Studies on the Thiocarbamoylthiocarbonates. I. Synthesis of Aryl Thiocarbamoyldithiocarbonates

By Aritsune KAJI

(Received July 26, 1960)

O-Alkyl S-(N, N-disubstituted-thiocarbamoyl)thiocarbonates were studied by Cambron¹⁾ and $Lo^{2)}$. Lo reported that these alkyl esters, except isopropyl ester, were unstable and decomposed even at room temperature. No report on the aryl esters of this thiocarbonic acid has been given. The present author succeeded in the synthesis of these aryl esters.

Results and Discussion

Aryl chloroformates reacted with sodium dimethyldithiocarbamate in acetone, giving O-

aryl S-(N, N-dimethylthiocarbamoyl)thiocarbonates as shown in Table I.

But these esters were unstable and decomposed even at room temperature within a few weeks.

Aryl chlorothionoformates reacted with sodium or ammonium dialkyldithiocarbamates, giving various O-aryl S-(N, N-dialkylthiocarbamoyl)dithiocarbonates in good yields as

¹⁾ A. Cambron, Can. J. Res., 2, 341 (1930).

²⁾ C. Lo and W. E. Craig, Japanese Pat. 253207 (1958).

February, 1961]

Table I. O-Aryl S-(N, N-dimethylthiocarbamoyl)thiocarbonates

$$(CH_3)_2N-C-S-C-O-\swarrow X$$

x	M. p., °C	Yield, %	Formula		H% Found
-H	97.5~ 98.5	51.5	$C_{10}H_{11}NO_2S_2$	(Calcd.) 49.79 (50.43)	(Calcd.) 4.56 (4.32)
4-CH ₃	105.5~106.5	50.5	$C_{11}H_{13}NO_2S_2$	51.76 (51.65)	5.10 (4.99)
3-Cl	122 ~123	24	$C_{10}H_{10}ClNO_2S_2$	43.56 (44.09)	3.29 (3.80)

Table II. O-Aryl S-(N, N-dimethylthiocarbamoyl) dithiocarbonates

 $(CH_3)_2N$ -C-S-C-O-R $\overset{\parallel}{S}\overset{\parallel}{S}\overset{\parallel}{S}$

			5 5			
					An	al.
R	Appearance	M. p., °C	Yield, %	Formula	C % Found (Calcd.)	H % Found (Calcd.)
Phenyl	Yellow pillars	68 ~ 69	86	$\mathbf{C_{10}H_{11}NOS_{3}}$	46.30 (46.69)	3.95 (4.28)
2-Tolyl	Yellow prisms	$74 \sim 75$	90	$C_{11}H_{13}NOS_3$	48.20 (48.70)	5.13 (4.80)
4-Tolyl	Yellow needles	88 ~ 89	78	$\mathbf{C_{11}H_{13}NOS_{3}}$	48.97 (48.70)	4.71 (4.80)
4-Methoxyphenyl	Yellow needles	87.5~ 88.5	80	$C_{11}H_{13}NO_2S_3$	46.03 (45.99)	4.42 (4.53)
4-Chlorophenyl	Yellow prisms	104 ~105	80	$C_{10}H_{10}ClNOS_3$	41.40 (41.17)	3.56 (3.43)
2,4-Dichlorophenyl	Yellow needles	138 ~139	78	$C_{10}H_9Cl_2NOS_3$	36.95 (36.80)	2.54 (2.76)
2,4,5-Trichlorophenyl	Yellow prisms	113.5~114.5	75	$\mathbf{C_{10}H_8Cl_3NOS_3}$	33.34 (33.29)	1.84 (2.22)
4-Bromophenyl	Yellow needles	110 ~111	74	$C_{10}H_{10}BrNOS_3$	35.95 (35.71)	2.60 (2.98)
2,4,6-Tribromophenyl	Yellow needles	118 (decomp.)	69	$C_{10}H_8Br_3NOS_3$	24.50 (24.30)	1. 49 (1.69)
4-Chloro-2-tolyl	Yellow prisms	113 ~113.5	56	$C_{11}H_{12}CINOS_3$	43.22 (43.20)	3.73 (3.93)
2-Chloro-4-tolyl	Yellow prisms	131.5~132.5	52	$C_{11}H_{12}ClNOS_3$	43.50 (43.20)	3.63 (3.93)
2,6-Dichloro-4-tolyl	Yellow prisms	133 ~134	60	$\mathbf{C_{11}H_{11}Cl_2NOS_3}$	39.05 (38.82)	3.47 (3.24)
4,6-Dichloro-2-tolyl	Yellow needles	115 ~116.5	56	$C_{11}H_{11}Cl_2NOS_3$	39.30 (38.82)	3.41 (3.24)
3,5-Dimethyl-4- chlorophenyl	Yellow prisms	113 ~114.5	85	$C_{12}H_{14}ClNOS_3$	44.74 (45.07)	4.25 (4.38)
2-Phenyl-4- chlorophenyl	Yellow prisms	107 ~108	61	$C_{16}H_{14}ClNOS_3$	52.55 (52.24)	3.68 (3.81)
2-Biphenylyl	Yellow needles	135 ~136	84	$\mathbf{C_{16}H_{15}NOS_{3}}$	57.83 (57.66)	4.62 (4.50)
4-Acetylphenyl	Yellow needles	117.5~118	78	$C_{12}H_{13}NO_2S_3$	48.50 (48.16)	4.10 (4.35)
2-Methoxycarbonyl- phenyl	Yellow prisms	102.5~103.5	60	$C_{12}H_{13}NO_3S_3$	45.80 (45.71)	4.10 (4.13)
4-Nitrophenyl	Yellow prisms	114 ~115	90	$C_{10}H_{10}N_2O_3S_3$	40.05 (39.75)	3.52 (3.31)
1-Chloro-2-naphthyl	Yellow prisms	126.5~127	91	$C_{14}H_{12}ClNOS_3$	49.20 (49.20)	3.60 (3.51)
1-Bromo-2-naphthyl	Yellow prisms	141 ~142	76	C ₁₄ H ₁₂ BrNOS ₃	43.55 (43.52)	2.92 (3.11)

