ACETYLENIC ALCOHOLS AND AMINES

OF THE DIPHENYL OXIDE SERIES

M. S. Shvartsbert, I. L. Kotlyarevskii,

UDC 542.91+547.362

G. I. Volgina, and Z. P. Trotsenko

It is known that relatively small changes in the structure of acetylenic compounds exert an important effect on their chemical properties. Thus, 4,4'-diethynyldiphenylalkanes unexpectedly react with ketones by the Favorskii reaction many times faster than do the corresponding monoacetylenes [1].

In the present paper we studied the behavior of the previously synthesized acetylenic derivatives of diphenyl oxide [2] in reactions involving the acetylenic hydrogen, and specifically the Favorskii, Iotsich and Mannich reactions. The reaction of 4-ethynyldiphenyl oxide (I) and 4,4'-diethynyldiphenyl oxide (II) with carbonyl compounds by the Favorskii reaction required several times less time than by the Iotsich reaction. Along with this, the yields of secondary alcohols in the latter case were higher (Tables 1 and 3). Acetophenone did not react with acetylene (I) under the selected conditions of the Favorskii reaction. (I) was easily and completely regenerated when tertiary acetylenic alcohols were vacuum-distilled with traces of KOH. In making an approximate estimate of the reactivity of acetylenes (I) and (II) in the Favorskii reaction we were unable to detect an important difference in their behavior, in contrast to the above mentioned case [1]. It was probably for this reason that we were unable to use this method to synthesize monohydric alcohol (III) from diacetylene (II), taken in large excess. Nevertheless, it can be obtained from benzophenone and the monosodium derivative of diacetylene (II) in liquid ammonia. Acetylenes (I) and (II) were also condensed with formaldehyde and various secondary amines by the Mannich reaction (Tables 2 and 4). A noticeable difference in their reactivity was not observed here. Diamines (XXXII)-(XXXVI) represent viscous noncrystallizing liquids that readily form crystalline dipicrates and dihydrochlorides, which can serve for their purification. Acetylenic alcohols (IV)-(X) and monoamines (XXII)-(XXVII) were hydrogenated on skeletal nickel at room temperature and atmospheric pressure to the corresponding saturated compounds (XI)-(XVII) and (XXVIII)-(XXXI).

$$C \equiv CCH_2NRR' \leftarrow \frac{HCHO, HNRR'}{Cu_3Cl_2} \leftarrow O - C \equiv CH$$

$$(XXII) - (XXVII) \downarrow \qquad (I)$$

$$CH_2CH_2CH_2NRR' \rightarrow CC$$

$$(XXVIII) - (XXXI)$$

$$CU_3Cl_2 \rightarrow CC$$

$$R' \rightarrow CC \equiv CC$$

$$R' \rightarrow CC \equiv CCH_2NRR' \leftarrow (II)$$

$$RR'NCH_2C \equiv C \rightarrow CC \equiv CCH_2NRR' \leftarrow (II)$$

$$RR'NCH_2C \equiv C \rightarrow CC \equiv CCH_2NRR' \leftarrow (II)$$

$$RC \equiv C \rightarrow CC \equiv CCH_2NRR' \rightarrow CC \equiv CCC$$

$$R' \rightarrow CC$$

$$CCCC$$

$$CCC$$

$$CC$$

Institute of Chemical Kinetics and Combustion, Siberian Section of the Academy of Sciences of the USSR. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 4, pp. 905-908, April, 1967. Original article submitted June 9, 1965.

TABLE 1

Hydrogenated alcohols	b.p., °C found, % empiri- calc., %	Hg) C H formula C H	IV 50 85.5 151-153 (1) 80,85 6,30 C ₁₋₁ 1 ₁₁ O ₂ 80,92 5,36 XI 79,5 165-166 (1) 79,64 7,80 C ₁₋ H ₂₀ O ₂ 79,65 7,86	XII 89,5 187-189 (1) 80,92 8,07 C ₂₀ H ₂₄ O ₂ 81,04 8,16	XIII 83,6 $184-185(2,5)$ 79,74 $8,02$ $C_{18}H_{28}O_{2}$ 79,96 $8,20$ XIV 92,1 $184-185$ (2) $80,82$ $8,72$ $C_{20}H_{36}O_{2}$ $80,49$ $8,78$	$218-220(2)$ 83, 27 6, 97 $C_{22}H_{22}O_{2}$ 82, 98 6, 96 183-185(2.5) 79, 64 8, 02 $C_{16}H_{22}O_{3}$ 79, 96 8, 20
	% ' pi	yie	79,5	89,5	83,6 92,1	85
	CIV	130	XI	XII	XIIIX	XXX XVI
	%	Ħ	6,36	68,89	6,81	5,77
	calc.,	C H C	80,92	82,15	81,17	84,05
	emp irí-	formula	C1-HInO2	$G_{20}\Pi_{10}O_{2}$	C18H18O2 C20H22O2	C22H18O2
shods	d, %	н	6,30	6,95	6,78	5,94
nic alc	foun	D	80,85	82,47	81,22	84,11
Acetylenic alcohols	yield, % b.p., °C found, % empiri- calc., % method / calc., %	Hg)	151—153 (1) M.D.	95.2 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	VI 52,4 47,5 $\frac{M_{\odot}}{190}$ 171(2.5) 81,22 6,78 $\frac{1}{120}$ 6,81,17 6,81 VII 48,4 80 190—193 (3) 81,92 7,30 $\frac{1}{120}$ 81,60 7,53	226—229 (1)
	% do	В	85,5	95,2	47,5	100
	yield	A	50	V 59	52,4	51,2
	į.	ON	<u> </u>	>	VI	VIII
	Ŗ,		CHI3	-(CiI2)s-	C ₂ H ₅	CeHs
	24		CH3	I	CH3	CH3

