

Available online at www.sciencedirect.com

Tetrahedron: *Asymmetry*

Tetrahedron: Asymmetry 18 (2007) 1495–1501

Synthesis of enantiopure 4-amino-3-hydroxymethyltetrahydroquinolines via an intramolecular nitrone cycloaddition

Gianluigi Broggini,* Francesco Colombo, Ivan De Marchi, Simona Galli, Michela Martinelli and Gaetano Zecchi

Dipartimento di Scienze Chimiche e Ambientali, Università dell'Insubria, via Valleggio 11, 22100 Como, Italy

Received 17 May 2007; accepted 6 June 2007 Available online 5 July 2007

Abstract—Enantiopure 4-amino-3-hydroxymethyl-1,2,3,4-tetrahydroquinolines are synthesized by using an intramolecular cycloaddition of chiral nitrones prepared from aldehydes **5** and (R)- α -(hydroxymethyl)benzylhydroxylamine. Reaction times of the nitrone cycloaddition were optimized by activation under MW-assisted conditions. The absolute configuration of the products was determined by X-ray analysis.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Nitrones are very useful tools for the construction of structurally complex molecules, in particular nitrogen-containing biologically active compounds.¹ One of the most fruitful synthetic methodologies is represented by 1,3-dipolar nitrone cycloadditions in an intramolecular sense,² which allow direct access to fused- or bridged-ring structures, often with a high degree of diastereocontrol. The isoxazolidine derived ring is then susceptible to reductive³ or oxidative⁴ transformations yielding polifunctionalized products.

Considerable effort has been devoted to intramolecular cycloadditions of non-racemic chiral nitrones, above all having a benzylic nature⁵ or sugar-derived structure.⁶

1,2,3,4-Tetrahydroquinolines are an important class of compounds among which there are antitumour,⁷ cardio-vascular,⁸ immunosuppressant,⁹ NMDA antagonist,¹⁰ antiallergic,¹¹ antibacterial,¹² analgesic,¹³ and antipsychotic¹⁴ agents.

Our synthetic protocol allows access to enantiopure functionalized tetrahydroquinolines by means of the intramolecular cycloaddition of key intermediates of type A, bearing a stereocentre at the R'-pendant, available from

0957-4166/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2007.06.004

aldehydes **B**. In turn, we envisaged the possibility of synthesizing intermediates **B** starting from benzoic acids with electron-donor substituents in order to introduce the formyl group under Vilsmeier conditions.

2. Results and discussion

Among the commercially available 4-substituted benzoic acids, 3,4,5-trimethoxy, 3-methoxy-4-methyl, and 3,4methylenedioxy ones 1a-c were chosen as starting materials for our purpose. As depicted in Scheme 1, compounds 1 were converted in the corresponding acyl azides 2, which were subsequently refluxed in EtOH to afford carbamates 3 as the product of Curtius degradation. N-Allylation took place in THF with NaH as base giving allylanilines 4, which were submitted to a Vilsmeier formylation in DMF and POCl₃. The latter reaction gave rise to only one isomer in all cases, the attack at the less encumbered *o*-position being most effective.

(R)- α -(Hydroxymethyl)benzylhydroxylamine, whose synthesis has been reported in the literature,^{5d} was chosen as

^{*} Corresponding author. Tel.: +39 031 2386444; fax: +39 031 2386449; e-mail: gianluigi.broggini@uninsubria.it

Scheme 1. Synthesis of substituted 2-(*N*-allyl-*N*-carbethoxy-amino)-benzaldehydes 5.

the chiral reaction partner of aldehydes 5 in order to generate the non-racemic nitrones (R)-7. The attempt to generate nitrones 7 failed when the reaction was carried out in diethyl ether at room temperature. However, nitrones (R)-7 were successfully prepared and immediately transformed into cycloadducts in a one-pot reaction by refluxing reactants 5 and (R)-6 in dry toluene for 24 h in the presence of anhydrous MgSO₄ (Scheme 2). The resulting crude mixtures contained two products, which were isolated in a pure state by chromatography. Analytical and spectral data are consistent with diastereoisomeric cycloadducts both having a fused-ring skeleton. With the known R-configuration of the α -stereocentre, the absolute configuration of the minor product derived from nitrone 7b (i.e., 9b) was established to be αR , 3aS, 9bS by X-ray diffractrometric analysis (see Fig. 1). So, the same stereochemistry was reasonably ascribed to the other minor cycloadducts 9a,c.

The regioselective and stereoselective outcome of the cycloaddition deserves some comments. Firstly, the regioselectivity was total being operative only with the approach which binds the nitrone carbon atom to the inner atom of the ethylenic bond. Moreover, all products show a *cis* relationship of the two new stereocentres as a consequence of the intramolecular nature of the reaction, which feels the effect of the strict geometric restraint between dipole and dipolarophile. The induction exerted by the pre-existent stereocentre gave rise to a good diastereoselectivity in the case of nitrones (*R*)-**7b** and (*R*)-**7c** while, unaccountably, no chiral induction was operative in the case of (*R*)-**7a**. As depicted in Figure 2, the intramolecular hydrogen bond

Scheme 2. Formation and ring opening of cycloadducts 8 and 9.

Figure 1. ORTEP plot of 9b. Atomic displacement parameters at 20% probability level. The CH₂CH₃ residue has been depicted by considering an average ordered model (see Section 4).

of the hydroxyl group with the oxygen atom of the (Z)-nitrone determines a chair-like conformation. If the phenyl

Figure 2. Proposed approach of the functional groups for the formation of compounds 8 and 9.

group reasonably occupies the equatorial position, the allylic moiety preferably approaches from the upper face (\mathbf{C}) to avoid steric repulsions.

Since nitrone cycloadditions are ideal candidates for acceleration by microwaves,¹⁵ a series of experiments were carried out under microwave irradiation with the aim of reducing the reaction time. When the mixture of aldehydes **5**, hydroxylamine (R)-**6** and MgSO₄ in toluene was irradiated at 100 °C in a multimode oven equipped with temperature control at 250 W for 70 min, the cycloaddition process occurred with similar yield and diastereoselective ratio to those obtained by conventional heating.

The last step of our work consisted of the hydrogenolytic treatment of the cycloadducts with the aim of opening the isoxazole ring and removing the benzylic chiral pendant. Compounds **8a–c** and **9a–c** were submitted to hydrogenation in methanol in the presence of Pd(OH)₂ giving both the enantiomers of the 4-amino-3-hydroxymethyl-1,2,3,4-tetrahydroquinolines **10a–c**. The enantiomeric purity of the final β -aminoalcohols was confirmed by taking the NMR spectra of compound (+)-**10c** and of its racemate in the presence of (*R*)-*O*-acetylmandelic acid.

