 (d, J 9.46 Hz, 1H, CH, H12); 3.36, 3.43 (ABq, J 13.51 Hz, 2H, CH₂, H10); 3.42 (t, J 6.33 Hz, 1H, CH, H2); 4.36 (br s, 1H, CH, H14); 4.84 (br s, 1H, CH, H17); 4.92 (dd, J 9.38, 4.60 Hz, 1H, CH, H13); 7.32-7.43 (m, 6H, 6ArH –BPS). ¹³C NMR (CDCl₃): δ 19.51, C(CH₃) -BPS; 19.94, CH₃, C8 or C9; 20.82, CH₃, C8 or C9; 21.02, CH₂, C15; 26.51, CH₂, C5; 26.62, CH₃, C(CH₃)₂; 26.96, CH₂, C16; 27.27, $3(CH_3)$ –BPS; 27.83, CH₃ (CH₃)₂; 32.79, CH₂, C6; 38.54, CH₂, C3; 44.57, CH, C4; 47.73, C(CH₃)₂, C7; 48.39, C, C1; 51.15, CH, C12; 52.98, CH₂, C10; 65.27, CHN, C2; 68.46, CH, C17; 72.76, CH, C14; 74.94, CH, C13; 108.11, C(CH₃)₂; 127.13, 127.26, ArCH, 2(C2', C6' or C3', C5) -BPS; 129.29, 129.35, ArCH, 2(C4') -BPS; 133.61, 134.69, ArC, 2(C1') -BPS; 135.92, 136.45, ArCH, 2(C2', C6' or C3', C5') –BPS; 169.33, CO, C11. MS: 652.3 ([M+H]⁺, 100%), 674.2 ([M+Na]⁺, 28). HRMS calcd for $C_{36}H_{49}NO_6SSi(Na^+)$ requires 674.295, found 674.294. Anal. Calcd (651.3): C, 66.32; H, 7.58; N, 2.15. Found: C, 66.47; H, 7.34; N, 2.12. $[\alpha]_D^{24} = +8.2$ (*c* 1, CHCl₃).

4.9. (3a*S*,4*R*,5*R*,7a*R*)-2,2-Dimethyl-4-(hydroxymethyl)-5-(((*tert*-butyldiphenyl)silyl)oxy)hexahydro[1,3]benzodioxole 18

LiAlH₄ (7.3 mg, 0.193 mmol) was added to a solution of 17 (60 mg, 0.09 mmol) in CH₂Cl₂ (1 ml) at 0 °C. After stirring for 4 h at room temperature, TLC indicated the presence of unreacted starting material. Therefore, extra LiAlH₄ (15 mg, 0.4 mmol) was added at room temperature and the mixture left to stir overnight. Addition of a mixture of Na₂S₂O₆·10H₂O (10 mg) in water (1 ml) was followed by washing with CH_2Cl_2 (3 × 5 ml). The organics were combined, dried over MgSO₄ and reduced in vacuo. The crude reaction mixture was purified by column chromatography (SiO₂, 4:1 light petroleum/ethyl acetate) to give firstly BPSOH (20 mg), followed by title compound **18** (9 mg, 10%), isolated as a white solid. ¹H NMR (CDCl₃): δ 1.07 (s, 9H, 3(CH₃) –BPS); 1.35 (s, 3H, CH₃, C(CH₃)₂); 1.45 (s, 3H, CH₃, C(CH₃)₂); 1.51–1.57 (m, 2H, H1, H2 or H3); 1.61-1.69 (m, 1H, H1, H2 or H3); 1.90-1.96 (m, 1H, H1, H2 or H3); 2.14–2.27 (m, 1H, H1, H2 or H3); 3.43 (dd (ABX), J_{7a-7e} 10.76 Hz, J_{7a-6} 7.10 Hz, 1H CH of CH₂, H7); 3.75 (dd (ABX), J_{7a-7e} 10.76 Hz, J_{7e-6} 6.49 Hz, 1H, CH of CH₂, H7); 4.13–4.18 (m, 2H, 2(CH), H4, H5); 4.30-4.34 (m, 1H, CH, H6; 4.81, br d, J4.42 Hz, 1H, OH); 7.35-7.48 (m, 6ArH -BPS); 7.60-7.68 (m, 4ArH -BPS). ¹³C NMR (CDCl₃): δ 19.83, C(CH₃)₃ -BPS; 21.85, CH₂, C4; 26.85, CH₃, C(CH₃)₂; 27.39, CH₂, C5; 27.50, CH₃, 3(CH₃) –BPS; 28.82, CH₃, C(CH₃)₂; 46.94, CH, C1; 63.97, CH₂, C7; 69.06, CH, C6; 73.28, CH, C3; 76.86, CH, C2; 108.40, C, C(CH₃)₂; 127.86, 128.01, ArCH, 2(C2', C4' or C3', C5') -BPS; 130.10, 130.17, ArCH, 2(C4') -BPS; 133.54, 134.05, ArC, 2(C1') -BPS; 136.07, 136.09, ArCH, 2(C2', C4' or C3', C5') -BPS. MS: 441.2 $([M+H]^+, 15\%), 463.2$ $([M+Na]^+, 100)$. HRMS calcd for $C_{26}H_{36}O_4Si(Na^+)$ requires 463.228, found 463.228.