Aritsune KAJI

A nal

Anal. C % Н % M. p., °C Yield, % Formula Appearance R Found Found (Calcd.) (Calcd.) 60.30 5.34 $76 \sim 77$ 72 C18H19NOS3 2-Biphenylyl Yellow (59.83) (5.26) plates 47.15 5.15 Yellow 93 ~ 94 81 C13H16ClNOS3 2-Chloro-4-tolyl (4.80)(46.78)needles 3.92 Yellow 91.5~ 93 70 $C_{13}H_{15}Cl_2NOS_3$ 42.85 2,6-Dichloro-4-tolyl (4.08)(42.39) needles 48.45 4.57 92 ~ 93 C14H18ClNOS3 Yellow 69 3,5-Dimethyl-4-(48.35) (5.18)chlorophenyl needles 2.82 27.40 69 C12H12Br3NOS3 2,4,6-Tribromophenyl Yellow 114 (decomp.) (27.59)(2.30)needles 4.75 Yellow 104.5~105.5 84 $C_{13}H_{16}N_2O_3S_3$ 46.17 2-Nitro-4-tolyl (45.35) (4.65) scales 57.08 5.25 Yellow $62 \sim 63$ 64.5 C₁₆H₁₇NOS₃ 2-Naphthyl (57.31)(5.07)prisms 52.50 4.40 Yellow 143 ~144 60 C₁₆H₁₆ClNOS₃ 1-Chloro-2-naphthyl (51.96)(4.33)prisms 51.80 4.57 Yellow 107.5~108.5 72 C₁₆H₁₆ClNOS₃ 3-Chloro-2-naphthyl (51.96) (4.33) needles 46.10 3.67 1-Bromo-2-naphthyl Yellow 142 ~144 73 C16H16BrNOS₈ (46.38)(3.86)prisms

Table III. O-Aryl S-(N, N-diethylthiocarbamoyl) dithiocarbonates $(C_2H_5)_2N$ -C-S-C-O-R

S S

TABLE IV. O-ARYL S-(PIPERIDINOTHIOCARBONYL)DITHIOCARBONATES

N-C-S-C-O-R

					Allal.	
R	Appearance	M. p., °C	Yield, %	Formula	C % Fonnd (Calcd.)	H % Found (Calcd.)
Phenyl	Yellow needles	95~ 96	61	$\mathbf{C_{13}H_{15}NOS_{3}}$	52.70 (52.53)	4.84 (5.05)
4-Tolyl	Yellow needles	102~103	74	$C_{14}H_{17}NOS_3$	53.90 (54.02)	5.15 (5.47)
2-Naphthyl	Yellow needles	127~128	71	$\mathbf{C_{17}H_{17}NOS_3}$	59.10 (58.79)	4.85 (4.90)
1-Chloro-2- naphthyl	Yellow needles	131~132	76	$C_{17}H_{16}ClNOS_3$	53.42 (53.47)	4.25 (4.19)

