HIGHER ISOPRENOIDS-V^a

PARTIAL SYNTHESES FROM CYCLOARTENOL, CYCLOLAUDENOL PART 1: MANGIFEROLIC ACID, AMBOLIC ACID^{b.c}

CHANDAN SINGH and SUKH DEV* Malti-Chem Research Centre, Nandesari, Vadodara, India

(Received in the UK 23 July 1976; accepted for publication 1 October 1976)

Abstract-Conversion of cycloartenol into mangiferolic acid and of cyclolaudenol into ambolic acid is described.

A number of triterpenoids in Nature are derived from cycloartenol (1) by catabolic processes.¹ With the ready availability of cycloartenol and cyclolaudenol (12) from opium marc,² it appeared of interest to effect some of these transformations in the laboratory. In this and subsequent articles we propose to describe these results.

Mangifera indica (Anacardiaceae) elaborates a series of cycloartane-based C_{30} and C_{31} triterpenoids, of which mangiferolic acid (2)³ and ambolic acid (8)⁴ are typical. Structure 2 rests on its conversion to cycloartanol while ambolic acid was correlated with cycloartenol via the trisnor acid 10. We now report on elaboration of 2 from cycloartenol (1)⁵ and of 8 from cycloaudenol (12).

Mangiferolic acid (2). Cycloartenyl acetate was degraded to the known⁶ trisnor aldehyde (11), which on exposure to α -ethoxy-carbonylethylidenetriphenyl-

"Part IV: Tetrahedron 29, 569 (1973).

*MRC Communication No. 5.

^cAbstracted from the Ph.D Thesis (Poona University, 1976) of Chandan Singh.

phosphorane, followed by saponification, furnished a product, indistinguishable (m.p., $[\alpha]_D$, IR, PMR) from mangiferolic acid (2).⁷ It may be pointed out that in view of the known⁸ stereochemical outcome of reactions involving stabilised ylids and unhindered aldehydes, the product was expected to be (*E*)-configurated and this conversion provides chemical proof for the (*E*)-geometry of the olefinic linkage in mangiferolic acid, deduced earlier on PMR spectral data.^{3,9} Oxidation of mangiferolic acid with Na₂Cr₂O₇-H₂SO₄ yielded the naturally occurring mangiferonic acid (3).⁴

It has been established¹¹ that SeO₂ selectively attacks certain trisubstituted olefins to furnish (*E*)-products. In view of this, it was of interest to examine the action of SeO₂ on cycloartenol. Cycloartenyl acetate was exposed to SeO₂ (1 mole equiv) in DMSO¹² at 100° (2 hr) to furnish an aldehyde (60%) and an alcohol (12%). The aldehyde was readily recognised as 4 (acetate of naturally occurring mangiferolaldehyde, 6¹⁰) from its spectral characteristics (UV, IR, PMR) and its LAH reduction to the glycol 5, also prepared from methyl mangiferolate by

10: R = OAc; R' = COOH11: R = OAc; R' = CHO

8: R = OH; $R' = CH_2$; R'' = COOH9: R = OAc; $R' = CH_2$; R'' = COOMe

LAH reduction. The minor product of SeO_2 oxidation is assigned structure 7 (IR, PMR).

Ambolic acid (8). In the successful, but less selective route, methyl ketone 13, readily obtainable from cyclolaudenol (12) by a procedure disclosed earlier,² was reacted with methyl α -bromopropionate to furnish a mixture of diastereoisomeric hydroxy esters (14), which on dehydration (POCl₃-pyridine or Ph₃P-CCl₄†) furnished a mixture of olefins (15), in which the required

product (Δ^{24} ²⁸ isomer) was present to the extent of 25% (PMR). AgNO₃-SiO₂ gel chromatography of the total material yielded Δ^{24} ²⁸ isomer; no attempt was made to get other olefin isomers in a pure state. This material (m.p. 98-99°, $[\alpha]_D + 51.3$) was expected, from its method of preparation, to be a mixture of C₂₅ diastereoisomers. It shows a PMR spectrum virtually superimposable on that of an authentic sample of acetyl methyl ambolate (9)⁷ (m.p. 105-109°; $[\alpha]_D + 34^\circ$).⁴ In ambolic acid, configuration at C₂₅ has been established¹⁴ to be R.

