Contents lists available at SciVerse ScienceDirect

© 2011 Elsevier B.V. All rights reserved.

journal homepage: www.elsevier.com/locate/molliq

Novel ionic liquid analogs formed by triethylbutylammonium carboxylate-water mixtures for CO₂ absorption

G.N. Wang, Y. Dai, X.B. Hu, F. Xiao, Y.T. Wu^{*}, Z.B. Zhang, Z. Zhou

Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

ARTICLE INFO

ABSTRACT

Article history: Received 30 September 2011 Received in revised form 5 December 2011 Accepted 20 December 2011 Available online 30 December 2011

Keywords: lonic liquid analogs Triethylbutylammonium Carboxylic acid Carbon dioxide Absorption

1. Introduction

The removal of CO₂ from industrial flue gasses is now widely concerned because of the adverse effects such as global warming [1]. Various methods have been proposed, such as selective adsorption [2]/ absorption [3,4] and membrane processes [5,6]. Although these methods have been successfully used in industries, they are still associated with energy consumption, corrosion and pollution problems [7]. In order to overcome such obstacles, many novel absorbents such as ionic liquids (ILs) [8], salt hydrates [9] and metal oxide complexes [10], have been developed to provide high CO₂ absorption capacity and thermal stability. However, such absorbents are strongly affected by the presence of water vapor in the gas stream so that the absorption capacity [11] and absorption mechanism [12] are much more different. Unfortunately, water is very common in flue gasses from fossil fuel combustion or other industrial gas streams [13]. Therefore, it is crucial to provide novel compounds which can absorb CO₂ in the presence of water.

In 1995, Quinn reported hydrated salts based on acetic acid and citrate acid, which showed good performance of CO_2 capture [9]. Inspired by his publication, ten novel ionic liquid analogs are prepared by coupling asymmetric triethylbutylammonium ([N₂₂₂₄]) cation with carboxylate anion. It is found that each of them is in the liquid state at room temperature with a certain amount of water and can be detected only a glass transition temperature. The reason to define this type of compound as ionic liquid analogs is that the samples stay in the liquid state at a large temperature range just like the ILs though they are not composed entirely of ions. It is further proved that the [N₂₂₂₄][carbox-ylate]-nH₂O mixtures ([N₂₂₂₄][CA]-nH₂O) have high CO₂ absorption capacity and fast absorption rate of CO₂, which are very attractive for the capture and separation of acidic gasses in industrial applications.

2. Experimental section

This work presents ten ionic liquid analogs of triethylbutylammonium carboxylate and water as CO₂ absor-

bents. The mixtures are liquids with relatively low viscosities at ambient temperature. The absorption exper-

imental results have shown that each of them has fast absorption rate and large absorption capacity of CO₂.

2.1. Materials

Triethylamine $((C_2H_5)_3N)$, n-butyl bromide (C_4H_9Br) , silver oxide (Ag_2O) , and ethanol, obtained commercially from Sinopharm Chemical Reagent Co., Ltd (Nanjing, China), were of analytical grade and used without further purification. All carboxylate acids of analytical grade were purchased from Nanjing Chem. Co. (Nanjing, China) and used as received.

2.2. General procedure for [N₂₂₂₄][carboxylate]-nH₂O synthesis

Triethylbutylammonium bromide ([N₂₂₂₄][Br]) was prepared via the alkylation of $(C_2H_5)_3N$ (70.0 g) with C_4H_9Br (95.0 g) in ethanol (200 ml) under reflux and vigorous stirring for 12 h. The solvent and unreacted reactants were removed by rotary evaporation, [N₂₂₂₄][Br] (160 g) as white solid was obtained after being dried at 60 °C under vacuum (\approx 0.1 kPa) for 24 h.

In the anion exchange reaction, Ag_2O was added in portions into $[N_{2224}][Br]$ solution, the mole ratio of Ag_2O to $[N_{2224}][Br]$ is 1:2, and stirred without air and light at room temperature for 6 h. After filtration, the $[OH^-]$ concentration of the resulting solution was

^{*} Corresponding author at: Key laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China. Tel./fax: +86 25 83593772.

