Synthetic Communications[®], 36: 3803–3807, 2006 Copyright © Taylor & Francis Group, LLC ISSN 0039-7911 print/1532-2432 online DOI: 10.1080/00397910600948039

Facile Way to Synthesize N^α-Boc-N^β-Cbz-2,3-Diaminopropionic Acid Derivatives via 5-Oxazolidinone

Hanbing Teng, Zhengguo Jiang, Lamei Wu, Jiangtao Su, Xichun Feng, Guofu Qiu, Shucai Liang, and Xianming Hu State Key Laboratory of Virology, College of Pharmacy, Wuhan University, Wuhan, China

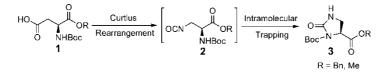
Abstract: An economical and facile synthesis of N^{α} -Boc- N^{β} -Cbz-2,3-diaminopropionic acid derivatives is reported. The key aspect of this method is employment of N-Boc-5-oxazolidinone moiety to simultaneously provide proper protection of α -amido and α -carboxyl functional groups and affords the desired isocyanate **5** successfully by a Curtius rearrangement. The obtained intermediate **6** can be readily converted to various derivatives of N^{α} -Boc- N^{β} -Cbz-2,3-diaminopropionic acid by conventional procedure.

Keywords: Curtius rearrangement, 2,3-diaminopropionic acid, isocyanate, 5-oxazolidinone

L-2,3-Diaminopropanoic acid (Dap), a nonproteinogenic amino acid occuring in nature both in its free form and as a constituent of peptides,^[1] has been widely used in the construction of medicinally important entities.^[2] Thus, much effort has been directed toward the synthesis of it and its derivatives in recent years, and several new synthetic methodologies have been developed.^[3]

The most common synthesis of Dap involves Hoffman^[4] or modified Curtius^[5] rearrangements of asparagines derivatives and various N-protecting groups (such as Cbz, Ts, Boc) are used. However, these methods, in

Received in ROC October 8, 2005


Address correspondence to Xianming Hu, State Key Laboratory of Virology, College of Pharmacy, Wuhan University, Wuhan 430072, China. E-mail: xmhu@ whu.edu.cn

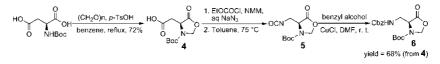
preparation of the derivatives of N^{α}-Boc-Dap, often suffer from low yields^[6] or require expensive reagents such as bis-[trifluoroacetoxy]-iodo benzene^[5,6] or diphenyl phosphorazidate (DPPA).^[7a]

Here, we report an economical and facile way to synthesize the derivatives of N^{α}-Boc-Dap from Boc-L-aspartic acid. Synthetic analysis suggests that the isocyanate **2** from the L-aspartic acid derivative would provide efficient access to N^{α}-Boc- β -aminoalanine alkyl ester. But Boc-Asp-OR cannot afford the expected isocyanate **2**; it directly gives cyclic urea after a Curtius rearrangement (Scheme 1).^[7]

To prevent the intermolecular trapping of the isocyanate after the Curtius rearrangement, the strategy of dual Boc-protection of the reactive nitrogen has been put forward, and the desired isocyanate was obtained successfully. This approach, without using bis-[trifluoroacetoxy]-iodo benzene or DPPA, provides a promising synthesis of the N^{β}-Cbz, N^{α}-Boc-Dap.^[7b] However, it involves tedious protection and deprotection steps both in the α -carboxyl and α -amino groups. We thought that employment of N-Boc-5-oxazolidinone moiety could provide not only the protection of the α -carboxyl functional group but also the complete protection of the α -amino group. This protection strategy would also avoid the intermolecular trapping and afford the desired isocyanate. Moreover, it would shortern the route greatly.

