Note

Synthesis and properties of 2,3,4,6-tetra-O-acetyl-5-thio- α - and - β -D-glucopyranosyl bromide*

WALTER KORYTNYK, STEFICA VALENTEKOVIC-HORVATH, AND ONDA DODSON-SIMMONS Department of Experimental Therapeutics, Grace Cancer Drug Center, Buffalo, NY 14263 (U.S.A.) (Received September 18th, 1981; accepted for publication, April 6th, 1982)

5-Thio-D-glucopyranose¹ has interesting biochemical and pharmacological properties² and has become commercially available. We now describe the synthesis and some properties of the crystalline, acetylated glycosyl bromides.

Reaction of 1,2,3,4,6-penta-O-acetyl-5-thio- $\alpha\beta$ -D-glucopyranose³ (1 and 2) with 30% hydrogen bromide in acetic acid gave a mixture of the anomeric glycosyl bromides, from which the α -bromide 3 (main product) and β -bromide 4 were isolated crystalline by chromatography on silica gel. This behaviour contrasts with that well known for 1,2,3,4,6-penta-O-acetyl- $\alpha\beta$ -D-glucopyranose, which gives only the α -glycosyl bromide. An oily 2,3,4,6-tetra-O-acetyl-5-thio-D-glucopyranosyl bromide was used in the synthesis of 5-thio-D-glucopyranosyl phosphate⁴. Since anomeric glycosyl halides have not hitherto been reported for thio sugars, their properties are of interest.

The structures of 3 and 4 were confirmed by ¹H- and ¹³C-n.m.r. spectroscopy. Table I compares ¹H-n.m.r. data for the 5-thio-D-glucose derivatives I-4 with those for 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide⁵ (5). The $J_{2,3}$, $J_{3,4}$, and $J_{4,5}$ values are all in the range of 9.0–10.2 Hz, as expected for *trans*-diaxial protons and consistent with ⁴C₁(D) conformations. A ⁴C₁(D) conformation in the crystal state has been confirmed⁶ for 1. The higher $J_{1,2}$ values for 3 and 4 as compared to 1 and 2 reflect the lower electronegativity of Br-1 as compared to AcO-1. A similar effect may be invoked to explain why the $J_{1,2}$ value for 5 is higher than that for 3, since sulfur is less electronegative than oxygen. This effect of the sulfur atom is most pronounced on the anomeric protons, for example, H-1 of 3 resonates 1 p.p.m. to higher field than H-1 of the oxygen analogue 5. The relatively low-field positions of the H-3 resonances for the α -bromides 3 and 5 may be attributed to the deshielding effect of Br-1, which is syn-diaxial to H-3.

^{*}Presented in part at the Xth International Symposium on Carbohydrate Chemistry, July 1980, Sydney, Australia: Abstracts, p. 31.

TABLE I

۱H	-N.M.R.	DATA	FOR	5-THIO-D	-GLUCOSE	DERIVATIVES ^a
----	---------	------	-----	----------	----------	--------------------------

Com-	Chemical shifts (δ) and multiplicities of signals								
pound	H-1	H-2	H-3	H-4	H-5	H-6	Н-б′	OAc	
1	6.11 d	5.21 q	5.41 t	5.30 t	3.56 o	4.35 q	4.04 q	2.20, 2.09, 2.06, 2.03, 2.00	
2	5.92 d	5.39 t	5.12 ±	5.33 t	3.33 o	4.35 q	4.15 q	2.09, 2.08, 2.04, 2.03, 2.01	
3	5.58 d	4.93 g	5.58 t	5.33 t	3.71 o	4.49 q	4.13 q	2.10, 2.09, 2.06, 2.03	
4	4.76	5.40 t	5.05 t	5.38 t	3.32 o	4.31 q	4.13 q	2.10, 2.09, 2.05, 2.01	
5°	6.62 d	4.82 q	5.59 t	5.14 t	4.28	4.29 q	4.16 q	2.09, 2.03, 2.01	
	Coupling constants (Hz) ^b								
	$J_{1,2}$	J2.3	J _{3,4}	J4,5	J _{5.6}	J5,8.	Je.e.		
1	2.9	9.7	9.7	10.2	4.7	2.9	12		
2	8.5	9.0	9.0	9.5	5.5	3.7	12		
3	3.5	9.5	9.5	10.2	4.7	2.9	12		
4	10.0	9.5	9.5	9.0	5.5	3.5	12		
5°	3.9	10.0	9.5	9.5	~4.0	~6.0	~12		

^a100 MHz (CDCl₃, internal Me₄Si). ^bFirst order. ^c2,3,4,6-Tetra-O-acetyl-α-D-glucopyranosyl bromide from ref. 5.