E-mail address: ytwu@nju.edu.cn (Y.T. Wu).

^{0167-7322/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.molliq.2011.12.006

determined from the titration with standard HCl solution. Then, the triethylbutylammonium hydroxide ([N₂₂₂₄][OH]) solution reacted with a slight excess of carboxylate acid via neutralization at room temperature for 2 h. Water was evaporated to generate a residual solution that contained the [N₂₂₂₄]-based samples. After being further dried at 60 °C under vacuum (\approx 0.1 kPa), the residue was extracted with diethyl ether for several times to remove the unreacted acid. The crude product was dissolved in the mixed solvent of dichloromethane with 2 vol.% methanol, and the solution was passed through a column filled with neutral silica. After the removal of the solvent by evaporation, the product was dried in a vacuum (≈ 0.1 kPa) oven at 80 °C for at least 5 days to remove water before the characterization experiments. If the samples were dried at other conditions (at 50 to 70 °C and for 1 to 3 d), triethylbutylammonium carboxylate ([N₂₂₂₄] [CA]) with different amount of water would be obtained [9]. The structures of the compounds are determined by the ¹H NMR spectroscopy (BRUKER DPX 300) and confirmed by the elemental analysis (Elementar Vario MICRO). Photos of the ten obtained samples can be found in Fig. 1 and details of characterization experiments were shown in Supplementary Data.

2.3. Water content measurement

The water contents in the samples were determined by Karl-Fisher Analysis (Metrohm 787 KF Titrino) and ¹H NMR spectroscopy (BRUKER DPX 300).

2.4. Physical properties measurement

The glass transition temperature (T_g) was recorded at the temperature range from -100 to 0 °C under N₂ atmosphere at the scan rate of 10 °C/min by different scanning calorimetry (Perkin-Elmer Diamond DSC), while melting temperature (T_m) was recorded at the temperature range from -20 °C to 50 °C by thermogravimetric analysis (Perkin-Elmer Pyris 1 TGA).

The temperatures of water loss (T_{loss}) and decomposition (T_{dec}) were determined at the scan rate of 10 °C/min under N₂ at the temperature range from room temperature to 500 °C by thermal analysis (TG) instrument (NETZSCH STA 449C). The details of DSC and TG spectrum can be seen in Supplementary Data.

The viscosity and density were measured by a cone-plate viscometer (HAAKE Rheostress 600, an uncertainty of \pm 1% in relation to the full scale) and a densitometer (DMA 5000 DENSITY METER, an uncertainty of \pm 0.03 kg·m⁻³).

2.5. CO₂ absorption experiment

The water content in the samples was adjusted to integral numbers by adding corresponding amount of fresh deionized water before the absorption experiments. The absorption of CO_2 (99.99%, from Nanjing Gas Supply Inc., China) into [N₂₂₂₄][CA]-nH₂O was carried out at 25 °C and at the same initial CO₂ pressure of 0.1 MPa, according to the standard procedure [12]. The saturated samples were

recovered by extruding CO_2 at 55 °C and under vacuum (0.1 kPa) for 4 h and repeated CO_2 absorptions into two typical samples were presented in Fig. 2.

3. Results and discussion

3.1. The measurement of water content

As is known to all, carboxylate anions are highly hydrophilic and it is almost impossible to dry the samples completely as can be seen in Table 1. However, the evidences of FTIR and ¹H NMR analysis indicate that small amounts of water interact with the anions instead of being isolated molecules and form complexes with the $[N_{2224}]$ salts. The DSC spectrum results suggest that the samples remain in the liquid state at a large range of temperature. Based on the phenomenon mentioned above, it is reasonable to regard $[N_{2224}]$ [CA]-nH₂O as ionic liquid analogs.