4.10. (+)-(1*S*,2*R*)-2-(Hydroxy)-5-cyclohexenecarboxylic acid (*N*-methoxy-*N*-methyl)amide 20

N,*O*-Dimethylhydroxylamine hydrochloride (38 mg, 0.51 mmol), followed by N-methylmorpholine (40 mg, 43 μ l, 0.51 mmol) was added to a cooled (0 °C) solution of 8 (54 mg, 0.39 mmol) in CH₂Cl₂ (1 ml). N-(3-Dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (75 mg, 0.51 mmol) was added incrementally and allowed to stir at this temperature for 2 h. The reaction was quenched with 1 M HCl (1.5 ml), extracted and the aqueous phase re-extracted with CH₂Cl₂ (2 ml). The organics were combined, washed with satd NaHCO₃ (2 ml) and the aqueous phase was washed with CH₂Cl₂ (2 ml). The organics were combined, dried over MgSO₄ and reduced in vacuo to give title compound 20 (50 mg, 77%). IR (CH₂Cl₂): 3428s, 3054s, 2926s, 2850s, 1654s, 1642s, 1458m, 1439m, 1423m, 1388m, 1318w, 1266s, 1192w, 1179w, 1112w, 1073w, 1034w, 1012w, 895w, 739s, 704m, 673m cm⁻¹. ¹H NMR (CDCl₃): δ 1.70–1.77 (m, 1H, CH of CH₂, H4 or H5); 1.99-2.15 (m, 2H, CH₂, H4 or H5); 2.24-2.34 (m, 1H, CH of CH₂, H4 or H5); 3.16 (br s, 1H, OH); 3.21 (s, 3H, NCH₃); 3.61-3.70 (m, 1H, CH, H1); 3.73 (s, 3H, OCH₃); 4.09-4.14 (m, 1H, CH, H6); 5.52 (br dd, J 10.07, 2.45 Hz, 1H, CH, H3); 5.88 (bqd, J 6.28, 2.45 Hz, 1H, CH, H2). ¹³C NMR (CDCl₃): δ 22.15, CH₂, C4; 27.81, CH₂, C5; 42.27, CH, C1; 61.37, CH₃, NCH₃, OCH₃; 66.36, CH, C6; 121.35, CH, C3; 130.01, CH, C2; 174.18, CO. MS: 185.8 ([M+H]⁺, 20%), 207.9 ([M+Na]⁺, 100). HRMS calcd for C₉H₁₅NO₃(Na⁺) requires 208.095, found 208.095. [α]_D²³ = +108.9 (*c* 7.5, CHCl₃).

4.11. (+)-(1*S*,2*R*)-2-(((*tert*-Butyldiphenyl)silyl)oxy)-5cyclohexenecarboxylic acid (*N*-methoxy-*N*-methyl)amide 21

