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Gram-scale synthesis of pinusolide and evaluation
of its antileukemic potential
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Abstract—Pinusolide (1), a known platelet-activating factor (PAF) receptor binding antagonist, was synthesized from lambertianic
acid (2), a labdane-type diterpene readily accessible in multigram quantities from the Siberian pine tree. It was shown that 1 not only
decreases the proliferation activity of tumor cells at relatively low concentrations but specifically induces apoptosis at 100 lM via the
mitochondrial pathway in the Burkitt lymphoma cell line BJAB. Also, using primary lymphoblasts and leukemic cells from children
with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), a significant DNA fragmentation in pinusolide-treat-
ed cells could be detected in an ex vivo apoptosis assay.
� 2006 Elsevier Ltd. All rights reserved.
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Pinusolide (1) (Scheme 1), a labdane-type diterpene
lactone occurring as a secondary metabolite in several
plants such as Biota orientalis,1,2 Pinus sibirica, and
Pinus koraiensis,3 is known to be a potent and specific
platelet-activating factor (PAF) receptor binding antag-
onist.4,5 In addition, in vitro antiplasmodial and eryth-
rocyte membrane-modifying effects of 12 and potent
activities also of semi-synthetic analogs6 reflect the gen-
eral biological potential of this class of compound.
Therefore, the search for a convenient access to 1 and
the further evaluation of its biological profile represent
interesting challenges.

Herein, we describe a convenient method for the gram-
scale (partial) synthesis of 1 from the diterpene lamberti-
anic acid (2), a main component (7.7%) of the pine oleo-
resin of P. sibirica J. Mayr from which it can be readily
isolated by extraction and chromatography.7–10 More-
over, we disclose experimental results showing that
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Scheme 1. Synthesis of compound 1. Reagents and conditions:

(a) CH2N2–Et2O, rt, 2 h, 96%; (b) PhSO2NHCl (2.1 equiv),

MeOH, 0–5 �C, 30 min, 90%, or NBS (2.1 equiv), MeOH, 0 �C,

10 min (86%) isomeric mixture; (c) 20% HCl, dioxane, 30 min,

77%.

mailto:schultz@nioch.nsc.ru
mailto:Schmalz@uni-koeln.de
mailto:aram.prokop@charite.de


E. E. Shults et al. / Bioorg. Med. Chem. Lett. 16 (2006) 4228–4232 4229
pinusolide (1) exhibits significant apoptosis inducing
properties both in vitro (using BJAB tumor cells) and
ex vivo (using primary lymphoblasts and leukemia cells
of children with ALL or AML).
Figure 1. Single-crystal X-ray structure of pinusolide (1).
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Figure 2. Pinusolide (1) inhibits the proliferation of BJAB cells in a

concentration-dependent manner. BJAB cells were treated with differ-

ent concentrations of pinusolide. After incubation for 24 and 48 h, the

concentration and viability of the cells were determined by using the

CASY� Cell Counter System. The figures show a significant inhibition

of the cell proliferation up to 44% after 24 h and up to 86% after 48 h

treatment with pinusolide. Data points represent the mean of two

determinations from separate cultures with an error less than 3%. The

experiments were repeated twice and yielded similar results.
Our synthesis of compound 1 is outlined in Scheme 1.
The oxidative methoxylation of methyl lambertianate
(3), obtained in 96% yield by treatment of 2 with dia-
zomethane, was best achieved with chloramine-B (or
NBS) in MeOH to afford a mixture of stereoisomeric
2,5-dimethoxy-dihydrofurane derivatives (4a–d). The
two cis- and the two trans-isomers were formed at equal
amounts, as reflected by the intensity of the 1H NMR
signals of the methoxy groups and H-14, H-15, H-16,
and confirmed by GC–MS measurements. An analogous
result had been obtained in the electrochemical or chem-
ical (Br2 and MeOH) methoxylation of 2,5-dimethylfur-
anes.11 On treatment with acid (HCl), the mixture of
compounds 4a–d was smoothly converted into the corre-
sponding 3-substituted (5H)-furan-2-one, that is,
pinusolide (1).12 The whole sequence can be reliably per-
formed on a gram-scale13 and thus opens access to sub-
stantial amounts of pinusolide (1).