Mass spectra. Cycloartanoids undergo¹⁵ two diagnostically important electron-impact-induced fragmentations: side-chain cleavage and, rupture of cyclopropane ring leading to loss of ring A along with C₆ or C₁₉. With aldehyde 11 as the sole exception, all cycloartanebased compounds described in this work exhibit these characteristic fragmentations, though relative intensity of these ions were of the order of 10–35% (of the base peak).

EXPERIMENTAL

All m.ps are uncorrected. Light petroleum refers to the fraction, m.p. 60-80°. Optical rotations were measured in CHCl₃.

The following instruments were used for spectral data: Perkin-Elmer Infracord model 267; Perkin-Elmer model R 32 (90 MHz) NMR spectrometer; CEC mass spectrometer, model 21-110B (70 eV, direct inlet system). All PMR spectra were recorded using 15-20% soln in CCL, unless otherwise stated. While citing PMR data, following abbreviations have been used: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; b, broad. While summarising mass spectral data, besides the molecular ion, ten most abundant ions (above m/e 60) are reported with their relative intensities.

25,26,27-Trisnor-24-oxo-cycloartanyl acetate (11)

Cycloartenyl acetate (4.2 g) in CHCl₃ (200 ml) was treated with ozonised O_2 at -78° till O_3 passed freely (1.5 hr). The soln was

[†]This reagent¹³ was used in an attempt to prepare the corresponding chloride for subsequent selective HCl elimination. However, 15 was directly obtained.

allowed to attain room temp. (26°), AcOH (25 ml) added and Zn dust (5.0 g) introduced, with stirring (10 min). Stirring was continued for another 6 hr and the mixture worked up in the usual manner to furnish a neutral fraction (3.5 g, m.p. 130–145°), which was crystallised from acetone-water: white plates, m.p. 158–160° (lit., " m.p. 155°). IR (Nujol): CHO 2700, 1720 cm⁻¹; OAc 1720, 1255 cm⁻¹. PMR: cyclopropane CH₂ (1H, d, 0.33 ppm; 1H, d 0.58 ppm; J = 4 Hz), tertiary Me's (singlets at 0.87, 0.87, 0.90, 0.97 ppm), OAc (s, 1.98 ppm), CHOAc (m, 4.5 ppm). CHO (t, 9.70 ppm, J = 1.5 Hz). Mass: *mle* 442 (M⁺, 2.2%), 171 (30%), 117 (30%), 115 (35%), 103 (44%), 101 (34%), 91 (60%), 89 (36%), 79 (100%), 77 (38%), 65 (40%).

Mangiferolic acid (2)

A mixture of the above aldehyde (1.98 g, 0.045 mole) and α -ethoxycarbonylethylidenetriphenylphosphorane¹⁶ (1.8 g, 0.05 mole) in C₆H₆ (50 ml) was refluxed (12 hr, N₂), most of solvent distilled off and the residue (10 ml) chromatographed on SiO₂-gel/III (85 × 1.5 cm) with TLC (solvent: C₆H₆) monitoring. The material (2.0 g, m.p. 112-115°), eluted with 10% light petrol in C₆H₆ (50 ml × 20) was crystallised from ether-MeOH to furnish colorless needles (1.4 g), m.p. 116-116.5°, of *ethyl* 3-*acetoxy-mangiferolate*. IR (Nujol): C=O 1710, 1730 cm⁻¹: C=C 1650 cm⁻¹. PMR: cyclopropane methylene (1H, d, 0.30 ppm; 1H, d, 0.60 ppm; J = 4 Hz), tertiary Me's (singlets at 0.85, 0.85, 0.90, 0.96 ppm), C=C-Me (3H, d, 1.80 ppm, J = 1.5 Hz), -C=CH-CH₂ (1H, t, 6.60

ppm, J = 7 Hz). (Found: C, 77.49; H, 10.29. $C_{34}H_{54}O_4$ requires: C, 77.52; H, 10.33%).

