Studies of vibrational spectra of 6-fluorothymine and its methyl derivatives

S. G. STEPANIAN, N. A. SMORYGO, G. G. SHEINA, E. D. RADCHENKO, V. D. YAKOVLEVA, T. N. RUSAVSKAYA, E. P. STUDENTSOV, B. A. IVIN and YU. P. BLAGOI

Institute for Low Temperature Physics and Engineering, UkrSSR Academy of Sciences, Kharkov, U.S.S.R.

(Received 6 March 1989; in final form and accepted 14 July 1989)

Abstract—The solid and the argon-matrix isolated samples of 6-fluorothymine, 1-methyl-6-fluorothymine, 1,3-dimethyl-6-fluorothymine and 3-methylfluorothymine are studied at low temperatures by i.r. spectroscopy. The spectra obtained are interpreted using the calculation of planar normal vibration frequencies. The electronegative fluorine atom in the 6-position is shown to have a strong influence on the normal vibration frequency changes of crystalline and isolated thymine. N-H \cdots F hydrogen bonds are evidenced to exist in crystalline samples.

INTRODUCTION

Infrared spectroscopy is widely employed to investigate the structure of nucleic acid bases and related compounds. The special interest in the derivatives of the pyrimidine base of nucleic acids—thymine and in particular in 6F substitutes and their methylated analogues is connected with their antimetabolic properties [1–3]. The spectra of these compounds are not clearly understood yet. Reference 4 shows the i.r. spectra of 6-fluorothymine solutions in the regions of the stretching vibrations of NH and C=O groups.

This work is therefore aimed at studying the vibrational spectra of 6-fluorothymine, 1-methyl-6fluorothymine and 1,3-dimethyl-6-fluorothymine in the crystalline state and isolated in argon matrices. The experimental results are interpreted on the basis of calculated normal vibrations.

EXPERIMENTAL

The spectra of crystalline samples were registered with an IKS-29 spectrometer on films in Vaseline and perfluorovaseline oils. The method of low temperature matrix isolation in solid argon [5] was used to record spectra of the isolated molecules of 6-fluorothymine and its methylated derivatives. The spectra were registered with a "Specord IR-75" spectrometer, the resolution being 1 cm⁻¹ at 1800-400 cm⁻¹ and 4 cm⁻¹ at 3600 cm⁻¹. To avoid the band splitting due to nitrogen impurities in the argon matrix, it was especially important to use leak-proof vacuum joints (the vacuum was greater than 10⁻⁵ torr). The argon purity was 99.99%. The concentration of the substances investigated in the matrix was controlled with quartz microbalances and was one molecule per 1000 argon atoms. The detailed description of the measurement method and sample preparation can be found in Ref. 6.

MATERIALS

The samples of 6-fluorothymine were prepared by alkali hydrolysis of 2,4,6-trifluoro-5-methylpyrimidine in the form of colourless crystals: $\lambda_{max} = 270 \text{ nm}$ ($\varepsilon = 3.98$).

1-Methyl-3-methyl-1,3-dimethyl-6-fluorothymine were prepared through an interaction between 6fluorothymine and dimethylsulphate in water in the presence of alkali with the molar proportions 1:1, 3:1,3 at 20–25°C for 2 h. Pure methylated derivatives of 6fluorothymine were obtained after fractional crystallization of the precipitate from chloroform:

1-methyl-6-fluorothymine— $\lambda_{max} = 257$ nm ($\varepsilon = 3.89$); 3-methyl-6-fluorothymine— $\lambda_{max} = 256$ nm ($\varepsilon = 3.83$); 1,3-dimethyl-6-fluorothymine— $\lambda_{max} = 250$ nm ($\varepsilon = 3.93$).

CALCULATION

The vibrational spectra were calculated using the programs compiled by GRIBOV and DEMENTIEV [7, 8] and the force constants of thymine [9]. The geometrical sizes of the crystalline 6-fluorothymine molecule were similar to those of thymine [8]. The C-F bond length was taken to be the same as in the fluorobenzene molecule, i.e. 1.29 Å [10]. The vibrational spectra of 6-fluorothymine in the argon matrix were calculated using the same bond lengths and valence angles as obtained by the quantum-chemical method for the thymine molecule with complete geometrical optimization [11]. Calculations involved the valence-force field method.

RESULTS AND DISCUSSION

NH- stretching vibrations

A comparison of the i.r. spectra for thymine, 6fluorothymine and its methyl derivatives (Fig. 1, Table 1) shows that a fluorine atom introduced into the 6position induces significant changes in the region of the NH stretching vibrations.