Alcohol 20 (415 mg, 2.25 mmol) was silvlated in a manner similar to that for 15. The crude product was purified via column chromatography (SiO₂, 6:1 light petroleum/ethyl acetate), to give title compound 21 (650 mg, 68%, $R_{\rm f}$ 0.22, in 10:1 in light petroleum/ethyl acetate) as a colourless oil. IR (CH₂Cl₂): 3071m, 3046m, 2931w, 2895m, 2857s, 1642m, 1472m, 1428s, 1390w, 1363w, 1113s, 1008w, 821m, 740m, 701s cm⁻¹. ¹H NMR (CDCl₃): δ (1.04, s, 9H, 3(CH₃) -BPS); 1.60 (pd, J 9.08, 3.13 Hz, 1H, CH of CH₂, H4 or H5); 1.77–1.87 (m, 1H, CH of CH₂, H4 or H5); 2.14 (br dd, J 18.47, 2.90 Hz, 1H, CH of CH₂, H4 or H5); 2.29–2.44 (m, 1H, H4 or H5); 3.20 (s, 3H, NCH₃); 3.61 (3H, OCH₃); 3.81 (br s, 1H, CH, H1); 4.15 (dq, J 5.73 3.74 Hz, 1H, CH, H6); 5.45-5.50 (m, 1H, CH, H3); 5.80-5.83 (m, 1H, CH, H2); 7.34-7.45 (m, 6ArH –BPS); 7.69–7.71 (m, 4ArH –BPS). ¹³C NMR (CDCl₃): δ 19.25, C(CH₃)₃ –BPS; 24.28, CH₂, C4; 26.92 (CH_3) -BPS; 27.13, CH₂, C5; 42.38, CH, C1; 61.25, NCH₃, OCH₃; 70.44, CH, C6; 122.65, CH, C3; 127.29, 127.30, ArCH, 2(C2', C6' or C3', C6') -BPS; 129.36, ArCH, 2(C4') -BPS; 130.02, CH, C2; 133.95, 134.49, ACCH (C1) -BPS; 125.56 (C1) -BPS ArC, 2(C1') –BPS; 135.75, 135.77, ArCH, 2(C2', C6' or C3', C5') –BPS; 172.70, CO. MS: 424.2 ([M+H]⁺, 25%), 446.2 ($[M+Na]^+$, 85). HRMS calcd for C₂₅H₃₃NO₃Si(Na⁺) requires 446.213, found 446.212. Anal. Calcd (423.2): C, 70.88; H, 7.85; N, 3.31. Found: C, 70.89; H, 7.84; N, 3.27. $[\alpha]_{D}^{23} = +83.6$ (*c* 1.95, CHCl₃).

4.12. (-)-(1*S*,2*S*,3*R*,6*R*)-2,3-(Dihydroxy)-6-(((*tert*-butyldiphenyl)silyl)oxy)cyclohexane-carboxylic acid (*N*-methoxy-*N*-methyl)amide 22

Alkene 21 (163 mg, 0.38 mmol), dissolved in t-BuOH (1.8 ml), DMF (1.8 ml), was dihydroxylated in a manner similar to that for diol 16. After work-up title compound 22 was isolated as a colourless oil (170 mg, 97%, $R_{\rm f}$ 0.10 in 2:1 light petroleum/ethyl acetate). Recrystallisation from light petroleum/ CH_2Cl_2 gave title compound 22 as colourless crystals (mp 50-51 °C). IR (CH₂Cl₂): 3440s, 3053s, 2933s, 2858s, 1963w, 1895w, 1750w, 1737m, 1644s, 1590m, 1428m, 1391m, 1266s, 1193m, 1112m, 1050m, 965m, 928w, 895w, 863w, 823m, 739s, 704s cm⁻¹. ¹H NMR (CDCl₃): δ 1.04 (s, 9H, 3(CH₃) –BPS); 1.54–1.72 (m, 2H, CH₂, H5); 1.90–2.20 (m, 2H, CH₂, H4); 3.00 (br s, 1H, CH, H1); 3.04 (s, 3H, NCH₃); 3.47 (s, 3H, OCH₃); 4.18 (q, J 2.29 Hz, 1H, CH, H6); 4.57 (dd, J 10.48, 2.83 Hz, 1H, CH, H2); 4.61 (br s, 1H, CH, H3); 4.61 (br s, OH, 7.32, m, 6ArH -BPS); 7.59-7.63 (m, 4ArH -BPS). ¹³C NMR (CDCl₃): δ 19.47, C(CH₃)₂; 24.65, CH₂, C4; 26.52, CH₂, C5; 27.04, CH₃, 3(CH₃) -BPS; 48.15, CH, C1; 60.87, CH₃, OCH₃ and NCH₃; 67.95, CH, C6; 68.73, CH, C3; 69.71, CH, C2; 127.30, 127.34, ArCH, 2(C2',