TABLE V. O-ARYL S-(MORPHOLINOTHIOCARBONYL) DITHIOCARBONATES

					Anal.	
R	Appearance	M. p., °C	Yield, %	Formula	C % Found (Calcd.)	H % Found (Calcd.)
4-Tolyl	Yellow needles	136 ~137	51.5	$C_{13}H_{15}NO_2S_3$	50.20 (49.84)	4.75 (4.79)
4-Chlorophenyl	Yellow needles	134 ~135	53.5	$C_{12}H_{12}CINO_2S_3$	43.55 (43.18)	3.69 (3.60)
2-Biphenylyl	Yellow needles	130.5~131	53	$C_{18}H_{17}NO_2S_3$	57.35 (57.60)	4.15 (4.53)
2-Methoxycarbonyl- phenyl	Yellow prisms	115 ~116	72	$C_{14}H_{15}NO_{4}S_{3}$	47.73 (47.06)	3.75 (4.20)
1-Chloro-2-naphthyl	Yellow needles	149 ~150	73	$C_{16}H_{14}ClNO_2S_3$	50.31 (50.07)	3.78 (3.65)

TABLE VI. O-ARYL S-(ARYLTHIOCARBAMOYL) DITHIOCARBONATES

						An	Anal.	
R ₁	\mathbf{R}_2	Appearance	M. p., °C	Yield, %	Formula	C % Found (Calcd.)	H % Found (Calcd.)	
Methyl	4-Toyl	Yellow prisms	98~ 99	72	$C_{16}H_{15}NOS_3$	57.95 (57.66)	4.11 (4.50)	
Methyl	4-Chloro- phenyl	Yellow prisms	133~134	85	$C_{15}H_{12}ClNOS_3$	51.20 (50.92)	3.72 (3.39)	
Phenyl	4-Tolyl	Orange needles	110~111	73	$\mathbf{C_{21}H_{17}NOS_3}$	63.90 (63.80)	4.51 (4.30)	
Phenyl	4-Chloro- phenyl	Orange prisms	118~119	60	$\mathbf{C}_{20}\mathbf{H}_{14}\mathbf{NOS}_3$	58.00 (57.76)	3.36 (3.37)	

TABLE VII. O-ARYL N, N-DISUBSTITUTED-THIONOCARBAMATES

 $\substack{R_1-C-O-R_2\\ \overset{\parallel}{S}}$

						Anal.	
\mathbf{R}_1	\mathbf{R}_2	Appearance	M. p., °C	Yield, %	Formula	C, % Found (Calcd.)	H, % Found (Calcd.)
Dimethyl- amino	4-Tolyl	Colorless pillar	95 ~ 96	62	$C_{10}H_{13}NOS$	61.80 (61.53)	6.59 (6.67)
Dimethyl- amino	4-Chlorophenyl	Colorless needles	58 ~ 59	64	C ₉ H ₁₀ ClNOS	50.45 (50.12)	4.31 (4.64)
Dimethyl- amino	2,4,5-Trichloro- phenyl	Colorless prisms	136 ~137	72.5	C ₉ H ₈ Cl ₃ NOS	38.38 (37.96)	2.37 (2.81)
Dimethyl- amino	4-Acetylphenyl	Slight amber needles	102.5~103.5	61.5	$C_{11}H_{13}NO_2S$	59.26 (59.19)	5.83 (5.83)
Morpholino	1-Chloro-2- naphthyl	Colorless plates	138 ~139	81	$C_{15}H_{14}ClNO_2S$	58.80 (58.54)	4.23 (4.55)
N-Methyl- anilino	4-Chloro- phenyl	Colorless needles	104 ~105.5	78	C14H12CINOS	60.05 (60.54)	4.19 (4.32)

shown in Tables II—V. O-Aryl S-(N-alkyl-Narylthiocarbamoyl) dithiocarbonates and O-aryl S - (N, N - diarylthiocarbamoyl) dithiocarbonates were also given by the similar reaction and listed in Table VI. In these reactions, water, methanol, ethanol, acetone and benzene can be used as the reaction medium. These aryl esters of S-(N, N-disubstituted-thiocarbamoyl)dithiocarbonic acid, isolated as yellow or orange crystals when recrystallized from acetoneethanol, were stable at room temperature.

O-Aryl *S*-(*N*-monosubstituted-thiocarbamoyl)dithiocarbonates could not be isolated by the reaction between aryl chlorothionoformates and sodium *N*-monoalkyl- or *N*-monoaryl-dithiocarbamates, because of their decomposition during the reaction period.