Starting with Boc-L-aspartic acid, the 5-oxazolidinone 4 was prepared in good yield in benzene by a modification of the literature procedure.^[8] We found that if toluene was used a very lower yield was obtained. The procedure for the preparation of compound 4 is as follows: Boc-L-aspartic acid (25 mmol) was dissolved in EtOAc (10 mL); benzene (200 mL) was added. The powder paraformaldehyde (50 mmol) and p-TsOH (1.5 mmol) were added slowly at about 60°C. Then the mixture was refluxed 2 h with removal of water by a Dean-Stark trap. EtOAc (100 mL) was added; the solution was washed with 0.3 M K₂CO₃ (2.5 mL) and brine (2 \times 10 mL) and dried with Na₂SO₄. The solvent was evaporated to give a light yellow solid (4.4 g) in 72% yield. Recrystallization from anhydrous ether provided a sample for analytical characterization. Mp = $132-134^{\circ}$ C; $[\alpha]_{D}^{20}$ +153.1 (c = 1, CH₃OH); ¹H NMR (300 MHz, CDCl₃): δ = 1.49 (s, 9H), 3.03–3.27 (m, 2H), 4.31 (s, 1H), 5.24 (d, 2H, J = 3), 5.45 (br, 1H). ¹³C NMR $(150 \text{ MHz}, \text{ CDCl}_3): \delta = 28.59, 34.70, 51.68, 78.84, 82.92, 152.24, 172.12,$ 175.26. MS: $m/z = 284 [M + K]^+$. Anal. calcd. for $C_{10}H_{15}NO_6$: C, 48.98; H, 6.17; N, 5.71. Found: C, 49.14; H, 6.39; N, 5.48.

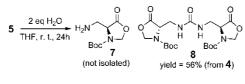
Scheme 1.


3804

N^{α} -Boc- N^{β} -Cbz-2,3-Diaminopropionic Acid Derivatives

The 4-carboxylic acid was activated with ethyl chloroformate and N-methylmorpholine (NMM) in dry THF, followed by addition of aqueous sodium azide to afford the acyl azide (strong absorption at 2145 cm^{-1} in IR). Then the acyl azide was converted to isocyanate 5 (strong absorption at 2223–2255 cm⁻¹ in IR) successfully in toluene at 75°C.^[9] The procedure for the preparation of isocyanate 5:is as follows: 4 (10 mmol) was dissolved in dry THF (30 mL) and cooled to -15° C. After addition of EtOCOCI (11 mmol) and NMM (12 mmol), the mixture was stirred for 20 min. A solution of NaN₃ (25 mmol) in H₂O (5 mL) was added, and stirring continued for 1 h at -10° C. The solution was then diluted with water and extracted with EtOAc (150 mL). The organic layers were washed with brine $(2 \times 10 \text{ mL})$, dried over Na₂SO₄ and concentrated under reduced pressure to give crude acyl azide. This crude acyl azide can be further purified by a flash-column chromatography (petroleum ether/EtOAc, 2:1, $R_f = 0.7$). Purified acyl azide was dissolved in toluene (30 mL), and the resulting solution was heated to 75°C under stirring. After the gas evolution had stopped, the toluene was removed under reduced pressure to afford isocyanate 5 as clear oil.

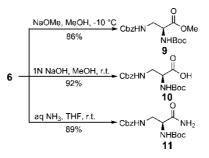
This isocyanate 5 was directly used in the next step without further purification. This isocyanate reacted with benzyl alcohol in the presence of CuCl in dry DMF to lead to the important intermediate $6^{[10]}$ (Scheme 2). The procedure for the preparation of compound 6. To a stirred green mixture of benzyl alcohol (9 mmol) CuCl (9 mmol), is as follows: and dry DMF (6 mL) at room temperature, a solution of isocyanate 5 in dry DMF (4 mL) was added. The solution was diluted with 1 N HCl (20 mL) after stirring for 3 h, then it was extracted with EtOAc (4×40 mL), washed with brine $(3 \times 20 \text{ mL})$, dried (Na₂SO₄), concentrated, and purified by column chromatography (petroleum ether/EtOAc, 4:1, $R_f = 0.3$) to afford a white solid (2.4 g) in 68% yield from compound 4. Mp = 83-84°C; $[\alpha]_{D}^{20}$ +92.2 $(c = 1, CH_3OH);$ ¹H NMR (300 MHz, CDCl₃): $\delta = 1.57$ (s, 9H), 3.75–3.88 (m, 2H), 4.31 (s, 1H), 5.11–5.21 (m, 4H), 5.42 (br, 1H), 7.39 (s, 5H). ¹³C NMR (150 MHz, CDCl₃): $\delta = 29.10$, 41.94, 55.98, 67.60, 78.73, 83.01, 128.23, 128.56, 136.19, 151.80, 156.13, 170.93. MS: $m/z = 350 [M^+]$. Anal. calcd. for C₁₇H₂₂N₂O₆: C, 58.28; H, 6.33; N, 8.00. Found: C, 58.46; H, 6.59; N, 8.24.


