

Fig. 2. Kinetic curves for adsorption γ_{α} (3) and adsorption deformation γ_{α} for zeolite NaA granulated without binder (1) and with 10% kaolin as binder (2) for the NaA-trans-2-butene system at 30°C.

3. Intracrystalline diffusion was studied for the NaA-trans-2-butene system. The kinetic curves for samples with and without binder have some differences, which have no influence on the equilibrium deformation.

LITERATURE CITED

- 1. O. K. Krasil'nikova and M. Kocirik, Izv. Akad. Nauk SSSR, Ser. Khim., No. 11, 2424 (1987).
- 2. O. K. Krasil'nikova and M. Kocirik, Izv. Akad. Nauk SSSR, Ser. Khim., No. 4, 735 (1988).
- 3. O. K. Krasil'nikova and M. Kocirik, Izv. Akad. Nauk SSSR, Ser. Khim., No. 4. 740 (1988).
- 4. V. F. Kononyuk, Chemical Sciences Candidate's Dissertation, Inst. Fiz. Khim. Akad. Nauk SSSR, Moscow (1972).
- 5. K. G. Krasil'nikov and N. N. Skoblinskaya, Dokl. Akad. Nauk SSSR, 184, No. 1, 151 (1969).
- 6. T. N. Ivanova, O. K. Krasil'nikova, A. I. Sarakhov, and M. M. Dubinin, Izv. Akad. Nauk SSSR, Ser. Khim., No. 4, 955 (1977).
- 7. R. Broddak, A. M. Voloshchuk, V. A. Gorlov, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 3, 503 (1985).

NEW CROWN ETHER WITH INDOXYL GROUPS

V. A. Popova and I. V. Podgornaya

UDC 542.91:547.898:547.74

The introduction of functional substituents into the benzo rings of dibenzo-18-crown-6 may lead to new complexing agents with useful properties [1]. In the present work, we described the synthesis of a crown ether with indoxyl groups.

The reaction of diaminodibenzo-18-crown-6 (I) with chloroacetic anhydride may give two products depending on the conditions: 4,5'-bis(chloroacetylamino)- (II) and 4,5'-bis-(glycine hydrochloride)dibenzo-18-crown-6 (III). Crown ether (II) is formed at ~ 20°C in dioxane. Product (III) was obtained as a betaine when the reaction was carried out in absolute ethanol at reflux. Upon subsequent cyclization in the presence of water, (III) gives 8,9;17,18-bis-(indoxyl)-18-crown-6 (IV).

Crown ether (II) is a colorless crystalline compound with mp 264-265°C, which is soluble in DMF but insoluble in water, ethanol, and ether. The IR spectra of (II) have characteristic bands for a secondary amide [2] (ν , cm⁻¹): 1652 s, 1628 m (amide(I)), and 1575 m (amide (II)) as well as NH group stretching bands at 3290 m/s, 3170 m, and 3120 m. The presence of chlorine was confirmed by the elemental analysis and the relatively strong IR band for the C-Cl bond at 750 cm⁻¹. Product (II) was also obtained by the reaction of (I) with ClCH₂COCl, which confirms

Institute of Chemistry, Urals Branch, Academy of Sciences of the USSR, Sverdlovsk. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 1160-1162, May, 1989. Original article submitted May 12, 1988.

TABLE 1. Characteristics of Compounds Synthesized

Com-	Com- Ms oc		Solvent	Fot	Found, %					Calculated, %	ted, %	
punod) (A.,	soluble in	insoluble in	ວ	н	z	IJ	Chemical formula	υ	Щ	z	B
(11)	264265	DMF; DMSO	Water, ethanol, ether,	53,04	5,31	5,20	12,98	Cz,Hz8NzO8Clz	53,04	5,20	5,15	13,05
(III)	125-126	Ethanol, DMF	Acetone, benzene, di-	51,23	5,46	5,00	12,42	C24H28N2O6Cl2-H2O	51,34	5,40	4,99	12,63
(V)	212-213	DMF	Water, ethanol	59,04	6,01	6,18	ı	C22H26N2O8	59,18	5,89	6,26	i
<u> </u>		Dioxane, DMF	warer, ethanol	8/,/0	07,40	4,37	I	C36H34N2O10	67,24	5,06	4,13	I
(VI)	249-250	cutorororm	Water, ethanol, ether,	00,40	5,62	5,14	1	C28H30N2O10	60,70	5,46	5,05	1

the proposed structure according to Elderfield [3].