It was concluded that both of the two hydrogen atoms connected with the nitrogen atom of the thiocarbamoyl group must be substituted to stabilize these dithiocarbonates.

The substituents of the aryl group, as shown

in Tables II—VI, did not have such strong effects on the stability of the esters which were kept at a lower temperature than their respective melting points.

Aryl esters of S-(N, N-disubstituted-thiocarbamoyl)dithiocarbonic acid decomposed when heated at the melting points for a long period, giving carbon disulfide and O-aryl N, N-disubstituted thionocarbamate as shown in Table VII.

$$\begin{array}{ccc} R_1 \\ R_2 \\ \end{array} \begin{array}{c} N-C-S-C-O-R_3 \\ \parallel \\ S \\ \parallel \\ \end{array} \begin{array}{c} R_1 \\ R_2 \\ \end{array} \begin{array}{c} R_1 \\ N-C-O-R_3 + CS_2 \\ \parallel \\ S \end{array} \begin{array}{c} (2) \\ \parallel \\ \end{array}$$

These thionocarbamates showed no depression of the melting point on the admixture with O-aryl N, N-disubstituted-thionocarbamates prepared from N, N-disubstituted-amines and aryl chlorothionoformates.

$$\begin{array}{c} R_1 \\ R_2 \end{array} N-H + Cl-C-O-R_3 \rightarrow R_1 \\ R_2 \\ R_2 \\ R_2 \\ R_3 \\ R_3 \end{array} (3)$$

Experimental

Starting Materials.—Sodium or ammonium salts of N, N-disubstituted-dithiocarbamic acid were synthesized by the known methods³). Aryl esters of chlorothionoformic acid were prepared as follows: To a solution of 1 mol. of thiophosgen and 1 mol. of phenol in chloroform was added gradually 1 mol. of phenol in chloroform was added gradually 1 mol. of sodium hydroxide (5% aqueous solution) under vigorous agitation. The temperature was kept at $5\sim10^{\circ}$ C during the reaction period of 30 min. The chloroform layer was washed with water and dried over calcium chloride. The removal of chloroform gave esters which could be used in the following reaction without further purification.

O-(3, 5 - Dimethyl - 4 - chlorophenyl) S-(N, N-dimethylthiocarbamoyl) dithiocarbonate.—To a solution of 14.3 g. (0.1 mol.) of sodium dimethyldithiocarbamate in 100 cc. of water was added gradually 23.5 g. (0.1 mol.) of 3,5-dimethyl-4chlorophenyl chlorothionoformate keeping the temperature at 10~15°C during the reaction period of 2 hr. By the filtration of the reaction mixture, 27.2 g. (yield, 85%) of yellow crystals with m. p. 112~ 114°C were obtained. Recrystallization from acetone-ethanol gave yellow prisms with m. p. 113~ 114.5°C. **O**-(4-Chlorophenyl) **S**-(*N*-methyl-*N*-phenylthiocarbamoyl) dithiocarbonate.—To a solution of 20 g. (0.1 mol.) of ammonium *N*-methyl-*N*-phenyldithiocarbamate in 200 cc. of acetone was added gradually 21 g. (0.1 mol.) of 4-chlorophenyl chlorothionoformate keeping the temperature at $5\sim10^{\circ}$ C during the reaction period of 1 hr. The reaction mixture, poured into 500 cc. of cold water, gave 31 g. (yield, 85%) of yellow precipitates with m. p. 132~134°C. Recrystallization of the preceipitates from acetoneethanol gave yellow prisms with m. p. 133~134°C.

The other esters shown in Tables II-VI were synthesized in the similar way.

4-Tolyl N, N-dimethylthionocarbamate. — In an oil bath, 0.45 g. of O-(4-tolyl) S-(N, N-dimethyl-thiocarbamoyl) dithiocarbonate was kept at 160°C for 1 hr. After the subsidence of evolution of carbon disulfide, the reaction mixture was cooled to room temperature. Twice repeated recrystallization of the reaction mixture from 0.5 cc. of ethanol, gave 0.2 g. (yield, 62%) of 4-tolyl N, N-dimethylthionocarbamate with m. p. 95~96°C.

The author wishes to express his sincere thanks to Professor Dr. Ryozo Goto, Kyoto University, for his guidance and encouragement throughout this work.

> Takaoka Factory, Nippon Soda Co., Ltd. Mukaino-honmachi, Takaoka, Toyama-ken

³⁾ Houben-Weyl, "Methoden der organischen Chemie", 9, Georg Thieme Verlag, Stuttgart (1955), p. 826.