3. Conclusion

In conclusion, intramolecular nitrone cycloadditions have been demonstrated to be useful key reactions in the synthesis of highly functionalized 1,2,3,4-tetrahydroquinolines starting from simple 4-substituted benzoic acids.

4. Experimental

4.1. General

Melting points were determined on a Büchi B-540 heating apparatus and are uncorrected. Optical rotations were measured on a Jasco P-1010 polarimeter. ¹H NMR and ¹³C NMR spectra were obtained on an AVANCE Bruker 400. Chemical shifts are given in parts per million downfield from SiMe₄; ¹³C NMR spectra are ¹H-decoupled and the determination of the multiplicities was achieved by the APT pulse sequence. IR spectra were recorded on a Jasco FT/IR 5300 spectrophotometer. Mass spectra were determined on a WG-70EQ instrument.

4.2. General procedure for the preparation of benzoyl azides 2a-c

These compounds were prepared as described in the literature. 16

4.2.1. 3-Methoxy-4-methyl-benzoyl azide 2b. Yield: 89%. Mp 104–105 °C (diisopropyl ether). IR (Nujol): 2139, 1687 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 2.29 (3H, s), 3.90 (3H, s), 7.21 (1H, d, J = 7.7 Hz), 7.47 (1H, s), 7.56 (1H, d, J = 7.7 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 16.0 (q), 55.6 (t), 126.4 (d), 128.2 (d), 132.1 (d), 134.9 (s), 139.1 (s), 143.4 (s), 168.0 (s). MS: m/z 191 (M⁺). Anal. Calcd for C₉H₉N₃O₂: C, 56.54; H, 4.74; N, 21.98. Found: C, 56.35; H, 4.91; N, 22.12.

4.3. General procedure for the preparation of *N*-carbethoxybenzenamines 3a-c

A solution of 2a-c (11.7 mmol) in EtOH (20 ml) and toluene (30 ml) was heated at reflux for 24 h. The solvent was removed under reduced pressure to directly give the product.

4.3.1. *N*-Carbethoxy-3,4,5-trimethoxy-benzenamine **3a.** Yield: 88%. Mp 88–90 °C (diisopropyl ether). IR (Nujol): 1705 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 1.32 (3H, t, J = 7.1 Hz), 3.82 (3H, s), 3.86 (6H, s), 4.23 (2H, q, J = 7.1 Hz), 6.55 (1H, br s, missing after deuteriation), 6.69 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 14.8 (q), 56.2 (q), 56.5 (q), 61.1 (q), 61.2 (t), 96.7 (d), 133.8 (s), 135.0 (s), 153.6 (s), 154.4 (s). MS: m/z 255 (M⁺). Anal. Calcd for C₁₂H₁₇NO₅: C, 56.46; H, 6.71; N, 5.49. Found: C, 56.25; H, 6.99; N, 5.43.

4.3.2. *N*-**Carbethoxy-3-methoxy-4-methyl-benzenamine 3b.** Yield: 87%. Mp 68–70 °C (diisopropyl ether). IR (Nujol): 1702 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 1.33 (3H, t, J = 7.1 Hz), 2.17 (3H, s), 3.84 (3H, s), 4.23 (2H, q, J = 7.1 Hz), 6.59 (1H, s), 6.68 (1H, d, J = 8.0 Hz), 7.03 (1H, d, J = 8.0 Hz), 7.18 (1H, br s, missing after deuteriation); ¹³C NMR (100 MHz, CDCl₃) δ : 14.9 (q), 16.0 (q), 55.6 (t), 61.4 (t), 102.3 (d), 110.9 (d), 121.7 (s), 130.8 (d), 137.6 (s), 154.5 (s), 158.3 (s). MS: m/z 209 (M⁺). Anal. Calcd for C₁₁H₁₅NO₃: C, 63.14; H, 7.23; N, 6.69. Found: C, 63.01; H, 7.48; N, 6.48.

4.3.3. 5-Carbethoxyamino-benzo[1,3]dioxole 3c. Yield: 91%. Mp 79–81 °C. IR (Nujol): 1704 cm^{-1} . ¹H NMR (400 MHz, CDCl₃) δ : 1.31 (3H, t, J = 7.1 Hz), 4.22 (2H, q, J = 7.1 Hz), 5.95 (2H, s), 6.56 (1H, s), 6.69 (1H, d, J = 8.3 Hz), 6.73 (1H, d, J = 8.3 Hz), 7.10 (1H, br s, missing after deuteriation); ¹³C NMR (100 MHz, CDCl₃) δ : 14.9 (q), 61.6 (t), 101.5 (t), 102.4 (d), 108.4 (d), 112.5 (d), 132.7 (s), 144.1 (s), 148.3 (s), 154.4 (s). MS: m/z 209 (M⁺). Anal. Calcd for C₁₀H₁₁NO₄: C, 57.41; H, 5.30; N, 6.70. Found: C, 57.18; H, 5.49; N, 6.92.

4.4. General procedure for the preparation of *N*-allyl-*N*-carbethoxy-benzenamines 4a–c

NaH (155 mg, 6.46 mmol) was added in an N₂ atmosphere to a solution of **3a–c** (4.31 mmol) in dry THF (50 ml). Allyl bromide (1.04 g, 8.62 mmol) was added at -3 °C, and then the mixture was refluxed for 24 h. After cooling at room temperature, H₂O was added. The mixture was extracted with CH₂Cl₂ (2 × 60 ml), and the organic layer was dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude products were purified through a silica gel column with light petroleum/AcOEt = 10/1 as eluent.

4.4.1. *N*-Allyl-*N*-carbethoxy-3,4,5-trimethoxy-benzenamine **4a.** Yield: 95%. Oil. IR (Nujol): 1703 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 1.24 (3H, t, J = 7.0 Hz), 3.81 (6H, s), 3.83 (3H, s), 4.17 (2H, q, J = 7.0 Hz), 4.21 (2H, d, J = 5.8 Hz), 5.15 (1H, dd, J = 1.4, 17.2 Hz), 5.17 (1H, dd, J = 1.4, 10.2 Hz), 5.93 (1H, tdd, J = 5.8, 10.2, 17.2 Hz), 6.46 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 14.9 (q), 53.8 (t), 56.4 (q), 56.5 (q), 61.1 (q), 62.0 (t), 104.7 (d), 104.8 (d), 117.3 (t), 134.5 (d), 136.8 (s), 138.4 (s), 153.3 (s), 153.4 (s), 155.8 (s). MS: m/z 295 (M⁺). Anal. Calcd for C₁₅H₂₁NO₅: C, 61.00; H, 7.17; N, 4.74. Found: C, 60.79; H, 7.28; N, 4.96.