Firstly, instead of the two intensive bands observed at 3180 and 3033 cm⁻¹ in the spectra of solid samples $(N_1H_{str} \text{ and } N_3H_{str} \text{ of thymine [9], respectively), the$ spectrum of 6-fluorothymine displays doublets at

6-Fluorothymine		1-Methyl-	3-Methyl-	1,3-Dimethyl-	
Observed	Calculated	Observed	Observed	Observed	Туре
3210	3203	3175	_		N ₃ H str
3105	3096	3120	3125		$N_1 H$ str
3081			3105		•
785	795	760	762	750	C_5-R (CH ₃) str
1150	1138	1165	1150	1170	C ₆ -F str
1745	1741	1725	1745	1715	$C_{2} = O \text{ str}, C_{2} - N \text{ str},$
1730			1738		C=C str
1702	1697	1690	1698	1686	$C_{4}=O$ str, $C=C$ str
1652	1648	1670	1625	1645	$C_4 = O \text{ str}, C = C \text{ str}$
1524	1525	1490	1555	1450	Ring str
1400	1403	1425	1390		Ring str, N ₃ H bend
1250	1237	1245	1240	1265	Ring str, N ₁ H bend
985	964	965	975	925	Ring str, ring bend
1025	1009	_	1048	1030	Ring str, ring bend
1310	1306		1305		N_1H bend
1466	1442	1455			N ₃ H bend
345	333	_	354		$C_{s} - R$ str
	314		_		$C_6 - R$ str
	596	610			C=O bend
382	383		382		C=O bend
728	728	728	720	722	Ring bend
645	681	668	655	652	Ring bend
530	542	532			Ring bend
2900	3000	3020	3000	3040	CH_3 str as
2964	2927	2920	2960	2940	CH_3 str s
1492	1478	1480	1450	1475	CH ₃ bend sciss.
1305	1336	1312	1315		Ring str,
					C–CH ₃ str

Table 1. Observed and calculated frequencies of planar vibrations of 6-fluorothymine and its methylated derivatives*

*Abbreviations: str, stretching; bend, bending. Frequency in cm⁻¹.

Fig. 1. Infrared spectra of solid samples of 6-fluorothymine and its methylated derivatives: (1) 6-fluorothymine, (2) 1methyl-6-fluorothymine, (3) 1,3-dimethyl-6-fluorothymine, (4) 3-methyl-6-fluorothymine.

3105, 3081 cm⁻¹ and a broad band at 3210 cm⁻¹. The spectra of 1-methyl- and 3-methyl-derivatives of 6-fluorothymine also have doublets in this region: 3175, 3120 cm⁻¹ and 3125, 3105 cm⁻¹, respectively. In addition, the calculation shows that, unlike thymine [9], the high-frequency band in the vibrational spectrum of 6-fluorothymine is due to N_3H_{str} vibrations and the

low-frequency one to N_1H_{str} vibrations, i.e. the N_1H_{str} and N_3H_{str} bands are observed to reverse (Table 1). The significant lowering of the N_1H_{str} frequency (by *ca* 60–80 cm⁻¹) in the 6-fluorothymine and 3-methyl-6fluorothymine spectra is accounted for by the formation of the hydrogen bond $N_1H \cdots F$ in the intermolecular complexes of various structures (Fig. 2). The probability of two types of complex is supported by the NH_{str} band splitting in the spectra of all the 6fluorothymines studied. In the absence of a strong

Fig. 2. The structure of 6-fluorothymine complexes with $N-H \cdots F$ hydrogen bonds.

Fig. 3. Calculated (top) and observed (argon matrix, 11 K) vibrational spectra of 6-fluorothymine. The bands assigned to C-F bond vibrations (stretching, bending and out-of-plane) are marked.

molecular interaction the N_1H_{str} and N_3H_{str} frequencies (3463 and 3438 cm⁻¹) of matrix-isolated 6-fluorothymine (Fig. 3 and Table 2) are in good agreement with the corresponding frequencies of matrix-isolated thymine (3478 and 3431 cm⁻¹) (Table 3). The 15 cm⁻¹ decrease of the N_1H_{str} frequency is due to the lowering of the N_1H bond order by the fluorine atom introduced into the 6-position. Conclusions on the effect of molecular interaction upon the particular structural fragments may be drawn from a comparison of the force constants for solid and isolated 6-fluorothymines (Table 4).

