

Tetrahedron Letters 42 (2001) 113-115

TETRAHEDRON LETTERS

A concise, efficient route to fumitremorgins

Patrick D. Bailey,^{a,*} Philip J. Cochrane,^a Katrin Lorenz,^a Ian D. Collier,^a David P. J. Pearson^b and Georgina M. Rosair^a

^aDepartment of Chemistry, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK ^bZeneca Agrochemicals, Jealott's Hill Research Station, Bracknell, Berkshire RG42 6EY, UK

Received 25 August 2000; revised 20 October 2000; accepted 26 October 2000

Abstract—Using the kinetically controlled Pictet–Spengler reaction, we have developed a three-step, diastereoselective and enantiospecific synthesis of the natural product demethoxy-fumitremorgin C in 21% overall yield. © 2000 Elsevier Science Ltd. All rights reserved.

Multi-drug resistance (MDR) is a major problem in cancer chemotherapy.¹ In 1998, a screening programme against human colon carcinoma MDR cells was conducted by Greenberger's group to try to identify a drug that might be used to treat this, and a natural product was identified from broth extracts; this turned out to be a known indolic secondary metabolite, fumitremorgin C (FTC) (structure **4a**).² This compound is a member of a group of indole alkaloids that induce tremors in mice due to neurotoxic properties,³ but their effectiveness in treating MDR cell lines had not been recognised previously. This led to a resurgence of interest in this class of compounds,^{4,5} from which Greenberger's group were also able to demonstrate that fumit remorgin C reverses the MDR in cells transfected with the breast cancer resistance prote in. 6

We have had a longstanding interest in the synthesis of indole alkaloids.^{7,8} In this paper, we outline a new three-step synthesis of the natural product demethoxy-fumitremorgin C, **4b**.⁹ Our route is summarised in Scheme 1, and key features of each step are discussed briefly below.

Step 1. Nobody had previously been able to react α,β -unsaturated aldehydes successfully in Pictet-Spen-

Scheme 1.

0040-4039/01/\$ - see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01899-2

Keywords: alkaloids; anti-tumour; indoles; Pictet-Spengler.

^{*} Corresponding author.

gler reactions,¹⁰ so that much longer and less efficient procedures have been used by ourselves⁸ and others^{5,11,12} to introduce the dimethylallyl unit into fumitremorgins and related alkaloids. However, using our kinetically controlled Pictet-Spengler reaction,¹³ we can obtain 2a in 38% yield with 6:1 cis selectivity (0.033 M imine in CHCl₃, 10 equiv. TFA, -40°C, 10 h), although for the synthesis of **4b** we chose conditions that provided 2a in 58% yield with a 3:1 *cis* selectivity (0.2 M imine in CHCl₃, 20 equiv. TFA, -40°C, 4 h). The diastereochemistry was confirmed by single crystal X-ray structure determination of 2b (Fig. 1),¹⁴ the minor trans epimer of 2a. Its optical integrity was confirmed by formation of the R- and S-Mosher's amide derivatives, and analysis of the diastereomeric derivatives by ¹H NMR.¹⁵

Step 2. We encountered some problems identifying an activated/protected proline derivative that would generate the required peptide bond with high efficiency without leading to simultaneous racemisation. Ultimately, the (fluorenylmethyl)oxycarbonyl (Fmoc) acid chloride¹⁶ met our needs; the intermediate dipeptide was not fully characterised, due to the complex rotamers present, but the crude product was taken straight on to the next step.

Step 3. Removal of the Fmoc protection using piperidine led directly to the diketopiperazine target **4b** in 53% isolated yield from **2a**. The overall yield of **4b** from L-Trp-OMe was thus 21%. Its purification was relatively straightforward, as virtually all by-products had much lower R_{f} s by silica gel chromatography due to the presence of free basic NH group(s). It was identical to the natural product⁹ in all respects.

We have therefore shown that enantiopure demethoxyfumitremorgin C can be prepared quickly and efficiently using a diastereoselective three-step route, and this methodology should be applicable to the synthesis of fumitremorgin analogues in the search for effective anti-MDR drugs.

Acknowledgements

We thank Dr. Alan Boyd and Dr. Rod Ferguson for NMR and mass spectra, Waseem Ashraf for work relating to note 12, and Zeneca Agrochemicals for funding.