C6' or C3', C5') –BPS; 129.48, ArCH, 2(C4') –BPS; 133.43, 134.29, ArC, 2(C1') –BPS; 135.79, 136.05, ArCH, 2(C2', C6' or C3', C5') –BPS; 172.45, CO. MS: 458.4 ([M+H]⁺, 100%), 480.3 ([M+Na]⁺, 80). HRMS calcd for C₂₅H₃₅NO₅-Si(H⁺) requires 458.236, found 458.241. C₂₅H₃₅NO₅Si(Na⁺) requires 480.215, found 480.220. Anal. Calcd (457.2): C, 65.61; H, 7.71; N 3.06, 7. Found: C, 65.60; H, 7.80; N, 3.01. $[\alpha]_{D}^{24} = -17.95$ (*c* 2, CHCl₃).

4.13. (-)-(3a*S*,4*S*,5*R*,7a*R*)-5-(((*tert*-Butyldiphenyl)silyl)oxy)-2,2-dimethylhexahydro-[1,3]benzodioxol-4-carboxylic acid (*N*-methoxy-*N*-methyl)amide 23

To a solution of 22 (666 mg, 1.57 mmol) in acetone (6 ml), which contained 4 Å molecular sieves, 2,2-dimethoxypropane (1.54 ml, 13 mmol) followed by camphor sulfonic acid (40.0 mg, 0.16 mmol) was added at room temperature. After completion of the reaction (TLC 1 h) NEt₃ (2.0 ml) was added, allowed to stir for 15 min and reduced under vacuum. A water (20 ml) and Et₂O (100 ml) mixture was added, it was extracted and the aqueous phase re-extracted with Et₂O (3×100 ml). The organic extracts were combined, dried over MgSO₄ and reduced under pressure. The crude product was purified using flash column chromatography (SiO₂, 2:1 light petroleum/ethyl acetate) to give 23 (764 mg, 98%, $R_{\rm f}$ 0.28 in 4:1 light petroleum/ethyl acetate) as a colourless oil, which solidified on standing. Recrystallisation from CH₂Cl₂/light petroleum gave the title compound 23 as colourless crystals (mp 89–90 °C). IR (CH₂Cl₂): 3072s, 3046s, 2932s, 2885s, 2858s, 1966w, 1906w, 1850w, 1736w, 1648s, 1589w, 1473m, 1428m, 1390m, 1363w, 1348w, 1266m, 1194w, 1112s, 1052s, 1027m, 1007m, 965m, 928w, 894w, 881w, 863w, 823m, 780w, 741m, 703s cm⁻¹ ¹H NMR (CDCl₃): δ 1.05 (s, 9H, CH₃, 3(CH₃) –BPS); 1.36 (s, 3H, CH₃, C(CH₃)₂); 1.44 (s, 3H, CH₃, C(CH₃)₂); 1.81 (br dd, J 16.31, 3.21 Hz, 2H, CH₂, H4); 2.9–2.14 (m, 2H, CH₂, H5); 2.79 (dd, J 9.16, 1.68 Hz, 1H, CH, H1); 3.11 (s, 3H, NCH₃); 3.50 (s, 3H, OCH₃); 4.41 (q, J 6.87, 4.43 Hz, 1H, CH, H6); 4.48 (br d, J 1.68 Hz, 1H, CH, H3); 4.99 (dd, J 9.24, 4.96 Hz, 1H, CH, H2); 7.32-7.44 (m, 6ArH -BPS); 7.58-7.64 (4ArH -BPS). ¹³C NMR (CDCl₃): δ 19.39, C(CH₃)₃ –BPS; 21.36, CH₂, C4; 26.39, CH₃, 3(CH₃)₂; 26.89, CH₂, C5; 27.06, CH₃; 3(CH₃) –BPS; 28.75, CH₃, C(CH₃)₂; 48.33, CH, C1; 60.94, CH₃, NCH₃, OCH₃; 69.34, CH, C6; 72.60, CH, C3; 73.29, CH, C2; 107.52, C, C(CH₃)₂; 127.26, 127.35, ArCH, 2(C2', C6' or C3', C5') -BPS; 129.45, ArCH, 2(C4') -BPS; 133.26, 134.37, ArC, 2(C1') -BPS; 135.68, 136.02, ArCH, 2(C2', C6' or C3', C5') -BPS; 171.30, CO. HRMS calcd for $C_{28}H_{39}NO_5Si(H^+)$ requires 498.268, found 498.265. Anal. Calcd (497.3): C, 67.57; H, 7.90; N, 2.81. Found: C, 67.60; H, 7.86; N, 2.66. $[\alpha]_D^{24} = -84.1$ (c 1.00, CHCl₃).