NH deformation vibrations

Our assumptions on the effects produced by the fluorine atom substitution are also supported by the changes in the i.r. spectra occurring in the region of N_1H and N_3H_{def} vibrations. While in the series thymine, 6-fluorothymine, 1-methyl- and 6-fluorothymine the N_3H_{def} frequency changes only slightly, the N_1H_{def} frequency increases by 150 cm⁻¹ in the spectra of solid samples (due to the formation of hydrogen bonds, $N_1H \cdots F$) and decreases in the spectra of matrix-isolated molecules (Tables 1 and 2).

C-F bond vibrations

The formation of the $N_1H \dots F$ hydrogen bond is also suggested by the changes in the C-F_{str} vibrations. They are similar in the i.r. spectra of solid 6-fluorothymine and 3-methyl-6-fluorothymine and more appreciable in the i.r. spectra of 1-methyl-6fluorothymine and 1,3-dimethyl-6-fluorothymine, which cannot form hydrogen bonds involving fluorine.

The spectra of all the matrix-isolated 6-fluorothymine molecules contain intensive bands with close magnitudes (Fig. 3, Table 2), which correspond to stretching and deformation vibrations of the C-F bond. The C-F vibrations are beyond the spectral capabilities of the instruments used. A strong 450 cm^{-1} band was observed only in the i.r. spectrum of 1-methyl-6-fluorothymine.

Carbonyl group vibrations

The fluorine atom introduced into the 6-position of thymine appreciably affects the formation of intermolecular hydrogen bonds between the carbonyl groups and NH bonds. It has been shown [2] that the presence of F at C₆ suppresses the proton-acceptor ability of the C₄=O group but does not influence the C₂=O group. The stretching vibration frequency of the fragment $O=C_4-C_5=C_6$ is observed to increase as compared to that of thymine (Table 3). The doublets observed in the region of C=O_{str} vibrations (Fig. 1) in the spectra of both solid samples and solutions [1] suggest that in addition to the hydrogen bonds N₁-H ··· F, the group N₁H forms the hydrogen bonds C₂=O ··· HN₁.

The data in Table 4 indicate that methylation leads to a low-frequency shift of $C=O_{str}$ vibrations in the spectra of matrix-isolated molecules, the $C_2=O_{str}$ vibrations being shifted by N₁-methylation, and $C_2=O_{str}$ and $C_4=O_{str}$ vibrations by N₁- and N₃methylation.

Ring vibrations

Calculation of the normal vibration modes shows that many vibrations of the pyrimidine cycle are contributed by NH deformation vibrations sensitive to molecular interactions. The transition from an associated molecule to a matrix-isolated one is therefore accompanied by a sharp increase in the vibration

cu dell'vauves	othymine	Lype	V ₁ H str V ₃ H str 1714 + 1711		CH ₃ (C ₅) str	CH ₃ (N ₁) str		ne (Ext) Ett-	C ₂ O str		od Str, C≡U Str CeCe str		Ring str	Ring str, N ₃ H bend	ting str	חווע אווי		CH ₃ bend			Sing str	V ₃ H bend	ting str	CH ₃ (C ₅) bend	$(H_3(N_1))$ bend
יווות זוא וווכווואזימי	imethyl-6-fluor	Frequency 7		3012)	2989 > 2936 > 0	2984	2994) 2084 }	2920	1719 (1712		1682 F		1404	14501	1448	1447	1438	1436	ш.	4	1392 H	1366	1360 C
	1,3-D	I							42		57		66		ç	12	57	sh					ŝ	0	
	Ct.	Ubserved							1723		1707		1677		1487	1460	[1447	1442					1386	1366	
iorational spect	othymine	Frequency	3434	3012	2936 2936 2005	2984 2921 2921			1741	0021	1703		1695	1497	1470	1450	1448	1438	1436			1384	1372	1366	1360
laleu v	5-fluore	I	18 1					sh	62 sh	5	66	sh	4	25	35	3 =	25					7	ε	-	П
	1-Methyl-	Frequency	3436 3425					ر 1750	{ 1745 1738	1121	1/14	J 1693) 1690	1487	1487	1460	1445					1379	1368	C051	1355
Iduiv,		I	42 28	20	2 4				66	Š	4 K			15	<u>.</u> .	r	6	6			14	6	ţ	n	
oserveu (argon n	thymine Colordoted	Frequency	3454 3434	3012	2936 2936				1769	1021	1706			1512	1475		1450	1438			1415	1382		1300	
5 ; ;	Fluoro	-	30 21					ŝ	66 9	ωć	£8			21	1 1 1	16	9				12	ŝ		٥	
Iadi	-9 Observed	Coserved Frequency	3463 3438					ر 1779	{ 1764 1744	{ 1727	1712			1501	1460	7041	1443				1406	1375		6661	

matrix 11 K) and calculated vibrational spectra of 6-fluorothymine and its methylated derivatives* Table 2 Observed (aroon