4.4.2. *N*-Allyl-*N*-carbethoxy-3-methoxy-4-methyl-benzenamine **4b.** Yield: 80%. Oil. IR (Nujol): 1707 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 1.25 (3H, t, J = 6.9 Hz), 2.21 (3H, s), 3.81 (3H, s), 4.19 (2H, q, J = 6.9 Hz), 4.26 (2H, d, J = 5.8 Hz), 5.15 (1H, dd, J = 0.7, 10.0 Hz), 5.18 (1H, dd, J = 0.7, 17.2 Hz), 5.95 (1H, tdd, J = 5.8, 10.0, 17.2 Hz), 6.72–6.74 (2H, overlapping), 7.08 (1H, d, J = 8.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 14.9 (q), 16.1 (q), 55.6 (t), 55.4 (d), 61.8 (t), 109.4 (d), 117.1 (t), 118.6 (d), 125.0 (s), 130.6 (d), 134.6 (d), 141.5 (s), 155.7 (s), 158.0 (s). MS: m/z 249 (M⁺). Anal. Calcd for C₁₄H₁₉NO₃: C, 67.45; H, 7.68; N, 5.62. Found: C, 67.42; H, 7.94; N, 5.47.

4.4.3. 5-(*N*-Allyl-*N*-carbethoxy-amino)-benzo[1,3]dioxole 4c. Yield: 86%. Oil. IR (Nujol): 1703 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 1.23 (3H, t, J = 7.0 Hz), 4.16 (2H, q, J = 7.0 Hz), 4.19 (2H, d, J = 5.9 Hz), 5.13 (1H, d, J = 16.4 Hz), 5.15 (1H, d, J = 11.3 Hz), 5.95 (1H, ddd, J = 5.9, 11.3, 16.4 Hz), 5.98 (2H, s), 6.65–6.71 (2H, overlapping), 6.76 (1H, d, J = 8.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 14.5 (q), 53.7 (t), 61.8 (t), 101.7 (t), 108.1 (d), 108.8 (d), 117.3 (t), 120.5 (d), 134.2 (d), 136.4 (s), 146.3 (s), 148.0 (s), 155.7 (s). MS: m/z 249 (M⁺). Anal. Calcd for C₁₃H₁₅NO₄: C, 62.64; H, 6.07; N, 5.62. Found: C, 62.74; H, 5.79; N, 5.43.

4.5. General procedure for the preparation of 2-formyl-*N*-allyl-*N*-carbethoxy-benzenamines 5a–c

A solution of POCl₃ (6.3 g, 0.041 mol) in DMF (9.5 ml) was stirred at 0 °C for 1 h under N₂. After the addition of a solution of 4a-c (0.013 mol) in 2 ml CHCl₃, the mix-

ture was warmed at 90 °C for 48 h. The mixture was adjusted to pH 8 with NaHCO₃, then vigorously stirred for 1 h and extracted with CH₂Cl₂ (2×250 ml). The organic layer was dried over Na₂SO₄ and the solvent removed under reduced pressure. The crude products were purified through a silica gel column.

4.5.1. *N*-Allyl-*N*-carbethoxy-2-formyl-3,4,5-trimethoxybenzenamine 5a. Eluent: light petroleum/AcOEt = 3/1. Yield: 74%. Mp 58–60 °C (diisopropyl ether). IR (Nujol): 1715, 1663 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 1.09 (3H, br s), 3.89 (6H, s), 3.99 (3H, s), 4.03–4.20 (3H, overlapping), 4.43 (1H, br s), 5.08 (1H, dd, J = 1.4, 10.2 Hz), 5.12 (1H, dd, J = 1.4, 17.2 Hz), 5.90 (1H, tdd, J = 5.9, 10.2, 17.2 Hz), 6.51 (1H, s), 10.20 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 14.8 (q), 53.8 (t), 56.5 (q), 61.2 (q), 61.9 (t), 62.7 (q), 109.2 (d), 117.9 (t), 119.9 (s), 134.2 (d), 138.7 (s), 141.3 (s), 155.5 (s) 157.6 (s), 158.3 (s), 188.3 (d). MS: m/z 323 (M⁺). Anal. Calcd for C₁₆H₂₁NO₆: C, 59.43; H, 6.55; N, 4.33. Found: C, 59.58; H, 6.30; N, 4.11.

4.5.2. *N*-Allyl-*N*-carbethoxy-2-formyl-5-methoxy-4-methylbenzenamine 5b. Eluent: light petroleum/AcOEt = 5/1. Yield: 48%. Oil. IR (Nujol): 1718, 1667 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 1.12 (3H, t, J = 7.1 Hz), 2.24 (3H, s), 3.89 (3H, s), 4.18 (2H, q, J = 7.1 Hz), 4.24 (2H, d, J = 5.9 Hz), 5.12 (1H, d, J = 16.1 Hz), 5.16 (1H, d, J = 9.0 Hz), 5.95 (1H, tdd, J = 5.9, 9.0, 16.1 Hz), 6.64 (1H, s), 7.69 (1H, s), 9.93 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 14.8 (q), 16.0 (q), 54.3 (t), 56.1 (q), 62.3 (t), 106.3 (d), 117.7 (t), 125.8 (s), 126.9 (s), 131.3 (d), 133.4 (d), 144.2 (s), 155.7 (s) 163.1 (s), 189.0 (d). MS: m/z 277 (M⁺). Anal. Calcd for C₁₅H₁₉NO₄: C, 64.97; H, 6.91; N, 5.05. Found: C, 65.13; H, 6.66; N, 5.16.

4.5.3. 5-(*N*-Allyl-*N*-carbethoxy-amino)-6-formyl-benzo-[1,3]dioxole **5c.** Eluent: light petroleum/AcOEt = 1/1. Yield: 41%. Oil. IR (Nujol): 1714, 1662 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 1.16 (3H, t, J = 7.1 Hz), 4.06–4.22 (4H, overlapping), 5.10 (1H, d, J = 17.4 Hz), 5.14 (1H, d, J = 11.3 Hz), 5.95 (1H, tdd, J = 6.7, 11.3, 17.4 Hz), 6.06 (2H, s), 6.65 (1H, s), 7.29 (1H, s), 9.86 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 14.8 (q), 54.4 (t), 62.4 (t), 101.5 (t), 103.0 (t), 106.8 (d), 107.1 (d), 117.6 (s), 119.5 (s), 128.0 (s), 132.9 (d), 147.8 (s), 157.3 (s), 188.4 (d). MS: *m/z* 277 (M⁺). Anal. Calcd for C₁₄H₁₅NO₅: C, 60.65; H, 5.45; N, 5.05. Found: C, 60.87; H, 5.41; N, 4.82.