Directly reacting **5** with water in THF at room temperature did not give free β -amino **7**; ¹H NMR and electrospary MS indicated the isolated product was a symmetrical urea **8** (Scheme 3).

3805

Scheme 2.

H. Teng et al.



Compound **6**, containing the 5-oxazolidinone moiety, can undergo a ringopening reaction in different alkaline conditions to afford corresponding N^{α}-Boc-N^{β}-Cbz-Dap derivatives in high yields. For example, when it was treated with NaOMe in MeOH at -10° C,^[8a] methyl ester **9** was obtained in 86% yield. Direct saponification of it with 1 N NaOH in MeOH at room temperature^[11] afforded carboxylic acid **10**; opening the ring by aqueous ammonia^[12] in THF provided carboxamide **11** (Scheme 4).

The procedure for the preparation of compound 9 is as follows: Na (80 mg) was added to anhydrous MeOH (32 mL) at -10° C with stirring. Compounds **6** (1.5 mmol) was added when Na was disappeared. After stirring for 1.5 h at this temperature, the solution was diluted with EtOAc (80 mL), 1 N HCl (5 mL), and brine (20 mL). The organic layer was washed with brine (2 × 10 mL), dried (Na₂SO₄), concentrated, and purified by column chromatography (petroleum ether/EtOAc, 2:1, R_f = 0.4) to afford a clear oil (0.45 g) in 86% yield. $[\alpha]_D^{20}$ -9.0 (c = 1, CH₃OH); ¹H NMR (300 MHz, CDCl₃): δ = 1.41 (s, 9H), 3.52–3.58 (m, 2H), 3.69 (s, 3H), 4.34 (s, 1H), 5.05 (s, 2H), 5.43 (br, 1H), 5.60 (br, 1H), 7.29 (s, 5H). ¹³C NMR (150 MHz, CDCl₃): δ = 29.13, 43.45, 53.21, 54.74, 67.39, 80.50, 128.09, 128.47, 136.26, 155.36, 156.66, 171.00. MS: m/z = 352 [M⁺]. Anal. calcd. for C₁₇H₂₄N₂O₆: C, 57.94; H, 6.86; N, 7.95. Found: C, 57.71; H, 7.02; N, 8.07.

Selective removal of Cbz-protecting group of compounds 9-11 via hydrogenolysis (H₂-Pd/C) can afford the corresponding free β -amino in quantitative yield.^[4,7b]

In conclusion, we have developed an economical and facile way to prepare the derivatives of N^{α} -Boc-Dap. The key aspect of this method is

Scheme 4.

3806

employment of N-Boc-5-oxazolidinone moiety to provide a proper protection of the α -amino group and successfully affords the desired isocyanate by a Curtius rearrangement. The advantages over previous approaches are a shorter route by choosing the proper protection strategy, no costly reagents, a conventional procedure, and of good yields.