TABLE 2

A TANGOLOGY OF THE PARTY OF THE	CONTRACTOR OF THE PROPERTY OF	of the survey apply Apply (1) and (1)		Acetylenic amines	s			THE PERSON		Hydrogenated amines	mines		
2	;		%	b.p., °C		emp irí-	'N		%	b.p., °C	'N	empiri-	'N
3		No.	'pı	(b, mm of	% pu	cal	[•0	No.	ʻpI	(b, mm of	рu	cal	•0
			yie	Hg)	moi , N	formula	cal		λįς	Hg)	% noj	formula	cs]
—(CH ₂)5—	(₂) ₅ —	XXII	79	199—200 (2)	4,91	C20H21ON	4,81	4,81 XXVIII 74,6	74,6	190—192 (2)	5,00	$C_{20}H_{25}ON$	4,74
—CH2OH2OCH2CH2—	CH2CH2—	XXIII	8,18	197—199 (2)	4,78	C ₁₉ H ₁₉ O ₂ N	4,77	XXIX 73,2	73,2	199—200 (2,5) 4,69	4,69	$\mathrm{C_{19}H_{23}O_2N}$	4,71
CaHs	C_2II_5	XXIV	62	181—182 (2) *	5,11	$C_{19}H_{21}ON$	5,01	XXX	82,3	168—169 (2)	4,99	$\mathrm{C}_{19}\mathrm{H}_{25}\mathrm{ON}$	4,94
HOCH2CH2		AXX	96,7	M.p. 73—73,5	4,69	$C_{21}H_{21}O_3N$	4,50	l	1		١	I	{
				(ether)									
cyclo-C ₆ H ₃₁ cyclo-C ₆ H ₁₁	cyclo-C ₆ H ₁₁	XXVI	84,8	XXVI 84,8 M.p. 37—39†	ı	C ₂₇ H ₃₃ ON	1	-	1	ł	1	t	١
CH3	CH3	XXVII 50	20	163-168 (2)#	5,50	5,50 C ₁₇ H ₁₃ ON	5,57	XXXI 80		170—172 (4)	5,53	$5,53 \mid C_{17}H_{21}ON$	5,49

*Picrate, m.p. 140-141° (alcohol). Found %: N 10.98. $C_{25}H_{24}O_8N_4$. Calculated %: N 11.02. †Crude product; picrate, m.p. 172-172.5° (decomp.) (alcohol). Found %: N 8.90. $C_{33}H_{36}O_8N_4$. Calculated %: N 9.09 ‡Picrate, m.p. 135.5-136.5° (alcohol). Found %: N 11.85. $C_{23}H_{20}O_8N_4$. Calculated %: N 11.66.

TABLE 3

	Γ							
Ē	 77.012	5		Fou	Found, %	Empirical	Calcul	Calculated, %
r r r relu, %	 rielu, 7	.ci	м.р., С	C	H	formula	ပ	H
CH ₃ CH ₃ 79.4*	 79.4*	I	141.5-142.5	79.24	6.74	6.74 C ₂₂ H ₂₂ O ₃	79.01	6.63
$-(CH_2)_5$ 94.3	94.3		138-138.5	80.86	7.42	7.42 C ₂₈ H ₃₀ O ₃	81.12	7.30
-			(petroleum			7		
		_	ether)					
CH_3 C_2H_5 > 90 \dagger	> 90 ↓		119-119.5	79.72	7.12	$C_{24}H_{26}O_3$	79.53	7.23
CH ₃ (CH ₃) ₃ C 75			107.5-109	80.56	8.38	$C_{28}H_{34}O_{3}$	80.34	8.19

*Yield 69.7% by the lotsich reaction.