TABLE II

Compound	C-1	C-2	C-3	C-4	C-5	С-б
	$J_{1,H-1}$	$J_{2,H-2}$	$J_{3,H-3}$	$J_{4,H-4}$	$J_{5,H-5}$	J _{6.H-6}
1	70.5	71.70	73.0 ^b	70.5	39.8	60.9
	162.0	154.8	162.0	154.3	143.1	151.2°
2	71.4	73.20	72.7	71.10	41.5	61.7
	164.8	157.3	159.3	156.5	141.5	149.8°
3	52.4	74.1	71.6 ^b	71.20	41.7	60.5
	167.2	149.7	145.6	145.6	141.9	151.2°
4	43.1	75.9	73.4 ^b	71.40	45.8	60.7
	166.7	167.4	157.1	159.4	144.0	150.6°
5 ^d	86.5	70.4 ⁶	72.0 ^b	67.0	70.0°	60.8
	185	148	148	150	150	147

¹³C-chemical shifts and ¹³C-¹H coupling constants of 5-thio-d-glucopyranose derivatives^a

"Carbon-proton coupling constants for 1 and 2 were determined directly, whereas those of 3 and 4 were determined by an indirect method¹⁹ and hence are subject to greater error (see Experimental). ^bAssignments may be reversed. ^cAn average value of the two $J_{6,H-6}$ coupling constants. ^dValues from ref. 7.

The ¹³C-n.m.r. data for 1 to 4 are compared with those of 2,3,4,6-tetra-Oacetyl- α -D-glucopyranosyl bromide⁷ (5) in Table II. Substitution of S for O dramatically affects the ring-carbon resonances, particularly those of C-1. Thus, for the β -bromide 4, the C-1 signal has the highest chemical shift. Likewise, the C-1,H-1 coupling constants are much smaller for the sulfur derivatives, as expected from the decreased electronegativity of sulfur. The difference between $J_{C^{-1},H^{-1}}$ for the anomeric bromides (3 and 4) and acetates (1 and 2) is only 1.5 and -2.8 Hz, respectively, whereas it is 10 Hz for the oxygen analogues and hence can be used for anomeric assignment⁷. Similar observations have been reported by Perlin *et al.*^{9,10}.

The α -bromide 3 has λ_{max}^{EtOH} 246 nm (ε 1,840), and the β anomer 4 λ_{max}^{EtOH} 208 nm (ε 680), and these absorptions should be useful for diagnostic purposes. The 246-nm band in the α anomer may reflect overlap of one of the C-1–Br antibonding orbitals (*e.g.*, π^*_{CBr}) with the axially oriented, lone-pair orbital (n_s) of the sulfur. Theoretical treatment indicates that the overlap of these bonding and antibonding orbitals is responsible for the anomeric effect, and that it is smaller for sulfur than for oxygen due to the longer C–S bond¹¹. Our observation that some β -bromide 4 was formed and that it did not mutarotate, whereas the oxygen analogue¹² and other β -halides¹³ do, confirms a decrease in the anomeric effect for the sulfur analogues. For 1 in the crystal state, the C-1–S and C-5–S bonds are not shortened by the anomeric effect^{6,14}.

The reaction of glycosyl bromides with silver acetate in boiling benzene, or in acetic acid or acetic anhydride at room temperature, is subject to neighboringgroup participation and *trans*-acetates are formed from *trans*-halides^{13,15}. When the α -bromide 3 was treated with silver acetate in boiling benzene, a 1:1 mixture of 1 and 2 was obtained. The β -bromide 4 reacted faster than 3, yielding 28% of a 1:1 mixture of 1 and 2 together with 1,3,4,6-tetra-O-acetyl-5-thio- α -D-glucopyranose (6) and other products. The structure of 6 was indicated by the n.m.r. data. For a solution in CDCl₃, the hydroxyl doublet collapsed to a singlet on irradiation of the H-2 resonance and was therefore due to HO-2 (see Experimental).