4.6. General procedure for the reactions of 5a-c with (R)-6

Hydroxylamine (R)-6 (0.380 g, 2.48 mmol) and MgSO₄ (2.60 g, 21.7 mmol) were added to a solution of **5a**-c (2.16 mmol) in toluene (70 ml). The mixture was warmed at 100 °C for 24 h and then, after cooling to room temperature, filtered on Celite. The solvent was removed under reduced pressure and the crude residue was purified through a silica gel column.

Entry a: Elution with AcOEt/light petroleum (6:4) gave **8a** (45%) and **9a** (37%).

4.6.1. (aR,3aR,9bR)-5-Carbethoxy-1-(1-phenyl-2-hydroxyethyl)-7,8,9-trimethoxy-1,3a,4,9b-tetrahydro-3H-isoxazolo-[4,3-c]quinoline 8a. IR (Nujol): 3478, 1701 cm⁻¹. Mp 49– 51 °C (diisopropyl ether). $[\alpha]_{D}^{25} = -19.5$ (*c* 0.7, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 1.30 (3H, t, J = 7.1 Hz), 2.09 (1H, br s, missing after deuteriation), 2.89-2.95 (1H, m), 3.06 (1H, dd, J = 3.3, 13.4 Hz), 3.65 (1H, dd, J = 1.7, 8.5 Hz), 3.76 (1H, dd, J = 7.2, 8.2 Hz), 3.86 (3H, s), 3.92 (3H, s), 3.96 (3H, s), 4.01–4.08 (3H, overlapping), 4.19 (1H, dd, J = 7.1, 17.8 Hz), 4.30 (1H, dd, J = 7.1, 17.8 Hz), 4.30 (1H, dd, J = 7.1, 17.8 Hz), 10.0 Hz17.8 Hz), 4.32 (1H, dd, J = 7.8, 13.4 Hz), 4.51 (1H, d, J = 9.3 Hz), 6.91 (1H, s), 7.33–7.38 (3H, overlapping), 7.52–7.55 (2H, overlapping); ¹³C NMR (100 MHz, CDCl₃) δ : 14.9 (q), 44.3 (d), 46.4 (t), 56.3 (q), 57.4 (d), 61.3 (q), 61.5 (q), 62.5 (t), 64.5 (t), 68.6 (d), 69.6 (t), 104.9 (d), 115.8 (s) 128.3 (d), 128.4 (d), 130.5 (d), 136.8 (s), 137.1 (s), 139.5 (s), 152.5 (s), 153.1 (s), 156.9 (s). MS: m/z 458 (M⁺). Anal. Calcd for C₂₄H₃₀N₂O₇: C, 62.87; H, 6.59; N, 6.11. Found: C, 63.13; H, 6.30; N, 6.22.

4.6.2. $(\alpha R, 3aS, 9bS)$ -5-Carbethoxy-1-(1-phenyl-2-hydroxyethyl)-7.8.9-trimethoxy-1.3a.4.9b-tetrahydro-3H-isoxazolo-[4,3-c]quinoline 9a. IR (Nujol): 3489, 1702 cm⁻¹. Mp 46– 48 °C (diisopropyl ether). $[\alpha]_{D}^{23} = -63.5$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 1.34 (3H, t, *J* = 7.1 Hz), 3.01 (1H, br s, missing after deuteriation), 3.06 (1H, dd, J =2.2, 13.3 Hz), 3.23–2.26 (1H, m), 3.44 (3H, s), 3.74 (3H, s), 3.76-3.82 (4H, overlapping), 3.99 (1H, dd, J = 5.4, 8.4 Hz), 4.04 (1H, dd, J = 3.2, 6.7 Hz), 4.09–4.14 (1H, m), 4.23 (1H, dd, J = 7.1, 10.6 Hz), 4.34 (1H, dd, J = 7.1, 10.6 Hz), 4.41-4.49 (3H, overlapping), 6.84 (1H, s), 7.28-7.33 (3H, overlapping), 7.37–7.40 (2H, overlapping); ¹³C NMR (100 MHz, CDCl₃) δ : 14.9 (q), 43.4 (d), 46.7 (t), 56.3 (q), 60.0 (d), 60.4 (q), 61.1 (q), 62.5 (t), 67.2 (t), 69.4 (d), 69.6 (t), 103.9 (d), 115.7 (s), 128.1 (d), 128.5 (d), 129.4 (d), 136.7 (s), 138.3 (s), 139.0 (s), 152.5 (s), 152.9 (s), 155.7 (s). MS: m/z 458 (M⁺). Anal. Calcd for C₂₄H₃₀N₂O₇: C, 62.87; H, 6.59; N, 6.11. Found: C, 62.79; H, 5.91; N, 6.38.

Entry b: Elution with AcOEt/light petroleum (1:1) gave **9b** (12%) and **8b** (74%).

4.6.3. $(\alpha R, 3aR, 9bR)$ -5-Carbethoxy-1-(1-phenyl-2-hydroxyethyl)-7-methoxy-8-methyl-1,3a,4,9b-tetrahydro-3H-isoxazolo[4,3-c]quinoline 8b. IR (Nujol): 3481, 1701 cm⁻¹. Mp 56–58 °C (diisopropyl ether). $[\alpha]_{D}^{23} = -11.1$ (*c* 0.9, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 1.33 (3H, t, J = 7.1 Hz), 2.07 (3H, s), 3.04 (1H, br s, missing after deuteriation), 3.31-3.38 (1H, m), 3.43 (1H, dd, J = 3.5, 13.4 Hz), 3.77-3.80 (4H, overlapping), 3.98 (1H, dd, J = 4.9, 8.5 Hz), 4.05 (1H, dd, J = 3.2, 6.9 Hz), 4.14-4.18 (2H, overlapping),4.23-4.30 (3H, overlapping), 4.48 (1H, dd, J = 8.4, 8.5 Hz), 6.67 (1H, s), 7.02 (1H, s), 7.36–7.45 (5H, overlapping); ¹³C NMR (100 MHz, CDCl₃) δ: 14.9 (q), 16.2 (q), 42.5 (d), 46.1 (t), 55.8 (q), 62.4 (t), 63.6 (d), 68.0 (t), 69.5 (t), 69.7 (d), 106.0 (d), 120.9 (s), 123.8 (s) 128.9 (d), 129.1 (d), 129.3 (d), 131.6 (d), 138.3 (s), 138.8 (s) 155.1 (s), 156.9 (s). MS: m/z 412 (M⁺). Anal. Calcd for C₂₃H₂₈N₂O₅: C, 66.97; H, 6.84; N, 6.79. Found: C, 67.25; H, 7.14; N, 6.57.