The above ester (221 mg) was hydrolysed with refluxing 5% ethanolic KOH (6 ml, 4 hr, N₂) and worked up in the usual manner to give mangiferolic acid (180 mg, m.p. 165–171°), crystallised from CHC1₃-MeOH to furnish crystals (130 mg), m.p. 175–178°, $[\alpha]_D + 49.9^\circ$ (c, 0.95%) (lit.³: m.p. 181–183°; $[\alpha]_D + 49^\circ$). Mass: m/e 456 (M⁺, 6%), 423 (32%), 175 (38%), 135 (50%), 121 (50%), 109 (48%), 107 (60%), 105 (48%), 95 (100%), 93 (55%), 81 (50%). (Found: C, 78.74; H, 10.67. C₃₀H₄₈O₃ requires: C, 78.89; H, 10.59%).

Mangiferonic acid (3)

To a soln of mangiferolic acid (100 mg) in ether (20 ml), a soln of chromic acid (0.6 ml; 1g Na₂Cr₂O₇·2H₂O + 1 ml H₂O + 1 ml H₂SO₄, diluted to 8 ml with water¹⁷) was added dropwise (25°, 5 min) and after stirring at 25-30° for 2 hr, was worked up in the usual manner to furnish a solid (96 mg, m.p. 174-179°) which was recrystallised from ether-MeOH, m.p. 178-181° (40 mg), $[\alpha]_D$ + 22°(c, 0.5%) (lit.⁴: m.p. 187-189°, $[\alpha]_D$ + 23.5°). IR (Nujol): C=O 1710, 1685 cm⁻¹; C=C 1640 cm⁻¹. PMR (CDCl₃): cyclopropane methylene (1H, d, 0.57 ppm; 1H, d, 0.80 ppm; J = 4 Hz), tetriary Me's (singlets at 0.90, 1.0, 1.05 and 1.1 ppm) C=C-Me (3H, bs, 1.86 ppm), -C=CH-CH₂ (1H, t, 6.90 ppm, J = 7.5 Hz). Mass: m/e 454

 $\begin{array}{l} (M^{*},\,33\%),\,109\,\,(45\%),\,107\,\,(65\%),\,105\,\,(40\%),\,95\,\,(100\%),\,93\,\,(60\%),\\ 91\,\,(40\%),\,81\,\,(55\%),\,79\,\,(40\%),\,69\,\,(50\%),\,67\,\,(54\%).\,(Found:\,C\,,78.50;\\ H,\,\,10.23.\,\,C_{30}H_{46}O_3\,\,requires:\,C\,,\,79.24;\,\,H,\,\,10.20\%). \end{array}$

Action of SeO₂ on cycloartenyl acetate

Cycloartenyl acetate (1.02 g, 2.2 mmole), SeO₂ (0.22 g, 2.0 mmole) and DMSO (15 ml) were heated on a steam-bath for 2 hr, the mixture cooled, diluted with water (50 ml) and extracted with diisopropyl ether (100 ml \times 3). The extract was washed with water (50 ml \times 3), dried (Na₂SO₄) and freed of solvent, under suction. The residue in light petrol (10 ml) was chromatographed on SiO₂ gel/IIA (22 \times 2 cm), while monitoring with TLC (solvent: 10% EtOAc in C₆H₆):

Frac. 1	light petrol	500 ml	
Frac. 2	50% C _c H _s in light petrol	50 ml × 10	Solid (200 mg), starting material.
Frac. 3	C ₆ H ₆	50 ml × 10	600 mg, m.p. 142–144°, (4)
Frac. 4	C6H6		100 mg mixture (TLC)
Frac. 5	10% EtOAc in C ₆ H ₆	50 ml × 4	120 mg, (7)

3-Acetyl-mangiferolaldehyde (4). Fraction 3 was crystallised from ether-MeOH to furnish 4, m.p. $145-147^{\circ} \lambda_{max}^{CHC1} 246.5$ nm. IR (Nujol): CHO 2700, 1690 cm⁻¹; OAc 1735, 1245 cm⁻¹; C=C 1643 cm⁻¹. PMR: cyclopropane methylene (1H, d, 0.33 ppm; 1H, d, 0.60 ppm; J = 4 Hz) tertiary Me's (3H, singlets at 0.82, 0.85, 0.89 and 0.95 ppm), C=C-Me (3H, bs, 1.72 ppm), OAc (3H, s, 2.0 ppm), CHOAc (1H, t, 4.53 ppm; J = 7 Hz), C=CH-CH₂ (1H, t, 6.44 ppm, J = 7 Hz), CHO (1H, s, 9.42 ppm). (Found: C, 79.21; H, 10.22. C₃₂H₃₀O₃ requires: C, 79.62; H, 10.44%).