References

- 1. Young, R. C. In *Drug Resistance in Cancer Therapy*; Ozols, R. F., Ed.; Kluwer: Boston, 1989; pp. 1–12.
- Rabindran, S. K.; He, H.; Singh, M.; Brown, E.; Collins, K. I.; Annable, T.; Greenberger, L. M. *Cancer Res.* 1998, 58, 5850.
- 3. Hino, T.; Nakagawa, M. Heterocycles 1997, 46, 673.
- He, H.; Rabindran, S. G.; Greenberger, L. M.; Carter, G. T. Med. Chem. Res. 1999, 9, 424.
- (a) Edmondson, S. D.; Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 1998, 37, 1138; (b) Edmondson, S.; Danishefsky, S. J.; Sepp-Lorenzino, L.; Rosen, N. J. Am. Chem. Soc. 1999, 121, 2147.
- Rabindran, S. K.; Ross, D. D.; Doyle, L. A.; Yang, W.; Greenberger, L. M. *Cancer Res.* 2000, *60*, 47.
- For example, see: (a) Bailey, P. D.; Mclay, N. R. J. Chem. Soc., Perkin Trans. 1 1993, 441; (b) Bailey, P. D.; Morgan, K. M. Chem. Commun. 1996, 1479; (c) Bailey, P. D.; Collier, I. D.; Hollinshead, S. P.; Moore, M. H.; Morgan, K. M.; Smith, D. I.; Vernon, J. M. J. Chem. Soc., Perkin Trans. 1 1997, 1209; (d) Bailey, P. D.; Morgan, K. M.; Rodair, G. M.; Thomas, R. Ll. Tetrahedron Lett. 1999, 40, 8255.
- (a) Bailey, P. D.; Hollinshead, S. P.; McLay, N. R.; Everett, J. H.; Reynolds, C. D.; Wood, S. D.; Giordano, F. J. Chem. Soc., Perkin Trans 1 1993, 451; (b) Bailey, P. D.; Hollinshead, S. P.; McLay, N. R. Tetrahedron Lett. 1989, 30, 6421.
- (a) Cui, C.-B.; Kakeya, H.; Okada, G.; Onose, R.; Osada, H. J. Antibiot. 1996, 49, 527; (b) Cui, C.-B.; Kakeya, H.; Osada, H. J. Antibiot. 1996, 49, 534.
- 10. Harrison, D. M.; Sharma, R. B. *Tetrahedron Lett.* **1993**, 34, 3165 (Pictet–Spengler reaction failed with α , β -unsaturated aldehydes).
- (a) Plate, R.; Hermkens, P. H. H.; Behm, H.; Ottenheijm, H. C. J. J. Org. Chem. 1987, 52, 560; (b) Hino, T.; Kawate, T.; Nakagawa, M. Tetrahedron 1989, 45, 1941; (c) Boyd, S. A.; Thompson, W. J. J. Org. Chem. 1987, 52, 1790; (d) Wang, H.; Ganesan, A. Tetrahedron Lett. 1997, 38, 4327 (c/d use acyl-Pictet-Spengler reactions with very poor stereo-control).
- 12. We substantially improved the stereo-selectivity of Danishefsky's synthesis (Ref. 5) by carrying out the Pictet– Spengler reaction with $4Me-C_6H_4-S-C(Me)_2CH_2CHO$ under our conditions of kinetic control (Ref. 13), giving the adduct in 64% yield with 3:1 *cis:trans* selectivity [in Ref. 5, the phenylthio derivative was used which requires the use of thiophenol (stench); the 4-tolyl analogue is much less malodorous].
- (a) Bailey, P. D.; Hollinshead, S. P.; Mclay, N. R.; Morgan, K. M.; Palmer, S. J.; Prince, S. N.; Reynolds, C. D.; Wood, S. D. J. Chem. Soc., Perkin Trans. 1 1993,

431; (b) Bailey, P. D.; Moore, M. H.; Morgan, K. M.; Smith, D. I.; Vernon, J. M. *Tetrahedron Lett.* **1994**, *35*, 3587.

- 14. X-Ray data deposited at CCDC.
- Dale, J. A.; Dull, D. L.; Mosher, H. F. J. Org. Chem. 1969, 34, 2543. The signal from the methoxy group of the

chiral auxiliary was analyzed by ¹H NMR, with the *R*-Mosher's amide of **2a** resonating at δ 3.67 and the *S*-Mosher's amide of **2a** resonating at δ 3.81 (>95% ee).

.

 Carpino, L. A.; Cohen, B. J.; Stephens Jr., K. E.; Sadat-Aalaee, S. Y.; Tien, J.-H.; Langridge, D. C. J. Org. Chem. 1986, 51, 3732.