The absence of stereochemical control in the displacement reactions of 3 and 4 could be due to stereoelectronic factors¹⁶. The interaction of the unshared electron orbitals on the sulfur atom with the antibonding orbital is attenuated because of the greater C-S distance. Thus, the lower solvolysis rate of 2,3,4-tri-O-acetyl-5-thio- α -D-xylopyranosyl bromide as compared to the corresponding oxygen analogue¹⁷ could be due to the stereoelectronic effect. An ineffective participation by the lone-pair orbital could lead to diminished neighboring-group participation¹⁸ of AcO-2 in 3. Although some dioxenium ion 7 is formed during the displacement reactions of 4, the regiospecificity of its opening has been lost as shown by the formation of 6 due to traces of water in the reaction mixture. The diminished lone-pair participation in the ring opening of the dioxenium ion may also be responsible for the multiple products obtained by Shin and Perlin⁹ on treatment of 2,3,4,6-tetra-O-acetyl-5-thio- α -D-galactopyranosyl bromide with methanol and silver carbonate.

EXPERIMENTAL

General. — Melting points (uncorrected) were determined by the capillary method. I.r. spectra were obtained with a Perkin-Elmer 457 spectrophotometer, and ¹H- and ¹³C-n.m.r. spectra (internal Me₄Si) with a Varian XL-100 instrument operating in the F.t. mode at 100 and 25.2 MHz, respectively; ¹³C peaks were assigned by off-resonance proton decoupling¹⁹. Optical rotations were determined with a Perkin-Elmer 141 polarimeter. T.l.c. was performed on Merck MF-254 silica gel, with detection by u.v. light or by charring with sulfuric acid.

Tetra-O-acetyl-5-thio-D-glucopyranosyl bromides (3 and 4). — To a solution of 1,2,3,4,6-penta-O-acetyl-5-thio- $\alpha\beta$ -D-glucopyranose (200 mg, 0.4 mmol) in dichloromethane (2 mL) was added 30% HBr in acetic acid (0.5 mL). The solution was stored at 0° for 24 h, the solvent was evaporated, and traces of acetic acid were removed by repeated evaporation of toluene from the residue; t.l.c. (ether-light petroleum, 2:1) then indicated products with $R_{\rm F}$ 0.50 and 0.37. The mixture was eluted from a column (1.3 × 17 cm) of silica gel with ether-light petroleum (2:1), to give the α -bromide (13 mg) and a mixture (146 mg; combined yield of 3 and 4, 76%). Recrystallisation of the mixture from ether-light petroleum gave needles of the β -bromide 4, m.p. 102-104°, $[\alpha]_{\rm D}^{20}$ -6.5° (c 1, chloroform); $\nu_{\rm max}^{\rm KBr}$ 1735 (ester C=O), 1222 (C-O, acetates), and 1030 cm⁻¹ (C-O esters).

Anal. Calc. for C₁₄H₁₉BrO₈S: C, 39.35; H, 4.48. Found: C, 39.50; H, 4.55.

The mother liquor from the above recrystallisation (enriched in the fastermoving α anomer) was eluted from a column (1.3 × 17 cm) of silica gel with etherlight petroleum (2:1), to give 3 (55 mg; R_F 0.5) and an $\alpha\beta$ -mixture (28 mg).

Recrystallisation of the *a*-bromide from hexane gave material with m.p.

59–61°, $[\alpha]_{D}^{20}$ +227° (c l, chloroform); v_{max}^{KBr} 1735 (ester C=O), 1222 (C-O, acetates), and 1030 cm⁻¹ (C-O, esters).

Anal. Found: C, 39.38; H, 4.45.

Reactions with silver acetate. — (a) A solution of 3 (35 mg, 0.08 mmol) in dry benzene (10 mL) was boiled under reflux for 1 h in the presence of silver acetate (26 mg, 0.16 mmol), filtered, and concentrated. The residue was eluted from silica gel (5 g) with ether-light petroleum (2:1), to give the $\alpha\beta$ -penta-acetate (27 mg, 84%), the ¹H-n.m.r. spectrum of which contained doublets for H-1 α at δ 6.11 ($J_{1,2}$ 2.9 Hz) and H-1 β at δ 5.92 ($J_{1,2}$ 8.5 Hz); $\alpha\beta$ -ratio, 1:1.