4.6.4. $(\alpha R, 3aS, 9bS)$ -5-Carbethoxy-1-(1-phenyl-2-hydroxyethyl)-7-methoxy-8-methyl-1,3a,4,9b-tetrahydro-3H-isoxazolo[4,3-c]quinoline 9b. IR (Nujol): 3472, 1700 cm⁻¹. Mp 172–174 °C (diisopropyl ether). $[\alpha]_{D}^{23} = -9.3 (c \ 0.8, \text{CHCl}_3).$ ¹H NMR (400 MHz, 50 °C, CDCl₃) δ : 1.32 (3H, t, J = 7.1 Hz), 2.25 (3H, s), 2.55 (1H, br s, missing after deuteriation), 2.88-2.92 (1H, m), 3.19 (1H, dd, J = 4.9, 13.5 Hz), 3.63 (1H, ddd, J = 4.7, 9.2, 9.9 Hz), 3.82 (1H, d, J = 8.3 Hz), 3.85 (3H, s), 3.91 (1H, d, J = 8.7 Hz), 3.93 (1H, dd, J = 4.7, 9.3 Hz), 4.05 (1H, dd, J = 9.3, 9.9 Hz),4.12 (1H, d, J = 8.3 Hz), 4.17 (1H, dd, J = 2.5, 13.5 Hz), 4.25 (1H, dq, J = 7.1, 10.7 Hz), 4.33 (1H, dq, J = 7.1, 10.7 Hz), 6.94 (1H, s), 7.06 (1H, s), 7.36-7.42 (3H, overlapping), 7.46–7.49 (2H, overlapping); ¹³C NMR (100 MHz, CDCl₃) δ : 15.0 (q), 16.4 (q), 45.8 (d), 46.9 (t), 55.8 (q), 60.6 (d), 62.4 (t), 64.1 (t), 67.3 (d), 70.1 (t), 107.7 (d), 120.2 (s), 124.0 (s) 128.5 (d), 128.7 (d), 130.8 (d), 131.8 (d), 136.0 (s), 139.9 (s), 155.5 (s), 157.7 (s). MS: m/z 412 (M⁺). Anal. Calcd for C₂₃H₂₈N₂O₅: C, 66.97; H, 6.84; N, 6.79. Found: C, 67.13; H, 6.55; N, 6.99.

Entry c: Elution with AcOEt/light petroleum (1:2) gave 9c (14%) and 8c (72%).

4.6.5. (aR,3aR,10bR)-5-Carbethoxy-1-(1-phenyl-2-hydroxyethyl)-1,3a,4,10b-tetrahydro-3H,8H-[1,3]dioxolo[4,5-g]isox-¹. Mp azolo[4,3-c]quinoline 8c. IR (Nujol): 3492, 1705 cm⁻ 198–200 °C. $[\alpha]_{D}^{23} = -7.9$ (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 1.31 (3H, t, J = 7.0 Hz), 2.95 (1H, br s, missing after deuteriation), 3.34-3.39 (1H, m), 3.48 (1H, dd, J = 3.6, 13.4 Hz), 3.78 (1H, d, J = 6.7, Hz), 3.95 (1H, dd, J = 4.8, 8.5 Hz), 4.03 (1H, dd, J = 3.5, 6.7 Hz),4.13–4.17 (2H, overlapping), 4.25 (2H, q, J = 7.0 Hz), 4.49 (1H, dd, J = 8.3, 8.5 Hz), 4.56 (1H, dd, J = 8.3, 8.5 Hz), 5.89 (2H, s), 6.42 (1H, s), 6.94 (1H, s), 7.35–7.43 (5H, overlapping); ¹³C NMR (100 MHz, CDCl₃) δ : 14.9 (q), 42.7 (d), 46.4 (t), 62.5 (t), 64.1 (d), 67.9 (t), 69.5 (d), 69.7 (t), 101.5 (t), 105.3 (d), 108.7 (d), 123.0 (s) 128.9 (d), 129.0 (d), 129.4 (d), 133.9 (s), 138.7 (s), 145.0 (s) 146.9 (s), 155.1 (s). MS: m/z 412 (M⁺). Anal. Calcd for C₂₂H₂₄N₂O₆: C, 64.07; H, 5.87; N, 6.79. Found: C, 64.30; H, 5.61; N, 6.55.

4.6.6. (α*R*,3a*S*,10b*S*)-5-Carbethoxy-1-(1-phenyl-2-hydroxyethyl)-1,3a,4,10b-tetrahydro-3H,8H-[1,3]dioxolo[4,5-g]isoxazolo[4,3-c]quinoline 9c. IR (Nujo]): 3475, 1705 cm⁻¹. Mp 136–138 °C (diisopropyl ether). $[\alpha]_{D}^{23} = -7.4 (c \ 1.1, CHCl_3).$ ¹H NMR (400 MHz, CDCl₃) δ : 1.32 (3H, t, J = 7.1 Hz), 2.49 (1H, br s, missing after deuteriation), 2.90–2.94 (1H, m), 3.13 (1H, dd, J = 5.1, 13.5 Hz), 3.63 (1H, dd, J = 4.7, 10.5 Hz), 3.82 (1H, d, J = 8.0 Hz), 3.87 (1H, d, J = 8.9 Hz), 3.92 (1H, dd, J = 4.7, 9.9 Hz), 4.06 (1H, dd, J = 9.9, 10.5 Hz, 4.14 (1H, dd, J = 8.4, 8.9 Hz), 4.16 (1H, dd, J = 2.2, 13.5 Hz), 4.25 (1H, dq, J = 7.1,)10.0 Hz), 4.29 (1H, dq, J = 7.1, 10.0 Hz), 5.99 (2H, s), 6.68 (1H, s), 6.99 (1H, s), 7.35–7.41 (3H, overlapping), 7.45–7.48 (2H, overlapping); ¹³C NMR (100 MHz, CDCl₃) δ: 15.0 (q), 46.2 (d), 47.3 (t), 61.4 (d), 62.5 (t), 64.0 (t), 67.3 (d), 70.2 (t), 101.9 (t), 107.3 (d), 109.4 (d), 122.1 (s) 128.6 (d), 128.7 (d), 130.7 (d), 135.6 (s), 135.7 (s), 145.4 (s) 147.8 (s), 155.6 (s). MS: m/z 412 (M⁺). Anal. Calcd for

 $C_{22}H_{24}N_2O_6$: C, 64.07; H, 5.87; N, 6.79. Found: C, 63.99; H, 6.16; N, 6.49.