C ₅ -CH ₃ str N.H. bend	N ₁ -CH ₃ str N ₁ -CH ₂ str	C-F str	N ₃ H bend, N ₁ H bend N.H ring bend	Ring bend, C-F str	Ring str, N ₃ -CH ₃ str	Ring str, ring bend	Ring str, N ₁ -CH ₃ str	CH ₃ bend	CH ₃ bend	CH ₃ bend	Ding hand	NIIIB DEIIO	C ₂ O bend	Ring bend	CH bend, C=O bend			Ring bend, C-F bend	Ring bend		King bend		C_F bend				N ₁ -CH ₃ bend	N ₃ -CH ₃ bend	ling.
1289	1278	1182		1089	1060	1052	1047	1032	1027	962 }	954)	016	762	770	738					007	490		430		+6C	660 000	380	367	: bend, bend
\$	10	42		S	10	S	21				v	ŋ	31			S					ł	n -	-						stretching
1287	1276	1175		1074	1069	1057	1052				005	CDK	757			654						402	004						ged bands; str.
1287	1278	1180	1152					1036	1031	963 963			763	762	729			009		503	cnc		438						indicate mer
٢	٢	29	П					ŝ	1				18	e	1		7	e		Ą	sn	n	40	2					der; braces
1289	1233	1174	1140					1053	1051				758	751	722		627	611		007	06 1	480	450	200	205	040	575		band shoul
ოო		47	ς							-			47	-					4				54		• •	4			tensity: sh.
1287 1226	1	1182	1153 1109						1012	202			760	758				-	509				440	403		t /C			I. relative in
9 6		24	6 9					,	، ص	n		9	21	3	6	6	12		6	S	•		-						' in cm ⁻¹ :
1282 1212	1	1194	1175 1123						1003	014		760	757	752	748	666	623	4	518	480	0.1	460							*Frequency

S. G. STEPANIAN et al.

Observed [12]		Calculate	ed	Observed	[12]	Calculat	cd
Frequency	Ī	Frequency	Туре	Frequency	Ī	Frequency	Туре
3478	19	3480	N ₁ H str	1311	1		661 + 661
3431	15	3433	N ₃ H str	1305	1		543 + 762
		3013	$C_m - H str \dagger$	1294	1	1288	$C_s C_m$ str
		2990	***	(1198	3	1205	C _c H ⁱⁱ bend
		2934		L1182	31	1177	N_1H bend, C_6H bend
1766	74	1761	C ₂ O str	1086	5	1096	Ring bend, ring str
∫1749	57		2			1050	C.H bend
<u></u> 1744	50	1740	C_4O str, $C_5=C_6$ str	959	3	963	C _m H bend
1722	36		4 / 5 0	890	4	902	Ring str, ring bend
1710	100	1703	$C_5 = C_6 \text{ str}, C_4 O \text{ str}$	762	11	756	Ring bend, C ₆ H bend
1681	15	1676	Ring str, N ₁ H bend	752	10	747	Ring bend
1667	11	1653	Ring str, N ₃ H bend			724	C _m H bend
1470	23	1483	Ring str, C ₆ H bend	661	17		
1456	2	1454	C _m H bend	543	21	534	C ₂ O bend, ring bend
1451	2	1443	C_{6}^{m} H bend, ring str	453	6	456	C_2O bend, C_4O bend
1434	2	1439	C _m H bend			387	C_sC_m bend
1404	21	1411	N ₃ H bend				·
1388	4	1382	Ring str				
1365	1	1366	$C_m \tilde{H}$ bend				
1354	1						
1344	1						

Table 3. Observed (argon matrix, 11 K) and calculated vibrational spectra of thymine*

*See Table 2, †m, methyl.

Table 4. Force constants of 6-fluorothymine and its methylated derivatives (10^6 cm^{-2})

	6-Fh	orothymine	1-Methyl-6- fluorothymine	1,3-Dimethyl-6- fluorothymine
K of bond	Solid	Argon matrix	Argon matrix	Argon matrix
C ₂ =0	18.5	18.12	18.7	18.4
C₄=O	17.83	16.8	17.9	17.3
Č-F	11.6	12.8	12.8	12.8
$N_1 - C_2$	10.3	10.4	10.4	10.35
$\dot{C_2 - N_3}$	9.1	10.4	10.4	10.35
N ₃ -C ₄	10.3	10.4	10.4	10.4
$C_{4} - C_{5}$	9.5	10.6	10.6	10.6
C _s -C _s	14.0	14.9	14.8	14.8
$C_6 - N_1$	10.3	10.9	10.7	10.7

frequencies of the ring, which are contributed by the NH_{def} vibrations.