The above acetate aldehyde (200 mg) was reduced with LAH (200 mg) in ether (20 ml) for 6 hr at 30° and, worked up in the usual manner (H₂O, 20% NaOH aq) to furnish a gum (200 mg) which was purified by chromatography (SiO₂ gel, 15×1 cm, elution with 10% EtOAc in C₆H₆) to furnish diol **5**, 150 mg, 130-138° (crystallised from Et₂O-MeOH, m.p. 135-136°) identical with a sample (m.p. 135-136°) obtained from methyl mangiferolate (100 mg) by a similar LAH reduction. PMR (CDCl₃): cyclopropane methylene (1H, d, 0.33 ppm; 1H, d, 0.59 ppm; J = 4 Hz), tertiary Me's (3H singlets at 0.80, 0.90, 0.96 and 0.96 ppm), C=C-Me (3H, bs, 1.67 ppm), CHOH (1H, q, 3.29 ppm, J₁ = 6 Hz, J₂ = 10 Hz), CH₂OH (2H, bs, 4.0 ppm). C=CH-CH₂ (1H, t, 5.41 ppm, J = 7 Hz).

27-Hydroxy-cycloartenyl acetate (7). Fraction 5, on crystallisation from MeOH yielded 7, m.p. 105-108°. PMR: cyclopropane methylene (1H, d, 0.33 ppm; 1H, d, 0.60 ppm; J = 4 Hz), tertiary Me's (3H, singlets at 0.84, 0.88, 0.90 and 0.99 ppm), C=C-Me (3H, bs, 1.64 ppm), OAc (3H, s, 2.01 ppm), CH₂OH (2H, bs, 3.92 ppm), CHOAc (1H, m, 4.52 ppm), C=CH-CH₂ (1H, t, 5.37, J = 7 Hz).

Methyl 3 - acetoxy - 24 - methyl - 24 - hydroxy - cycloartan - 27 oate (14). The methyl ketone² 13 (14.0 g, 0.031 mole), Zn wool (5.0 g, 0.077 g atom) and methyl α -bromopropionate (10 ml) were reacted (6 hr, reflux) in C₆H₆ (250 ml) in the usual manner¹⁶ to furnish after chromatography (SiO₂ gel/IIA, 100 × 3 cm) the hydroxy ester 14 as a gum (9.0 g, eluted with C₆H₆). IR (CHCl₃: 0.1 mm): C=O 1725 cm⁻¹: OH 3510 cm⁻¹. PMR: cyclopropane methylene (1H, d, 0.31 ppm; 1H, d, 0.58 ppm; J = 4 Hz), tertiary Me's (3H, singlets at 0.83, 0.86, 0.89, 0.96 ppm), OA<u>c</u> (3H, s, 1.98 ppm), COO<u>Me</u> (3H, bs, 3.69 ppm), CHOAc (1H, t, 4.5 ppm, J = 7 Hz). (Found: C, 74.89; H, 9.91. C₃₄H₅₆O₄ requires: C, 74.95; H, 10.36%).

Methyl 3-acetoxy-ambolate (9)

(i) Dehydration with triphenylphosphine-carbon tetrachloride. The above hydroxy ester (200 mg), (Ph)₃P (1.0 g) and CCl₄ (25 ml) were mixed and refluxed (24 hr). CCl₄ was distilled off and the residue, in C₆H₆ (5 ml), chromatographed over SiO₂ gel/IIA (10 × 1.5 cm). Benzene (200 ml) eluted a colorless gum (150 mg), showing on TLC (SiO₂-gel-10% AgNO₃; solvent: 33%light petrol in C₆H₆) three spots with R_f of 0.43, 0.39 and 0.32. This material is essentially identical (TLC, PMR) with the product described below and was processed further.