(b) A solution of 4 (35 mg, 0.08 mmol) in dry benzene (10 mL) was boiled under reflux for 1 h in the presence of silver acetate (26 mg, 0.18 mmol). Work-up and chromatography, as described in (a), gave the $\alpha\beta$ -penta-acetate (9 mg, 28%; $\alpha\beta$ -ratio, 1:1), and a mixture (13 mg, 44%) of 1,3,4,6-tetra-O-acetyl-5-thio- α -Dglucopyranose (6) and an unidentified product (probably 2,3,4,6-tetra-O-acetyl-5thio-D-glucopyranose). Crystallisation of the mixture from ether-light petroleum gave 6 (6 mg), m.p. 131-133°, $[\alpha]_D^{22} + 268°$ (c 1, chloroform). N.m.r. data (CDCl₃): δ 6.02 (d, 1 H, $J_{1,2}$ 3.5 Hz, H-1), ~4.1 ($J_{2,3}$ 9 Hz, H-2 overlapped by H-6'), 5.25 (q, 1 H, $J_{3,4}$ 7 Hz, H-3), 5.36 (t, 1 H, $J_{4,5}$ 9 Hz, H-4), 3.50 (m, 1 H, $J_{4,5}$ 9 Hz, H-5), 4.41 (q, 1 H, $J_{5,6}$ 5 Hz, H-6), 4.06 (q, 1 H, $J_{6,6}$. 12 Hz, H-6'), 2.07, 2.08, 2.11, 2.20 (4 s, 12 H, 4 Ac), and 2.39 (d, 1 H, $J_{2,OH}$ 8 Hz, collapsed to a s on irradiation at δ 4.1, exchangeable with D₂O, HO-2).

Anal. Calc. for C14H20O9S: C, 46.15; H, 5.53. Found: C, 46.31; H, 5.33.

ACKNOWLEDGMENT

This study was supported by USPHS Grants CA-08793 and CA-13038.

REFERENCES

- 1 R. L. WHISTLER AND W. C. LAKE, Methods Carbohydr. Chem., 6 (1972) 286-296.
- 2 M. CHEN AND R. L. WHISTLER, Misc. Pap. Landbouwhogesch. Wageningen, 12 (1976) 17-28.
- 3 U. G. NAYAK AND R. L. WHISTLER, J. Org. Chem., 34 (1969) 97-100.
- 4 R. L. WHISTLER AND J. H. STARK, Carbohydr. Res., 13 (1970) 15-21.
- 5 D. HORTON AND W. N. TURNER, J. Org. Chem., 30 (1965) 3387-3394.
- 6 W. KORYTNYK, M. HANCHAK, S. VALENTEKOVICH-HORVATH, J. VITALI, AND R. PARTHASARATHY, Abstr. Int. Symp. Carbohydr. Chem., Xth, Sydney, Australia, 1980, p. 31.
- 7 K. BOCK AND C. PEDERSEN, J. Chem. Soc., Perkin Trans. 2, (1974) 293-297.
- 8 B. COXON, Ann. N.Y. Acad. Sci., 222 (1973) 952-970.
- 9 J. E. N. SHIN AND A. S. PERLIN, Carbohydr. Res., 76 (1979) 165-176.
- 10 V. S. RAO AND A. S. PERLIN, Carbohydr. Res., 92 (1981) 141-148.
- 11 S. WOLFE, M.-H. WHANGBO, AND D. J. MITCHELL, Carbohydr. Res., 69 (1979) 1-26.
- 12 F. WEYGAND, H. ZIEMANN AND H. J. BESTMANN, Chem. Ber., 91 (1958) 2534-2537.
- 13 W. KORYTNYK AND J. A. MILLS, J. Chem. Soc., (1959) 636-649.
- 14 C. ROMERS, C. ALTONA, H. R. BUYS, AND E. HAVINGA, Top. Stereochem., 4 (1969) 39-97.
- 15 R. S. TIPSON, J. Biol. Chem., 130 (1939) 55-59.
- 16 R. U. LEMIEUX, K. B. HENDRIKS, R. V. STICK, AND K. JAMES, J. Am. Chem. Soc., 97 (1975) 4056-4062.
- 17 R. L. WHISTLER AND T. VAN ES, J. Org. Chem., 28 (1963) 2303-2304.
- 18 R. U. LEMIEUX AND O. HINDSGAUL, Carbohydr. Res., 82 (1980) 195-206.
- 19 J. C. MACDONALD AND M. MAZUREK, J. Magn. Reson., 28 (1977) 181-190.