4.7. General procedure for the reactions of 5a-c with (*R*)-6 under microwave irradiation

A suspension of hydroxylamine (R)-6 (0.30 g, 1.98 mmol), MgSO₄ (2.08 g, 17.4 mmol) and **5a**–c (1.73 mmol) in toluene (70 ml) was heated in a microwave oven (250 W) at 100 °C for 70 min. The mixture was filtered on Celite and the solvent was removed under reduced pressure after which the crude residue was purified through a silica gel column (eluent given before) to give compounds **8a–c** and **9a–c**.

4.8. General procedure for the hydrogenation of compounds 8a-c and 9a-c

A suspension of 20% Pd(OH)₂/C (120 mg, 0.17 mmol) and isoxazolidine derived compound **8a–c** or **9a–c** (0.33 mmol) in MeOH (12 ml) was stirred under H₂ for 24 h. The mixture was filtered through a Celite path and the solvent was removed under reduced pressure after which the crude residue was purified through a silica gel column to give enantiopure 1,3-aminoalcohol **10a–c**.

4.8.1. (*3R*,*4R*)-4-Amino-1-carbethoxy-3-hydroxymethyl-5,6, 7-trimethoxy-1,2,3,4-tetrahydroquinoline 10a. IR (Nujol): 3371, 3298, 1753 cm⁻¹. Yield: 81%. Oil. $[\alpha]_{23}^{23} = +23.3$ (*c* 1.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 1.28 (3H, t, J = 7.0 Hz), 1.94–1.98 (1H, m), 3.12 (3H, br s, missing after deuteriation), 3.57 (1H, dd, J = 12.7, 13.1 Hz), 3.81–3.89 (7H, overlapping), 3.97 (3H, s), 4.08 (1H, dd, J = 3.1, 10.7 Hz), 4.18 (1H, dd, J = 2.9, 13.1 Hz), 4.26 (2H, q, J = 7.0 Hz), 4.32 (1H, d, J = 4.0 Hz), 7.44 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 14.9 (q), 39.2 (d), 42.6 (t), 46.7 (d), 56.3 (d), 61.2 (q), 61.7 (q), 62.5 (t), 64.1 (t), 103.0 (d), 118.7 (s), 133.1 (s), 138.2 (s), 150.7 (s), 152.9 (s), 155.1 (s). MS: m/z 340 (M⁺). Anal. Calcd for C₁₆H₂₄N₂O₆: C, 56.46; H, 7.11; N, 8.23. Found: C, 56.31; H, 7.28; N, 7.97.

4.8.2. (3*S*,4*S*)-4-Amino-1-carbethoxy-3-hydroxymethyl-5,6, 7-trimethoxy-1,2,3,4-tetrahydroquinoline 10a. Yield: 79%. $[\alpha]_D^{23} = -22.9 \ (c \ 1.1, \ CHCl_3)$

4.8.3. (3*R*,4*R*)-4-Amino-1-carbethoxy-3-hydroxymethyl-7-methoxy-6-methyl-1,2,3,4-tetrahydroquinoline 10b. IR (Nujol): 3371, 3293, 1707 cm⁻¹. Yield: 74%. Oil. $[\alpha]_{23}^{23} =$ +29.3 (*c* 0.6, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 1.35 (3H, t, J = 7.1 Hz), 2.04–2.09 (1H, m), 2.17 (3H, s), 3.40 (3H, br s, missing after deuteriation), 3.65 (1H, dd, J = 12.2, 13.1 Hz), 3.78 (1H, dd, J = 5.7, 11.5 Hz), 3.82 (3H, s), 3.95 (1H, dd, J = 3.1, 11.5 Hz), 4.04 (1H, dd, J = 4.9, 13.1 Hz), 4.07 (1H, d, J = 4.7 Hz), 4.26 (2H, q, J = 7.1 Hz), 6.97 (1H, s) 7.52 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 14.9 (q), 15.9 (q), 39.7 (d), 42.8 (t), 50.6 (d), 55.8 (q), 62.4 (t), 63.1 (t), 105.6 (d), 122.6 (s), 123.8 (s), 130.0 (d), 136.8 (s), 155.1 (s), 157.3 (s). MS: m/z 294 (M⁺). Anal. Calcd for C₁₅H₂₂N₂O₄: C, 61.21; H, 7.53; N, 9.52. Found: C, 61.25; H, 7.38; N, 9.81.

4.8.4. (3*S*,4*S*)-4-Amino-1-carbethoxy-3-hydroxymethyl-7methoxy-6-methyl-1,2,3,4-tetrahydroquinoline 10b. Yield: 71%. [α]_D²³ = -29.9 (*c* 0.5, CHCl₃).

4.8.5. (7*R*,8*R*)-8-Amino-5-carbethoxy-7-hydroxymethyl-5,6, 7,8-tetrahydro-[1,3]dioxolo[4,3-c]quinoline 10c. IR (Nujol): 3377, 3296, 1703 cm⁻¹. Yield: 78%. Oil. $[\alpha]_D^{23} = +25.9 (c \ 0.6, CHCl_3)$. ¹H NMR (400 MHz, CDCl₃) δ : 1.31 (3H, t, J = 7.1 Hz), 2.03–2.08 (1H, m), 3.25 (3H, br s, missing after deuteriation), 3.64 (1H, dd, J = 11.1, 12.6 Hz), 3.77 (1H, dd, J = 5.4, 11.3 Hz), 3.93 (1H, dd, J = 5.4, 11.3 Hz), 3.96–4.01 (2H, overlapping), 4.25 (2H, q, J = 7.1 Hz), 5.93 (2H, s), 6.67 (1H, s), 7.34 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 14.9 (q), 39.9 (d), 42.9 (t), 51.4 (d), 62.4 (t), 62.6 (t), 101.7 (t), 105.5 (d), 107.6 (d), 124.3 (s), 131.6 (s), 144.2 (s), 147.6 (s), 155.2 (s). MS: m/z 294 (M⁺). Anal. Calcd for C₁₄H₁₈N₂O₅: C, 57.14; H, 6.16; N, 9.52. Found: C, 56.92; H, 6.34; N, 9.62.

4.8.6. (7*S*,8*S*)-8-Amino-5-carbethoxy-7-hydroxymethyl-5,6, 7,8-tetrahydro-[1,3]dioxolo[4,3-*c*]quinoline 10c. IR (Nujol): 3377, 3296, 1703 cm⁻¹. Yield: 74%. Oil. $[\alpha]_{D}^{23} = -25.1$ (*c* 0.5, CHCl₃).