4.14. (-)-(3a*S*,4*S*,5*R*,7a*R*)-4-Acetyl-5-(((*tert*-butyldiphenyl)silyl)oxy)-2,2-dimethylhexahydr-[1,3]benzodioxole 7

To a solution of 23 (90 mg, 0.18 mmol) in Et_2O (2 ml) cooled to 0 °C, freshly made methyl magnesium iodide (0.51 ml, 1.3 M, 0.66 mmol) was added. Once the addition is complete, the bath was removed and allowed to warm to room temperature overnight. The reaction was quenched

with NH_4Cl ag (2 ml), extracted and the aqueous phase re-extracted with Et₂O (3×5 ml). The organics were combined, dried over MgSO₄ and reduced under vacuum. The crude product (90 mg) was purified via column chromatography (SiO₂, 6:1 light petroleum/ethyl acetate) to give title compound 7 (66 mg, 80%, $R_{\rm f}$ 0.31 in 8:1 light petroleum/ethyl acetate) as a colourless oil, which solidifies on standing. Recrystallisation from light petroleum/ CH₂Cl₂ afforded colourless crystals (mp 75–76 °C). IR (CH₂Cl₂): 3076m, 3046m, 2986s, 2946s, 2931s, 2885m, 2855s, 1718s, 1472w, 1373m, 1369m, 1245m, 1217m, 1160m, 1111m, 1062s, 965w, 874w, 861w, 822m, 799w, 776w, 741m, 702s, 678m, 668s cm⁻¹. ¹H NMR (CDCl₃): δ 1.03 (s, 9H, CH₃, 3(CH₃) –BPS); 1.37 (s, 3H, CH₃, C(CH₃)₂); 1.41–1.53 (m, 1H, CH of CH₂, H4 or H5); 1.57 (s, 3H, CH₃, C(CH₃)₂); 1.82-1.88 (m, 2H, CH₂, H4 or H5); 1.89 (s, 3H, CH₃, CO(CH₃)); 2.10–2.22 (m, 1H, CH of CH₂, H4 or H5); 2.47 (dd, J 8.85, 2.29 Hz, 1H, CH, H1); 4.39 (qd, J 4.58, 3.05 Hz, 1H, CH, H6); 4.46 (dt, J 4.43, 4.27 Hz, 1H, CH, H3); 4.82 (dd, J 8.93, 5.11 Hz, 1H, CH, H2); 7.34-7.46 (m, 6ArH -BPS); 7.58-7.61 (4ArH –BPS). ¹³C NMR (CDCl₃): δ 19.37, C(CH₃)₃ -BPS; 21.67, CH₂, C4; 26.38, CH₃, C(CH₃)₂; 27.07, CH₃, 3(CH₃) –BPS; 27.20, CH₂, C5; 28.63, CH₃, C(CH₃); 29.48; CH₃, CO(CH₃)₂; 58.34, CH, C1; 69.83, CH, C6; 72.59, 2(CH), C2 and C3; 107.81, C, C(CH₃)₂; 127.45, 127.54, ArCH, 2(C2', C6' or C3', C5') -BPS; 129.70, 129.80, ArCH, 2(C4') -BPS; 132.68, 133.80, ArC, 2(C1') -BPS; 135.73, 135.98, ArCH, 2(C2', C6' or C3', C5') -BPS; 206.98, CO. MS: 475.3 ([M+Na]⁺, 100%). HRMS calcd for $C_{27}H_{36}O_4Si(Na^+)$ requires 475.228, found 475.228. $C_{27}H_{36}O_4Si(K^+)$ requires 491.202, found 491.204. Anal. Calcd for $C_{27}H_{36}O_4Si$ (452.2): C, 71.64; H, 8.02. Found: C, 71.53; H, 7.94. $[\alpha]_D^{25} = -74.9$ (c 1.25, CHCl₃).

Acknowledgements

M.C. thanks the Australian Research Council for an Australian Post-Graduate Award (Industry) and Biota Holdings Inc. for financial support.