TABLE 4

Com-	f	ř	Yield,	Character-	Ç	Found, %	1, %	Empirical	Calculated, %	ted, %
pound No.	¥	¥	%	ized as	.M.p., C	N	CI	formula	N	C1
пххх	(CH ₂)5	1	87.6	Dihydro-	265.5-266	1	14.56	$C_{28}H_{34}ON_2Cl_2$	1	14.61
				chloride	(decomb.)					
					(alcohol)					
				Dipicrate	145-146	12.85	į	C40H38O15N8	12.87	ı
					(C ₃ H ₇ OH)					
mxxx	-CH2CH2OCH2CH2-	i	86.3	Dihydro-	245.5-247.5	ı	14.42	$C_{26}H_{30}O_3N_2Cl_2$	ı	14.49
	1			chloride	(decomb.)					
					(alcohol)			-		
-				Dipicrate	193.5-194	12.66	ı	$C_{38}H_{34}O_{17}N_8$	12.81	1
					(decomb.)					
-					(alcohol)					
XXXXIV	C_2H_5	C_2H_5	93.5	Base	!	7.41	ľ	C ₂₆ H ₃₂ ON ₂	7.21	Í
				Dipicrate	170.5-171					
					(decomb.)	13.38	ı	C38H38O15N8	13.23	ı
					(C ₃ H ₇ OH)		-			
XXXX	носн2сн2	HOCH2CH2	80.2- 86.5	Base	ſ	6.24	1	C ₂₆ H ₃₂ O ₅ N ₂	6.19	1
XXXVI	CH ₃	$_{ m CH_3}$	35	Dihydro-	239-240	ı	17.26	C ₂₂ H ₂₆ ON ₂ Cl ₂	ı	17.49
				chloride	(decomb.)*			•		

*In a sealed capillary.

EXPERIMENTAL

Preparation of 1-p-Phenoxyphenyl-2-(1'-hydroxycyclohexyl)acetylene (V). By the Iotsich Reaction (Method A). To the C_2H_5MgBr , obtained from 1.3 g of Mg and 6 g of C_2H_5Br in $\overline{45}$ ml of absolute ether, was added 10 g of acetylene (I) in 30 ml of ether. After stirring for 12-15 h, the heavy layer of the Iotsich complex was separated. Then, at 0°, was gradually added 4 g of cyclohexanone in 5-10 ml of ether and the reaction mass was stirred at 20° for another 1 to 2 days. The mixture was decomposed in conventional manner. Distillation gave 2-3 g of starting acetylene (I) and 7 g (59%) of acetylenic alcohol (V).

By the Favorskii Reaction (Method B). To a suspension of 8.6 g of powdered KOH in 50 ml of absolute ether, with vigorous stirring and ice cooling (0-5°), was added 10 g of acetylene (I) in 30 ml of ether in 15 min, and 6.9 g of cyclohexanone in 5-30 min. After stirring for 2 h the solid reaction mass was treated with water, the ether layer was separated, and the aqueous alkaline layer was extracted with ether. Vacuum-distillation gave 14.3 g (95.2%) of alcohol (V). In a similar manner were synthesized acetylenic alcohols (IV)-(X) using methods A and B (see Table 1), and glycols (XVIII)-(XXI) using method B (see Table 3).

Preparation of p-Ethynyl-p'-(3-hydroxy-3,3-diphenyl-1-propynyl)diphenyl Oxide (III). To a solution of 6.5 g of diacetylene (II) in a mixture of ml of absolute ether and 500 ml of liquid NH₃ was added in 30 min 0.7 g of Na in 300 ml of liquid NH₃. Then an ether solution of 5 g of benzophenone was added to the reaction mixture, after which the mixture was stirred for 3 h, followed by the addition of 300 ml of ether and 30 ml of water. After removal of the NH₃ the ether solution was washed with water, dried over potassium carbonate, and the solvent was distilled off. The residue (11 g) was chromatographed on an Al₂O₃ column, and the products were eluted in sequence with a mixture of benzene and petroleum ether (1:1 and 2:1), ether, and CH₃OH. We isolated 4.1 g of crude alcohol (III) with m.p. $100-117^{\circ}$, which was recrystallized from CH₃OH; yield 3 g (27.3%), m.p. $117-117.5^{\circ}$. Found %: C 86.99; H 4.92. $C_{29}H_{20}O_{2}$. Calculated %: C 86.99; H 5.03.

Preparation of 1-N-Piperidyl-3-p-phenoxyphenyl-2-propyne (XXII). A mixture of 1.9 g of acetylene (I), 0.94 g of piperidine, 0.4 g of paraform and 0.01 g of Cu_2Cl_2 in $\overline{10}$ ml of dioxane was refluxed for 2 h, after which it was diluted with 10 ml of ether and the amine (XXII) was extracted with dilute HCl solution. The HCl solution was washed with ether and then made alkaline with a mixture of concentrated NaOH solution and ice. The obtained oil was extracted with ether and then distilled. The yield of amine (XXII) was 2.3 g (79%). Acetylenic amines (XXIII) -(XXVII) and (XXXII)-(XXXVI) were synthesized in a similar manner (see Tables 2 and 4).

CONCLUSIONS

A number of alcohols and amines — derivatives of 4-ethynyldiphenyl oxide and 4,4'-diethynyldiphenyl oxide — were synthesized. Important differences in the reactivity of the starting mono- and diacetylenes in the Favorskii and Mannich reactions were not detected.

LITERATURE CITED

- 1. S. I. Shergina, A. S. Zanina, Z. P. Trotsenko, and I. L. Kotlyarevskii, Izv. AN SSSR, Ser. Khim., 1965, 574.
- 2. I. L. Kotlyarevskii, M. S. Shvartsberg, G. I. Volgina, and S. F. Vasilevskii, Izv. AN SSSR, Ser. Khim., 1965, 1704.