Crown ether (III) is a colorless crystalline compound with mp 125-126°C, which is soluble in absolute ethanol and DMF but insoluble in dioxane, acetone, and chloroform. The IR spectrum shows bands (ν , cm⁻¹) in the 2400-2700 range from the NH₂⁺ group at 2649 m and 2140 s and for the carboxy anion at 1640 m and 1615 m. Qualitative analysis for chlorine and elemental analysis of (III) indicated the presence of chlorine but there was no IR band at 750 cm⁻¹. This permits us to represent the structure of the substituent as a betaine dihydrochloride. Ring closure occurs upon the addition of water or aqueous ethanol to (III) giving crown ether (IV) with indoxy groups, mp 212-213°C. Product (IV) gives a dark red color test with FeCl₃ and and undergoes reactions, which are usual for ketones and indoxyl, especially condensation [3]. The product of the condensation of (IV) with salicylaldehyde, namely 8,9;17,18-bis(salicylindogenide)-18-crown-6 (V) was isolated as yellow needles. The reaction of (IV) with acetic anhydride gave 8,9;17,18-bis[indoxyl(N-acetyl)]-18-crown-6 (VI) as colorless crystals. The structures and compositions of these compounds were confirmed by elemental analysis and IR spectroscopy.

EXPERIMENTAL

The IR spectra were taken on a UR-20 spectrometer in vaseline mull and in KBr pellets. 4,5'-Diaminodibenzo-18-crown-6 was obtained according to our previous procedure [4]. Absolute solvents were used. The elemental analysis data, melting points, and solubilities are given in Table 1.

4.5'-Bis(chloroacetylamino)dibenzo-18-crown-6 (II). A sample of 0.7 g (0.4 mmole) (C1CH₂-C0)₂O in dioxane was added with stirring to a solution of 0.6 g (0.15 mmole) (I) in dioxane at ~20°C. The crystalline precipitate was separated, washed with dioxane and ethanol, and crystallized from DMF.

A sample of 0.6 g (0.8 mmole) $C1CH_2COC1$ was added with stirring to a suspension of 1.5 g (0.38 mmole) (I) in 20 ml abs. ether. The colorless precipitate was separated, washed with water, and crystallized from DMF.

- $\frac{4.5'\text{-Bis(glycine hydrochloride)dibenzo-18-crown-6 (III)}{\text{(I) and 0.7 g (0.4 mmole) (ClCH}_2\text{CO)}_2\text{O was dissolved in 10 ml abs. ethanol at 70-76°C. A colorless precipitate formed upon cooling, which was recrystallized from absolute ethanol.}$
- 8,9;17,18-Bis(indoxyl)-18-crown-6 (IV) was obtained as colorless crystals from 70% ag. ethanol.
- 8.9;17.18-Bis(salicylindogenide)-18-crown-6 (V). A sample of 1 g (0.82 mmole) salicylaldehyde was added to 0.5 g (0.112 mmole) (IV) and was heated with stirring until a uniform mass was obtained. Crystallization from 1:1 chloroform—ethanol gave yellow crystalline (V).
- 8,9;17,18-Bis[indoxyl-(N-acetyl)]-18-crown-6 (VI). A sample of 1 g (0.98 mmole) acetic anhydride was added to a solution of 0.5 g (0.112 mmole) (IV) in DMF at ~20°C. The precipitate was filtered off and washed with DMF and water.

CONCLUSIONS

The reaction of diaminodibenzo-18-crown-6 with monochloroacetic anhydride in dioxane at room temperature gives 4,5'-bis(chloroacetylamino)dibenzo-18-crown-6. The same reaction carried out in ethanol at reflux gives 4,5'-bis(glycine hydrochloride)dibenzo-18-crown-6, which is converted in the presence of water to 8,9;17,18-bis(indoxyl)-18-crown-6.

LITERATURE CITED

- V. A. Popova, I. V. Podgornaya, V. G. Lundina, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 11, 2544 (1987).
- 2. L. J. Bellamy, The Infrared Spectra of Complex Molecules, 1st ed., Wiley, New York (1954).
- 3. Heterocyclic Compounds, R. S. Elderfield (ed.), Vol. 3, Wiley, New York (1961).
- 4. V. A. Popova, I. V. Podgornaya, I. Ya. Postovskii, and N. N. Frolova, Khim.-farm. Zh., No. 6, 66 (1976).