(ii) Dehydration with $POCl_3$ -pyridine. A soln of the hydroxy ester (1.25 g) in pyridine (10 ml) was treated, dropwise (10 min), at 0°, with POCl₃ (5 ml). The mixture was heated on a steam-bath for 4 hr, cooled and worked up in the usual manner to give a product,

which was chromatographed (SiO₂-gel) as above to give olefin mixture (15; 1.2 g). This material (2.0 g) was further chromatographed over 10% AgNO₃-SiO₂ gel (120 × 2 cm) with TLC monitoring (see above). Elution was done with light petrol, containing increasing amounts of C₆H₆. The required product eluted last (R_1 0.32) with 33% C₆H₆ in light petrol. This product (200 mg) was crystallised from EtOH, m.p. 98–99°. IR (KBr): C=O 1727 cm⁻¹; C=C 1638, 890 cm⁻¹. PMR: cyclopropane methylene (1H, d, 0.37 ppm; 1H, d, 0.60 ppm; J = 4 Hz), tertiary Me's (3H, singlets at 0.87, 0.87, 0.91 and 0.98 ppm), CH₂-C-CH(Me)COOMe (d, 1.26 ppm, J = 7 Hz), OAc (3H, s, 2.1 ppm), COOM₂ (3H, s, 3.67 ppm), CHOAc (1H, m, 4.51 ppm), C=CH₂ (2H, bs, 4.88 ppm, $W_{1/2} = 6$ Hz). Mass: m/e 526 (M⁺, 29%), 466 (100%), 451 (80%), 344 (80%), 203 (85%), 175 (82%), 147 (82%), 135 (82%), 119 (82%), 109 (82%), 95 (76%).

REFERENCES

- See, e.g.: T. K. Devon and A. I. Scott, Handbook of Naturally Occurring Compounds, Vol. II, pp. 345-354. Academic Press, New York (1972).
- ²A. S. Narula and Sukh Dev, Tetrahedron 27, 1119 (1971).
- ³S. Corsano and E. Mincione, Tetrahedron Letters 2377 (1965).
- ⁴S. Corsano and E. Mincione, *Ric. Sci.* **36**, 494 (1966); *Chem. Abstr.* **66**, 11062 (1967).
- ⁵D. H. R. Barton, D. Kumari, P. Welzel, L. J. Danks and J. F. McGhie, J. Chem. Soc. 332 (1969).
- ^oJ. A. Henry, D. S. Irvine and F. S. Spring, *Ibid.* 1607 (1955). ⁷Authors are grateful to Prof. E. Mincione for the supply of spectra (IR, PMR) of authentic samples.
- *See e.g.: H. O. House, Modern Synthetic Methods, pp. 701-709. Benjamin, Menlo Park (1972).
- ⁹Also see: H. T. Cheung, Chi-Shun Wong and T. C. Yan, Tetrahedron Letters 5077 (1969).
- ¹⁰E. Mincione, C. lavorone and S. Corsano, *Ric. Sci.* 38, 537 (1968); *Chem. Abstr.* 70, 78191 (1969).
- ¹¹G. Buchi and H. Wuest, *Helv. Chim. Acta* **50**, 2440 (1967); U. T. Bhalerao and H. Rapoport, *J. Am. Chem. Soc.* **93**, 4835 (1971). Also see: K. B. Sharpless and R. F. Lauer, *Ibid.* **94**, 7154 (1972); D. Arigoni, A. Vasella, K. B. Sharpless and H. P. Jensen, *Ibid.* **95**, 7917 (1973).
- ¹²For such oxidations we find DMSO as a superior solvent: A. N. Singh, A. B. Upadhye, M. S. Wadia, V. V. Mhaskar and Sukh Dev, *Tetrahedron* 25, 3861 (1969).
- ¹³I. M. Downie, J. B. Holmes and J. B. Lee, *Chem. & Ind.* 900 (1966).
- ¹⁴S. Corsano and E. Mincione, Chem. Comm. 738 (1968).
- ¹⁵H. E. Audier, R. Beugelmans and B. C. Das, *Tetrahedron Letters* 4341 (1966); R. T. Aplin and G. M. Hornby, *J. Chem. Soc.* (B) 1078 (1966).
- ¹⁶H. J. Bestmann and H. Schulz, Tetrahedron Letters (4), 5 (1960).
- ¹⁷H. C. Brown and C. P. Garg, J. Am. Chem. Soc. 83, 2952 (1961).
- ¹⁸See. e.g.: R. L. Shriner, Organic Reactions 1, 1 (1942).