4.8.7. X-ray crystallography for 9b. Monoclinic, space group C2, a = 35.22(3), b = 5.008(6), c = 12.10(1) Å, $\beta = 96.59(8)^{\circ}$, V = 2121(4) Å³, Z = 4, F(000) = 880, $\rho = 1.292$ g cm⁻³, μ (Mo K α) = 0.091 mm⁻¹. The *R*, *wR* figures of merit reached final values of 0.078, 0.181 for the 1981 observed reflections, and 0.157, 0.226 for all of the unique reflections, 269 parameters and 7 restraints. Goodness of fit, highest peak and deepest hole reached final values of 1.014, 0.252 e Å⁻³ and -0.198 e Å⁻³.

A needle colourless crystal of approximate $0.02 \times$ 0.02×0.16 mm dimensions was mounted on top of a goniometer head. The data were collected on a Enraf Nonius CAD-4 automated diffractometer using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The unit cell was determined on the basis of the setting angles of 25 randomly distributed reflections in the $8.0^{\circ} \le \theta \le 11.5^{\circ}$ range. A total of 3945 unique and 1981 observed $[I \ge 2\sigma(I)]$ reflections, in the $3.0^{\circ} \le \theta \le 25.3^{\circ}$ range, were collected by applying the ω -scan mode $[\Delta \omega = 1.2 + (0.35 \tan \theta)]$. The data were corrected for Lorenz polarization. No absorption corrections were applied. The structure was solved by direct methods and refined by full-matrix leastsquares on F^2 . All the ordered non-hydrogen atoms were refined anisotropically. Hydrogen atoms were made riding their parent atoms with an isotropic temperature factor 1.2 times that of their parent atoms. A -CH₂CH₃ moiety, affected by disorder, was modelled by superimposing two, geometrically identical, C-C vectors, restraining the C-C and O-C distances to 1.54 and 1.48 Å, respectively, and assigning to each C atom a s.o.f. of 0.5. No hydrogen atoms were introduced on the carbon atoms of the disordered part and on the -OH groups. CCDC Number 646199.

We are grateful to MIUR for financial support and to the Centro Interuniversitario di Ricerca sulle Reazioni Pericicliche e Sintesi di Sistemi Etero e Carbociclici.

References

- 1. Torssell, K. B. G. Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis; VCH: New York, 1988.
- 2. (a) Confalone, P. N.; Huie, E. M. Org. React. 1988, 36, 1-173; (b) Chiacchio, U.; Rescifina, A.; Romeo, G. In Targets in Heterocyclic Systems; Attanasi, O. A., Spinelli, D., Eds.; SCI: Rome, 1997; Vol. I, pp 225-276; (c) Frederickson, M. Tetrahedron 1997, 53, 403-425; (d) Beccalli, E. M.; Broggini, G.; Contini, A.; De Marchi, I.; Zecchi, G.; Zoni, C. Tetrahedron: Asymmetry 2004, 15, 3181-3187; (e) Padwa, A.; Pearson, W. H. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; Wiley: New York, 2003, Chapter 1; (f) Jeong, J. H.; Weinreb, S. M. Org. Lett. 2006, 8, 2309-2312; (g) Gravestock, M. B.; Knight, D. W.; Lovell, J. S.; Thornton, S. R. J. Chem. Soc., Perkin Trans. 1 1999, 3143-3155; (h) Werner, K. M.; De los Santos, J. M.; Weinreb, S. M.; Shang, M. J. Org. Chem. 1999, 64, 4865-4873; (i) Romeo, R.; Iannazzo, D.; Piperno, A.; Chiacchio, M. A.; Corsaro, A.; Rescifina, A. Eur. J. Org. Chem. 2005, 2368–2373; (j) Alcaide, B.; Saez, E. Eur. J. Org. Chem. 2005, 1680-1693; (k) Aggarwal, V. K.; Roseblade, S.; Alexander, R. Org. Biomol. Chem. 2003, 1, 684-691; (1) Cordero, F. M.; Pisaneschi, F.; Gensini, M.; Goti, A.; Brandi, A. Eur. J. Org. Chem. 2002, 1941-1951; (m) Davison, E. C.; Fox, M. E.; Holmes, A. B.; Roughley, S. D.; Smith, C. J.; Williams, G. M.; Davies, J. E.; Raithby, P. R.; Adams, J. P.; Forbes, I. T.; Press, N. J.; Thompson, M. J. J. Chem. Soc., Perkin Trans. 1 2002, 1494-1514.
- 3. (a) Nath, M.; Mukhopadhyay, R.; Bhattacharjya, A. Org. Lett. 2006, 9, 317-320; (b) Revuelta, J.; Cicchi, S.; Brandi, A. J. Org. Chem. 2005, 70, 5636-5642; (c) Basso, D.; Broggini, G.; Passarella, D.; Pilati, T.; Terraneo, A.; Zecchi, G. Tetrahedron 2002, 58, 4445-4450; (d) Casuscelli, F.; Chiacchio, U.; Di Bella, M. R.; Rescifina, A.; Romeo, G.; Romeo, R.; Uccella, N. Tetrahedron 1995, 51, 8605-8612; (e) Funk, R. L.; Bolton, G. L. J. Org. Chem. 1984, 49, 5021-5022; (f) Liautard, V.; Christina, A. E.; Desvergnes, V.; Martin, O. R. J. Org. Chem. 2006, 71, 7337-7345; (g) Tufariello, J.; Dyszlewski, A. D. J. Chem. Soc., Chem. Commun. 1987, 1138-1140; (h) Alvarez de Cienfuegos, L.; Langlois, N. Tetrahedron: Asymmetry 2006, 17, 1863-1866; (i) Alibés, R.; Blanco, P.; Casas, P.; Montserrat, C.; de March, P.; Figueredo, M.; Font, J.; Sanfeliu, E.; Alvarez-Larena J. Org. Chem. 2005, 70, 3157-3167.
- (a) Broggini, G.; De Marchi, I.; Martinelli, M.; Zecchi, G. In *Targets in Heterocyclic Systems*; Attanasi, O. A., Spinelli, D., Eds.; SCI: Rome, 2005; Vol. 9, pp 211–229; (b) Wang, P.-F.; Gao, P.; Xu, P.-F. *Synlett* 2006, 1095–1099.
- (a) Broggini, G.; Chiesa, K.; De Marchi, I.; Martinelli, M.; Pilati, T.; Zecchi, G. *Tetrahedron* 2005, *61*, 3525–3531; (b) Hanselmann, R.; Zhou, J.; Ma, P.; Confalone, P. A. *J. Org. Chem.* 2003, *68*, 8739–8741; (c) Zhao, Q.; Han, F.; Romero, D. L. *J. Org. Chem.* 2002, *67*, 8669–8672; (d) Tamura, O.; Gotanda, K.; Yoshino, J.; Morita, Y.; Terashima, R.; Kikuchi, M.; Miyawaki, T.; Mita, N.; Yamashita, M.; Ishibashi, H.; Sakamoto, M. *J. Org. Chem.* 2000, *65*, 8544– 8551; (e) Beccalli, E. M.; Broggini, G.; La Rosa, C.; Passarella, D.; Pilati, T.; Terraneo, A.; Zecchi, G. *J. Org. Chem.* 2000, *65*, 8924–8932; (f) Arnone, A.; Broggini, G.;

Passarella, D.; Terraneo, A.; Zecchi, G. J. Org. Chem. **1998**, 63, 9279–9284; (g) Wovkulich, P. M.; Uskokovic, M. R. *Tetrahedron* **1985**, 41, 3455–3462.