REFERENCES

- 1. Ikegami, F.; Murakoshi, I. Phytochemistry 1994, 35, 1089.
- (a) Subasinghe, N.; Schulte, M.; Roon, R. J.; Koerner, J. F.; Johnson, R. L. J. Med. Chem. 1992, 35, 4602; (b) Wityak, J.; Sielecki, T. M.; Pinto, D. J.; Emmett, G.; Sze, J. Y.; Liu, J.; Tobin, A.; Wang, S.; Jiang, B.; Ma, P.; Mousa, S. A.; Wexler, R. R.; Olson, R. E. J. Med. Chem. 1997, 40, 50; (c) Fujisawa, T.; Katakura, S.; Odake, S.; Morita, Y.; Yasuda, J.; Yasumatsu, I.; Morikawa, T. Chem. Pharm. Bull. 2001, 49, 1272; (d) Amssoms, K.; Oza, S. L.; Augustyns, K.; Yamani, A.; Lambeir, A. M.; Bal, G.; Veken, P. V.; Fairlamb, A. H.; Haemers, A. Bioorg. Med. Chem. Lett. 2002, 12, 2703; (e) Vig, B. S.; Murray, T. F.; Aldrich, J. V. J. Med. Chem. 2004, 47, 446; (f) Patkar, K. A.; Yan, X.; Murray, T. F.; Aldrich, J. V. J. Med. Chem. 2005, 48, 4500; (g) Greenfield, A.; Grosanu, C.; Dunlop, J.; McIlvain, B.; Carrick, T.; Jow, B.; Lu, Q.; Kowal, D.; Williams, J.; Butera, J. Bioorg. Med. Chem. Lett. 2005, 15, 4985.
- (a) Ratemi, E. S.; Vederas, J. C. *Tetrahedron Lett.* **1994**, *35*, 7605;
 (b) Solomon, M. E.; Lynch, C. L.; Rich, D. H. *Tetrahedron Lett.* **1995**, *36*, 4955;
 (c) Schirlin, D.; Altenburger, J. M. *Synthesis* **1995**, 1351;
 (d) Zhang, L. H.; Kauffman, G. S.; Pesti, J. A.; Yin, J. J. Org. Chem. **1997**, *62*, 6918;
 (e) Robinson, A. J.; Lim, C. Y. J. Org. Chem. **2001**, *66*, 4141.
- 4. Otsuka, M.; Kittaka, A.; Iimori, T.; Yamashita, H.; Kobayashi, S.; Ohno, M. Chem. Pharm. Bull. 1985, 33, 509.
- 5. Waki, M.; Kitajima, Y.; Izumiya, N. Synthesis 1981, 266.
- 6. Lee, E. S.; Juravi, J.; Cushman, M. Tetrahedron 1994, 50, 9873.
- 7. (a) Deng, J.; Hamada, Y.; Shioiri, T. *Tetrahedron Lett.* **1996**, *37*, 2261;
 (b) Englund, E. A.; Gopi, H. N.; Appella, D. H. *Org. Lett.* **2004**, *6*, 213.
- (a) Scholtz, J. M.; Bartlett, P. A. Synthesis 1989, 542; (b) Chollet, J. F.; Miginiac, L.; Rudelle, J.; Bonnemain, J. L. Synth. Commun. 1993, 23, 2101.
- (a) Canonne, P.; Akssira, M.; Dahdouh, A.; Kasmi, H.; Boumzebra, M. *Tetrahe-dron* **1993**, *49*, 1985; (b) Guichard, G.; Semetey, V.; Didierjean, C.; Aubry, A.; Briand, J. P.; Rodriguez, M. J. Org. Chem. **1999**, *64*, 8702.
- 10. Duggan, M. E.; Imagire, J. S. Synthesis 1989, 131.
- (a) Olsen, R. K.; Ramasamy, K. J. Org. Chem. 1985, 50, 2264; (b) Ducrot, P.; Rabhi, C.; Thal, C. Tetrahedron 2000, 56, 2683.
- (a) Ho, T. L.; Gopalan, B.; Nestor, J. J. J. Org. Chem. **1986**, *51*, 2405; (b) Lee, K. I.; Kim, J. H.; Ko, K. Y.; Kim, W. J. Synthesis **1991**, 935.

Copyright of Synthetic Communications is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.