The ring vibrations in the region from 1500 to 400 cm^{-1} involving the bonds of the $C_5=C_6-N_1$ fragment, are highly sensitive to the substitution of fluorine for the proton at C_6 , to N_1 - and N_3 -methylation and to the transition from the solid state to the isolated one.

Methyl group vibrations

In the 1500–900 cm⁻¹ region many bands in the experimental spectra refer to the deformation vibrations of the methyl groups and are of medium intensity. According to the calculation, many vibrations of the ring are mixed with those of CH(methyl)_{def} in this region. The medium intensity bands in the 1270-1290 cm⁻¹ region correspond to C-CH_{3 str} and N-CH_{3 str} vibrations.

CONCLUSIONS

A comparison of the spectra taken on solid and matrix-isolated samples of thymine, 6-fluorothymine and its methyl derivatives and the calculation of their vibrations permit the following conclusions.

(1) The frequencies and modes of normal vibrations of thymine are strongly influenced by the electronegative fluorine atom introduced into the 6-position. The suppression of the electron-acceptor properties of the C₄O group leads to an increase in the frequency of the vibrations corresponding to the stretching vibrations of the $O=C_4-C_5=C_6$.

(2) The formation of the hydrogen bond $N_1H \cdots F$ significantly decreases the N_1H_{str} frequency and increases the N_1H_{def} frequency.

(3) Intermolecular complexes of various structures may be formed in the condensed state with hydrogen

bonds, $N_1-H \cdots F$ or $N_1-H \cdots O-C_2$, which leads to the splitting of the N_1H_{str} and C_2O_{str} bands.

(4) On transition from the solid state to the matrixisolated one, the frequencies of the ring stretching vibrations involving the NH groups and of the $C=O_{str}$ vibrations are observed to increase significantly.

REFERENCES

- G. V. GUSAKOVA, A. I. KULBIDA, G. N. PLEKHOVA and A. A. SMOLJANSKII, Zurn. Prikl. Spektr. 46, 598 (1987).
- [2] D. BARWOLFF, D. CECH, G. EZOLD, P. LANGEN and H. MEINERT, J. Prakt. Chem. 313, 602 (1971).
- [3] Patent 86828 D.D.R; Verfahren zur Hergtellung von 6-Fluorthymine, D. BARWOLFF, D. CECH, G. EZOLD, P. LANGEN and H. MEINERT (D.D.R.).
- [4] E. MATTEHES, CH. LEHMAN and P. LANGEN, Int. Symp. Present State and Perspectives in Application of Inhibitors of Nucleic Acids and Protein Synthesis. Varna, Bulgaria, 7-11 October 1985.

- [5] Matrix Isolation Spectroscopy and Molecular Structure (Edited by L. ANDREWS and W. J. ORVILL-THOMAS). Special issue. J. Molec. Struct. 157, 1 (1988).
- [6] E. D. RADCHENKO, G. G. SHEINA, N. A. SMORYGO and YU. P. BLAGOI, J. Molec. Struct. 116, 387 (1984).
- [7] L. A. GRIBOV. Vvedenie v Molekularnuyu Spektroskopiyu (Introduction to Molecular Spectroscopy). Nauka, Moscow (1976).
- [8] L. A. GRIBOV and V. A. DEMENTIEV, Metody i Algoritmy vychislenii v teorii Kolebatelnykh Spektrov Molekul (Methods and Algorithms of Computation in the Theory of Vibrational Spectra of Molecules). Nauka, Moscow (1981).
- [9] N. A. SMORYGO and B. A. IVIN, Khim. Geterocycl. Soed. 1, 105 (1975).
- [10] L. M. SVERDLOV, M. A. KOVNER and KRAINOV, Kolebatelnye Spektry Mnogoatomnykh Molekul, p. 560. Moscow (1970).
- [11] A. BUDA and A. SYGULA, J. Molec. Struct. 92, 267 (1983).
- [12] E. D. RADCHENKO, A. M. PLOKHOTNICHENKO, G. G. SHEINA and YU. P. BLAGOI, *Biofizika* 28, 923 (1983).