- 6. (a) Osborn, H. M. I.: Gemmell, N.: Harwood, L. M. J. Chem. Soc., Perkin Trans. 1 2002, 2419-2438; (b) Shing, T. K. M.; Wong, W. F.; Ikeno, T.; Yamada, T. Org. Lett. 2007, 9, 207-209; (c) Pádár, P.; Bokros, A.; Paragi, G.; Forgó, P.; Kele, Z.; Howarth, N. M.; Kovács, L. J. Org. Chem. 2006, 71, 8669-8672; (d) Moutel, S.; Shipman, M.; Martin, O. R.; Ikeda, K.; Asano, N. Tetrahedron: Asymmetry 2005, 16, 487-491; (e) Sahabuddin, Sk.; Roy, A.; Drew, M. G. B.; Roy, B. G.; Achari, B.; Mandal, S. B. J. Org. Chem. 2006, 71, 5980-5992; (f) Shing, T. K. M.; Wong, W. F.; Ikeno, T.; Yamada, T. J. Org. Chem. 2006, 71, 3253-3263; (g) Sharma, G. V. M.; Begum, A.; Reddy, K. R.; Sankar, A. R.; Kunwar, A. C. Tetrahedron: Asymmetry 2003, 14, 3899-3905; (h) Bhattacharjee, A.; Datta, S.; Chattopadhyay, P.; Ghoshal, N.; Kundu, A. P.; Pal, A.; Mukhopadhyay, R.; Chowdhury, S.; Bhattacharjya, A.; Patra, A. Tetrahedron 2003, 59, 4623-4639.
- (a) Ganton, M. D.; Kerr, M. A. J. Org. Chem. 2007, 72, 574– 582; (b) Schiemann, K.; Bruge, D.; Buchstaller, H.-P.; Emde, U.; Finsinger, D.; Amendt, C.; Zenke, F. Ger. Offen. 61214, 2006; Chem. Abstr. 2007, 146, 62604; (c) Li, C.-J.; Zhang, J. U.S. Patent Appl. Publ. 149069, 2003; Chem. Abstr. 2003, 139, 164711; (d) Searcey, M.; Patterson, L. H. PCT Int. Appl. 67937, 2002; Chem. Abstr. 2002, 137, 216884.
- (a) Eda, M.; Takemoto, H.; Hihara, M.; Sakashita, H.; Okada, T.; Eiraku, M.; Fukaya, T.; Nakamura, N.; Matsuno, S. Jpn. Kokai Tokkyo Koho JP 06 09564, 1994; *Chem. Abstr.* **1994**, *121*, 83082; (b) Privitera, P. J.; Blickenstaff, T.; Gaffney, T. E.; Mohammed, S. J. Pharmacol. Exp. Ther. **1971**, *176*, 655–661.
- Kono, Y.; Kojima, E.; Saito, K.; Kudo, S.; Sekoe, Y. Jpn. Kokai Tokkyo Koho JP 06 56788, 1994; *Chem. Abstr.* 1994, *121*, 157536.
- Carling, R. W.; Leeson, P. D.; Moore, K. W.; Smith, J. D.; Moyes, C. R.; Mawer, I. M.; Thomas, S.; Chan, T.; Baker, R.; Foster, A. C.; Grimwood, S.; Kemp, J. A.; Marshall, G. R.; Tricklebank, M. D.; Saywell, K. L. *J. Med. Chem.* **1993**, *36*, 3397–3408.
- Kennewell, P. D.; Clements-Jewery, S.; Westwood, R. Brit. U.K. Patent Appl. GB 2192000, 1987; *Chem. Abstr.* 1988, 109, 54675.
- Gerster, J. F.; Rohlfing, S. R.; Pecore, S.; Winandy, R. M.; Stern, R. M.; Landmesser, J. E.; Olsen, R. A.; Gleason, W. B. *J. Med. Chem.* **1987**, *30*, 839–843.
- Vecchietti, V.; Clarke, G. D.; Colle, R.; Giardina, G.; Petrone, G.; Sbacchi, M. J. Med. Chem. 1991, 34, 2624–2633.
- Singer, J. M.; Barr, B. M.; Coughenour, L. L.; Gregory, T. F.; Walters, M. A. *Bioorg. Med. Chem. Lett.* 2005, 15, 4560– 4563.
- (a) Zanobini, A.; Brandi, A.; de Meijere, A. Eur. J. Org. Chem. 2006, 1251–1255; (b) Enderlin, G.; Taillefumier, C.; Didierjean, C.; Chapleur, I. Tetrahedron: Asymmetry 2005, 16, 2459–2474; (c) Raunak, R.; Kumar, V.; Mukherjee, S.; Poonam, P.; Prasad, A. K.; Olsen, K. E.; Schaeffer, S. J. C.; Sharma, S. K.; Watterson, A. C.; Errington, W.; Parmar, V. S. Tetrahedron 2005, 61, 5687–5697; (d) Dugovic, B.; Fisera, L.; Hametner, C.; Pronayova, N. ARKIVOC 2003, 162–169; (e) Cheng, Q.; Zhang, W.; Tagami, Y.; Oritani, T. J. Chem. Soc., Perkin Trans. 2001, 452–456; (f) Ondrus, V.; Orsag, M.; Fisera, L.; Pronayova, N. Tetrahedron 1999, 55, 10425– 10436; (g) Loupy, A.; Petit, A.; Bonnet-Delpon, D. J. Fluorine Chem. 1995, 75, 215–216; (h) Diaz-Ortiz, A.; Diez-Barra, E.; de la Hoz, A.; Prieto, P.; Moreno, A.; Langa, F.; Prange, T.; Neuman, A. J. Org. Chem. 1995, 60, 4160–4166.
- 16. Pfister, J.; Wymann, W. Synthesis 1983, 38-40.