3.2. Physical properties

The important physical properties of all samples in this work are summarized in Table 1. It is obvious that only glass transition temperatures (T_g) can be detected ranging from -75 °C to -50 °C, and T_g increases generally with the number of carboxyl groups in the anion. For example, [N₂₂₂₄]₂[phthalate]-2H₂O has the highest T_g value whereas the [N₂₂₂₄][acetate]-1H₂O, [N₂₂₂₄][propionate]-0.5H₂O and [N₂₂₂₄][butyrate]-0.5H₂O have about 20 °C lower values. Those later three salts have almost identical T_g values, indicating that the length of alkyl chain in the mono-carboxylate anions has less effect on the T_g values. In contrast to [N₂₂₂₂][acetate]-4H₂O that has a melting temperature at 45 °C [9], no melting temperatures were detected from -100 to 50 °C for all samples in this work, reflecting that the [N₂₂₂₄] salts and water complexes were also eutectic liquid mixtures at the experimental temperature range.

The temperature of water loss (T_{loss}) is the temperature when the samples start to lose water and it is found that the values of T_{loss} are all above 100 °C and increase with the number of the functional groups in the anions. All [N₂₂₄][CA]-nH₂O have the decomposition temperatures from 160 to 190 °C, which are a little lower than normal functional ionic liquids [14]. The fully ionized carboxylate anions are basic and triethylbutylammonium hydroxide was formed in the presence of water. So the mechanism of decomposition may relate to a Hoffman Elimination Reaction explained by MacFarlane [15]. From this respect, the reason for low thermal stability of the ILs may be the interaction of basic anions and cation in the presence of water.

Fig. 2. Cycles of CO₂ absorption into $[N_{2224}][CA]-nH_2O$ at 25 °C and at the same initial CO₂ pressure of 0.1 MPa. The saturated samples were recovered by extruding CO₂ at 55 °C and under vacuum (0.1 kPa) for 4 h. \bullet $[N_{2224}][butyrate]-1H_2O$ and \blacktriangle $[N_{2224}][propionate]-1H_2O$.

Table 1	
Physical	properties of [N ₂₂₂₄] [carboxylate]-nH ₂ O.

Anion	$T_g/^{\circ}C$	$T_{loss}/^{\circ}C$	$T_{dec}/^{\circ}C$	п	$ ho/{ m g}\cdot{ m cm}^{-3}$	$\eta/mPa \cdot s$
Acetate	-73	103	164	1	0.9981	79
Propionate	-74	107	162	0.5	0.9807	120
Butyrate	-74	101	161	0.5	0.9694	157
Malonate	-60	105	161	3.5	1.0393	509
Succinate	-57	111	162	3	1.0415	NA ¹
Phthalate	-49	113	161	2	1.0654	NA
Maleate	-60	110	156	2	1.0486	NA
Fumarate	-54	119	167	3.6	1.0477	NA
Malate	-55	117	187	3	1.0578	NA
Citrate	-52	125	190	2.5	1.0762	NA

¹ NA: higher than 3800 mPa·s at 25 °C.

The viscosities of all samples range from 79 mPa·s up to more than 3800 mPa·s (NA in Table 1) at 25 °C, depending on the anion types. [N₂₂₂₄][mono-carboxylate] water complexes are found to have viscosities lower than 160 mPa·s at 25 °C, primarily due to the lighter molecular weight of these anions. The reason for the high viscosities may be attributed to the multi-carbonyls in the anions which would enlarge the interactions between the ions. Relatively low viscosities make the [N₂₂₂₄][CA]-nH₂O attractive as industrial absorbents for CO₂ capture.

In addition, $[N_{2224}][CA]-nH_2O$ are of lower densities than traditional ILs. It is distinct that the densities of $[N_{2224}][CA]-nH_2O$ increase with a rise in the volume of the carboxylate anions, like the trend of other kinds of ILs, such as imidazolium-based ILs [16].

3.2.1. CO₂ absorption properties

In order to test the accuracy of the absorption apparatus, the solubility of CO_2 into 1 mol/L NaOH solution and [bmim][PF₆] was determined and compared with those in the references [17,18]. The experimental results have shown strong constancy that demonstrates the liability of the absorption apparatus in this work.