References

- 1. Folkman, J. New Engl. J. Med. 1995, 333, 1757.
- 2. Klagsburn, M.; Moses, M. Chem. Biol. 1999, 6, R217.
- 3. Gervaz, P.; Frontolliet, C. Int. J. Exp. Path. 1998, 79, 359.
- Giannis, A.; Rubsam, F. Angew. Chem., Int. Ed. 1997, 36, 588.
- 5. Leong, A.; Leong, G. *Cancer Explained*; PG Publishing: Singapore, 1989.
- McCowen, M.; Callender, J.; Lawlis, J. Sviance 1951, 113, 202.
- Kwon, J.; Jeong, H.; Kang, K.; hang, Y.; Bae, K.; Choi, J.; Lee, U.; Son, K.; Kwon, B. *Antibiotics* 2000, 53, 799.
- 8. Sigg, H.; Weber, H. Helv. Chim. Acta 1968, 51, 1395.
- Asami, Y.; Kakeya, H.; Onose, R.; Chang, Y.; Toi, M.; Osada, H. *Tetrahedron* 2004, 60, 7085.
- Son, K.; Kwon, J.; Jeong, H.; Kim, H.; Kim, C.; Chang, Y.; Choi, J.; Kwon, B. *Bioorg. Med. Chem.* 2002, 10, 185.
- 11. Corey, E.; Snider, B. J. Am. Chem. Soc. 1972, 94, 2549.
- 12. Corey, E.; Dittani, J. J. Am. Chem. Soc. 1985, 107, 256.

- Vosburg, D.; Weiler, S.; Sorensen, E. Angew. Chem. 1999, 111, 1022; Vosburg, D.; Weiler, S.; Sorensen, E. Angew. Chem., Int. Ed. 1999, 38, 971.
- 14. Hutchings, M.; Moffat, D.; Simpkins, N. Synlett 2001, 661.
- Yamaguchi, J.; Toyoshima, M.; Shoji, M.; Kakeya, H.; Osada, H.; Hayashi, Y. Angew. Chem., Int. Ed. 2006, 45, 789.
- 16. Vosburg, D.; Weiler, S.; Sorenser, E. Chirality 2003, 15, 156.
- 17. Boiteau, J.; Van de Weghe, P.; Eustache, J. Org. Lett. 2001, 3, 2737.
- (a) Soga, S.; Shitsu, Y.; Akinaga, S.; Sharma, S. *Curr. Cancer Drug Targets* **2003**, *3*, 359; (b) Nam, S.; Buetttner, R.; Tirkson, J.; Kim, D.; Cheng, J.; Muehlbeyer, S.; Hippe, F.; Vatter, S.; Merz, K.; Eisenbrand, G.; Jove, R. *PNAS* **2005**, *102*, 5998.
- Cheng, M.; Biswanath, D.; Almstead, N.; Pikul, S.; Dowty, M.; Cietsch, C.; Dunaway, M.; Gu, F.; Hsieh, L.; Janusz, M.; Taiwo, Y.; Taiwo, Y.; Natchus, M. J. Med. Chem. 1999, 42, 5426.

- Liu, S.; Widom, J.; Kemp, W.; Crews, C.; Clardy, J. Science 1998, 282, 1324.
- (a) VanRheenen, V.; Kelly, R.; Cha, D. *Tetrahedron Lett.* 1976, 23, 1973; (b) Oppolzer, W.; Barras, J. *Helv. Chim. Acta* 1987, 70, 1666.
- 22. Perlmutter, P. Top. Curr. Chem. 1997, 51, 1-200.
- (a) Oppolzer, W.; Chapuis, C.; Bernardinelli, G. *Helv. Chim. Acta* **1984**, *67*, 1397; (b) Liang, B.; Carroll, P.; Joullie, M. *Org. Lett.* **2000**, *2*, 4157.
- (a) Zimmerman, H.; Traxler, M. J. Am. Chem. Soc. 1957, 79, 1920; (b) Bernardi, A.; Capeli, A.; Gennari, C.; Goodman, J.; Paterson, I. J. Org. Chem. 1990, 55, 3576.
- (a) Fu, G.; Nguyen, S.; Grubbs, R. J. Am. Chem. Soc. 1993, 115, 9856; (b) Nguyen, S.; Grubbs, R. J. Am. Chem. Soc. 1993, 115, 9858.
- 26. Fife, T.; Natarajan, R. J. Am. Chem. Soc. 1986, 108, 8050.
- 27. Campbell, A.; Raynham, T.; Taylor, R. Synthesis 1998, 1707.