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Abstract—The preparation of Wang resin bound a-diazo-b-ketoesters is described. These highly useful intermediates were used for
the synthesis of a series of heterocycle libraries, which were obtained from the resin using TFA cleavage. In addition, a novel route
for the synthesis of oxazolones using an N–H insertion strategy is disclosed.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Combinatorial and parallel synthetic methodology pro-
vides the main driving force for the preparation of com-
pound libraries for application in lead discovery and
high throughput medicinal chemistry research within
the pharmaceutical industry.1 Many different formats
of high throughput chemistry are available and solid-
phase organic synthesis (SPOS) plays a pivotal role
given the convenient handling of large numbers of syn-
thetic intermediates.2 However, SPOS is not without
its drawbacks since there is often extended development
times required to optimize new solid-phase chemical
reactions.

Research from our own group has harnessed the syn-
thetic utility of diazocarbonyl compounds3 in order to
prepare a plethora of biologically privileged �lead-like�
scaffolds. This program has centered on the application
of polymer-bound a-diazo-b-ketoesters4 as key building
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blocks for the diversity-oriented synthesis (DOS)5 of a
series of heterocycle libraries, including oxazoles,6 in-
doles,7 imidazolones and imidazoles,8 and pyrazinones
and pyrazines.9

This work relied upon a hydroxypentyl JandaJel resin10

as the support for the polymer-bound a-diazo-b-keto-
esters; this support is very robust and transesterification
or Lewis acid-assisted amidation11 cleavage reactions
were used to obtain the products from the support,
rather than trifluoroacetic (TFA) acidolysis, which is
commonly employed when using classical linker
strategies.12

During our studies preparing heterocycles using N–H
insertion strategies, we found that phenyl carbamate 2
is an excellent coupling partner when reacted with diazo-
carbonyls (Scheme 1). Moreover, treatment of this inter-
mediate 3 with mild base afforded the ring-closed
oxazolone products 4. However, when this chemistry
was applied to a solid-phase approach, the aluminum
amide cleavage conditions failed to give the desired oxa-
zolone products, and only the ring-opened urea prod-
ucts 5 were formed. Although we have been able to
develop the chemistry of the urea formation to give
highly useful methodology,13 we were still intrigued with
the prospect of preparing libraries of oxazolones given
their potential to yield compounds of biological
significance.14
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Table 1. Solid-phase synthesis of heterocycles from 8

R1 9 Puritya

(yield)b

10 Puritya

(yield)b

11 Puritya

(yield)b

Me 99 (43) 96 (47) 99 (61)

BnO(CH2)3 76 (18) 86 (22) 62 (11)
tBuO(CH2)3 96 (31)c 85 (23)c 99 (28)c

AcNH(CH2)5 98 (49) d d

NCBZ 59 (25) 24 (5) 26 (4)

Ph 88 (20) 39 (12) 68 (37)

a Purity assessed by HPLC at 254 nm.
b Yield of product after purification by preparative HPLC; yield based

upon loading of 8.
c tBu group removed during cleavage.
d Complex mixture of products.
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Scheme 1. Reagents and conditions: (a) Rh2Oct4 (2 mol %), 2

(3 equiv), toluene–dichloroethane 1:1, 80 �C, 1 h; (b) iPr2EtN (3 equiv),

toluene, reflux, 6 h; (c) R1R2NH (3 equiv), AlMe3 (3 equiv), toluene,

100 �C, 16 h.
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In light of the incompatibility of the Lewis acid-assisted
amidation reaction with the oxazolone scaffolds, an
alternative linker strategy was sought. Wang resin
bound substrates were investigated and found to be
ideal substrates for oxazolones carboxylic acid synthesis.
The Wang bound b-ketoesters were synthesized using a
transesterification reaction. A mixture of Wang resin 6
and tBu-b-ketoesters 7 was heated to reflux in toluene,
after washing, standard diazotransfer conditions
provided the corresponding Wang resin-bound a-diazo-
b-ketoesters 8. Next, the key building blocks 8 were
treated with phenyl carbamate 2 in the presence of rho-
dium octanoate catalyst to give the N–H insertion prod-
ucts that were treated sequentially with iPr2EtN and
TFA to provide oxazolones 9.15 Key building blocks 8
were also used to synthesize a series of oxazoles 10
and imidazolones 11 using an N–H insertion/cyclodehy-
dration strategy (Scheme 2).16 For the oxazole synthesis,
a primary amide was used as the insertion component,
the heterocycle ring was closed using Burgess reagent,
and the oxazoles 10 were obtained by cleavage with
TFA. In the case of the imidazolones, a primary urea
was used as the insertion component, the product from
this reaction was treated with TFA to achieve both cycli-
O

OH

O R1

OO

a

6
7

Scheme 2. Reagents and conditions: (a) (i) 7 (3 equiv), toluene, reflux, 16 h; (i

(b) (i) Rh2Oct4 (2 mol %), 2 (3 equiv), toluene, 70 �C, 1 h; (ii) iPr2EtN (3 eq

PhCONH2 (3 equiv) toluene–dichloroethane 1:1, 80 �C, 1 h; (ii) Burgess re

PhNHCONH2 (3 equiv) toluene–dichloroethane 1:1; 80 �C, 1 h; (ii) TFA, rt
zation to the imidazolone and cleavage from the resin in
one pot. Each of the oxazolones 9, oxazoles 10, and imi-
dazolones 11 cleavage products were assessed for crude
purity by HPLC and then purified by preparative
HPLC. The results from this study are presented in
Table 1.

In the case of the oxazolones 9, the majority of the
desired products were isolated in excellent purity and
good yield. When tBu protected alcohols were
employed, each of the products were obtained as the
deprotected alcohols. In addition, when benzyl ether
and benzyl carbamate (CBZ) protected side groups
were employed, slightly inferior purities and yields were
obtained for the desired cleavage products, presumably
because of their premature cleavage during prolonged
exposure to neat TFA. Finally, an interesting finding
was observed during the cleavage/cyclization of one of
the imidazolones (Scheme 3). In this case, the major
cleavage product was imidazolone 16 (19%) rather than
imidazolone acid 13 (4%); the cyclization reaction can
occur both prior to and after cleavage from the resin.
However, in the latter case, the b-ketoacid cleavage
product 14 can undergo acid catalyzed decarboxylation
to give ketourea 15 before ring closure to imidazolone
16.
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i) dodecylbenzenesulfonyl azide (3 equiv), Et3N (3 equiv), toluene, 24 h;

uiv), toluene, reflux, 6 h; (iii) TFA, rt, 3 h; (c) (i) Rh2Oct4 (2 mol %),

agent (3 equiv), THF, lw, 100 �C, 10 min; (iii) TFA, rt, 3 h; (d) (i)

, 3 h.
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Scheme 3. Reagents and conditions: (a) TFA, rt 3 h.
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2. Conclusions

In summary, a novel and efficient N–H insertion strat-
egy for the synthesis of oxazolones from diazocarbonyls
has been devised. Additionally, in order to synthesize
oxazolone arrays using solid-phase synthetic methodol-
ogy, an alternative TFA labile linker strategy was devel-
oped; the Wang resin-bound diazocarbonyl substrates
were also shown to be of great utility in the preparation
of oxazoles and imidazolones.
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