The absorption capacity is shown to reach 95% of the equilibrium value within 30 min which is even shorter than the amino acid ionic liquids [14]. [N₂₂₂₄][butyrate]-1H₂O had been recycled with no obvious loss of absorption capacity. However, the capacity of [N₂₂₂₄][propionate]-1H₂O in the later three cycles is 8% smaller than the first time. It may be reasoned that an absolute vacuum was not really achieved in the subsequent three cycles. Based on the absorption data in the first 30 s, the initial absorption rate constant (*K*/min⁻¹) was calculated and shown in Table 2. It is found that [N₂₂₂₄][CA]-nH₂O with the high CO₂ capacities usually has the large *K* values. Small *K* values may result from low CO₂ loadings or high viscosities. Nevertheless, all [N₂₂₂₄][CA]-nH₂O, which are comparable to the aqueous monoethanolamine (36 w/ w%, *K* = 0.24 min⁻¹, results from our own experimental device), are

Table 2

 CO_2 absorption into $[N_{2224}][CA]\mbox{-}nH_2O$ at 25 $^\circ C$ and the same initial pressure of CO_2 (0.1 MPa).

Anion	п	P*/kPa	Absorption capacity mol CO ₂ /mol compound	K/min ⁻¹
Acetate	1	45	0.23	0.14
Propionate	1	46	0.39	0.33
Butyrate	1	44	0.45	0.22
Malonate	6	50	0.65	0.20
Succinate	6	61	0.57	0.09
Phthalate	6	50	0.66	0.17
Maleate	6	56	0.58	0.18
Fumarate	6	66	0.24	0.08
Malate	6	68	0.20	0.09
Citrate	10	66	0.38	0.08
L-Ala ¹³	0	100	0.50	0.36
Citrate ^{*7}	10.1	100	0.48	NA ¹

¹ NA: not available. p^* is the partial pressure of CO₂ after absorption equilibrium.

Scheme 1. Proposed reaction mechanism between $[N_{2224}]$ [carboxylate]-nH₂O and CO₂.

also faster and more efficient CO_2 absorbents than methyldiethanolamine aqueous solutions (51.28 w/w%, $K = 0.066 \text{ min}^{-1}$) [19] widely used in industrial processes [20].

The CO₂ absorption capacities of all [N₂₂₂₄][CA]-nH₂O at a certain equilibrium partial pressure of CO₂ are also summarized in Table 2. Generally speaking, all samples exhibit large CO₂ absorption capacities at relatively low partial pressures, i.e., one mole of [N₂₂₂₄][butyrate]-1H₂O (cheap) absorbs 0.45 mol of CO₂ at 25 °C and 44 kPa, which is comparable to the CO₂ absorption capacity of [N₂₂₂₄][L-Ala] (expensive). It can be found that the solubility of CO_2 into $[N_{2224}]$ [mono-carboxylate]-nH₂O samples grows with the increasing length of the alkyl chain in the anion. The free volume between ions will increase if the alkyl chain in the anion is enlarged. However, for multicarboxylate species, such a trend does not exist probably because the interactions between the carbonyl groups are strong enough to prevent the affinity with CO₂. In addition, the conformation of the anions affects not only the physical parameters but also the absorption capacity of CO₂. [N₂₂₂₄]₂[fumarate]-6H₂O traps about 58% less CO₂ than [N₂₂₂₄]₂[maleate]-6H₂O, which indicates that the transconformation favors strong intermolecular hydrogen bonds between anions rather than the combination with CO₂ [21]. The small difference in the absorption capacity between [N₂₂₂₄]₃[citrate]-10H₂O and [N₂₂₂₂]₃[citrate]-10.1H₂O [9] confirms the conclusion that the cation plays a less important role in determining the solubility of gasses into ILs [8].

The large CO_2 absorption capacities of the mixtures are resulted from the carboxylate anions which are conjugated bases of corresponding weak acids, being the main driving force for the chemical reaction. Scheme 1 was claimed by Quinn [9] and it was found to be suitable for our case from the results of ¹³C NMR and ¹H NMR analysis for both CO_2 -free and CO_2 -treated samples (see Supplementary Data). The ¹³C NMR spectrum detects a new resonance at 159.604 ppm, to be the bicarbonate carbonyl carbon [9] while other features of the spectrum stay the same. Correspondingly, there is an extra resonance signal at 2.084 ppm in the CO_2 -saturated IL detected by ¹H NMR spectra.