The identity of the synthetic material (1) with the natu-
ral product was proven by its spectral data and the
structure was additionally confirmed by means of a sin-
gle crystal X-ray diffraction analysis.14 A perspective
view on the structure of 1 is shown in Figure 1. Both
six-membered rings adopt a chair conformation with
the C20 methyl group and the C18 ester group taking
an axial position. The C9–C11–C12–C13 unit (bridge)
is almost in the same plane as the planar (±0.005 Å)
five-membered ring.
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Figure 3. Pinusolide (1) induces mitochondrial permeability transition

in BJAB cells in a concentration-dependent manner. BJAB cells were

treated with different concentrations of 1. Mitochondrial permeability

transition was then measured after 48 h of incubation by staining with

JC-1 as described. Values are given as percentage of cells with low

Dw ± SD (n = 3).
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Figure 4. Pinusolide- (1) induced apoptosis was measured by DNA

fragmentation in BJAB cells. BJAB cells were treated with different

concentrations of pinusolide. DNA fragmentation was measured after

treatment for 72 h as described. Values are given as percentages of

apoptotic cells ± SD (n = 3).



Figure 5. (A) Morphological appearance of untreated BJAB cells. (B) Significant apoptosis induction in BJAB cells after treatment with 100 lM of

pinusolide (1) for 72 h. Nearly all cells have undergone apoptosis as indicated by shrinking, and fragmenting and the formation of typical ‘apoptotic

bodies’ containing bits of chromatin.
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In the crystal, the axial ester group at C4 takes a confor-
mation so that the carbonyl oxygen is eclipsed to the
C3–C4 ring bond (the angle C3–C4–C18@O3 equals
�4.9�). Whereas the relative configuration of the four
chirality centers was unambiguously proven by the
X-ray crystal structure, the absolute stereochemistry
was assigned based on the known configuration of
lambertianic acid.15 The closest structural analogues of
1 are 14-deoxyandrographolide16 and the monohydrate
of neoandrographolide17 which, however, have an enan-
tiomorphic skeleton. The conformation of the dihydrof-
uranylethyl moiety in 1 and the bond lengths are similar
to those reported for 14-deoxyandrographolide.16

The antileukemic and chemopreventive potential of
pinusolide (1) was investigated in vitro using the Burkitt
lymphoma cell line BJAB. In addition, ex vivo experi-
ments were performed employing primary lymphoblasts
and leukemic cells of children with ALL (acute lympho-
blastic leukemia) and AML (acute myeloid leukemia),
respectively.18,19

The results clearly show that compound 1 not only
decreases the proliferation activity of tumor cells at rel-
atively low concentrations (Fig. 2), but specifically
induces apoptosis at 100 lM (Figs. 4 and 5).

Apoptotic cell death was measured by a modified cell cy-
cle analysis, which detects DNA fragmentation on the
single cell level. Interestingly, pinusolide (1) potently in-
duced apoptosis in up to 70% of the cells (Fig. 4).

Furthermore, we could show that pinusolide-induced
apoptosis in BJAB cells is mediated by loss of mitochon-
drial membrane potential (Fig. 3).

In fact, pinusolide (1) led to a significant loss of the
mitochondrial membrane potential at 100 lM (Fig. 3)
indicating that this compound utilizes the mitochondrial
apoptosis machinery in the respective death signaling
pathway.

We also investigated pinusolide-induced apoptosis in
primary lymphoblasts and leukemic cells isolated from
bone marrow aspirates of children with ALL and
AML. After separation over Ficoll, cells were treated
with 100 lM pinusolide (1) and incubated for 60 h.
Pinusolide significantly induced apoptosis ex vivo.
DNA fragmentation in primary lymphoblasts and leu-
kemic cells treated with 1 was detected. We could also
demonstrate that compound (1) overcomes anthracy-
cline resistance ex vivo in primary lymphoblasts from
a high risk ALL patient with a poor clinical chemother-
apy response (data not shown).

In conclusion, we have elaborated an efficient method
for the gram-scale synthesis and purification of pinuso-
lide (1) starting from lambertianic acid (2), a natural
product readily accessible from the oleoresin of P. sibi-
rica J. Mayr.

Most importantly, we found that 1 possesses a signifi-
cant antileukemic activity originating from apoptosis
induction. Therefore, pinusolide (1) can be considered
as a potential starting point in the search for new antitu-
moral compounds. Its good availability from a renew-
able plant source represents a valuable precondition
for further derivatization and biological studies.20
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