4. Conclusion

From all aspects mentioned above, the ionic liquid analogs of $[N_{2224}][CA]$ -nH₂O are thought to be of significance for the industrial CO₂ capture due to the high absorption capacity, fast absorption rate and relatively low cost.

Acknowledgments

The authors are grateful for the financial support from National Natural Science Foundation (No. 21076101), Technological Support Project of Jiangsu Province (No. BE2010142) and Fundamental Research Funds for the Central Universities (No. 1114020504).

Appendix A. Supplementary data

Supplementary data to this article can be found online at doi:10. 1016/j.molliq.2011.12.006.

References

- [1] W.S. Broecker, Chinese Science Bulletin 51 (2006) 1018-1029.
- [2] Z. Yong, V. Mata, A.E. Rodrigues, Separation and Purification Technology 26 (2002) 195–205.
- [3] F. Karadas, M. Atilhan, S. Aparicio, Energy & Fuels 24 (2010) 5817–5828.
- [4] J. Huang, T. Ruther, Australian Journal of Chemistry 62 (2009) 298-308.

- [5] M.B. Kagg, A. Lindbrathen, Industrial and Engineering Chemistry Research 44 (2005) 7668–7675.
- [6] N.Y. Du, H.B. Park, G.P. Robertson, M.M. Dal-Cin, T. Visser, L. Scoles, M.D. Guiver, Nature Materials 10 (2011) 372–375.
- [7] E.D. Bates, R.D. Mayton, I. Ntai, J.H. Davis, Journal of the American Chemical Society 124 (2002) 926–927.
- [8] M.J. Muldoon, S.N.V.K. Aki, J.L. Anderson, J.K. Dixon, J.F. Brennecke, The Journal of Physical Chemistry. B 111 (2007) 9001–9009.
- [9] R. Quinn, J.B. Appleby, G.P. Pez, Journal of the American Chemical Society 117 (1995) 329–335.
- [10] Y. Matsukura, T. Okumura, R. Kobayashi, K. Oh-Ishiet, Chemistry Letters 39 (2010) 966–967.
- [11] L.A. Blanchard, Z.Y. Gu, J.F. Brennecke, The Journal of Physical Chemistry. B 105 (2001) 2437-2444.
- [12] J.M. Zhang, S.J. Zhang, K. Dong, Chemistry A European Journal 12 (2006) 4021–4026.
- [13] N. Hiyoshi, K. Yogo, T. Yashima, Chemistry Letters 37 (2008) 1266-1267.

- [14] Y.Y. Jiang, G.N. Wang, Z. Zhou, Y.T. Wu, J. Geng, Z.B. Zhang, Chemical Communications (2008) 505–507.
- [15] D.R. Macfarlane, J.M. Pringle, K.M. Johansson, S.A. Forsyth, M. Forsyth, Chemical Communications (2006) 1905–1917.
- [16] J.S. Wilkes, J.A. Levisky, R.A. Wilson, C.L. Hussey, Inorganic Chemistry 21 (1982) 1263–1264.
- [17] B. Rumpf, J. Xia, G. Maure, Industrial and Engineering Chemistry Research 37 (1998) 2012–2019.
- [18] J. Kumelan, A.P. Kamps, D. Tuma, J. Xia, G. Maurer, Journal of Chemical and Engineering Data 51 (2006) 1802–1807.
- [19] H. Yu, Y.T. Wu, Y.Y. Jiang, Z. Zhou, Z.B. Zhang, New Journal of Chemistry 33 (2009) 2385–2390.
- [20] R.J. Littel, G.F. Versteeg, W.P.M. Vanswaaij, Chemical Engineering Science 47 (1992) 2027–2035.
- [21] Y. Fukaya, Y. Iizuka, K. Sekikawa, H. Ohno, Green Chemistry 9 (2007) 1155-1157.