Acylimines of hexafluoroacetone and methyl trifluoropyruvate in cyclocondensation with 2-aminopyridines

V. B. Sokolov* and A. Yu. Aksinenko

Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russian Federation. Fax: +7 (095) 785 7024. E-mail: alaks@ipac.ac.ru

Cyclocondensation of acylimines of hexafluoroacetone and methyl trifluoropyruvate with 2-aminopyridines afforded earlier unknown fluoro-containing 2H-pyrido[1,2-a][1,3,5]triazines.

Key words: acylimines, hexafluoroacetone, methyl trifluoropyruvate, 2-aminopyridines, 2*H*-pyrido[1,2-*a*][1,3,5]triazines, heterocyclization, organofluorine compounds.

It is known that acylimines of hexafluoroacetone (HFA) and methyl trifluoropyruvate (MTFP) in cyclocondensation with bisnucleophiles act as 1,3- and 1,2-biselectrophilic reagents^{1,2} and serve as promising starting material for the synthesis of various fluoro-containing heterocycles. For instance, dehydration of adducts of HFA perfluoroacylimines and perfluorocarboxamides with oleum gives 1,3,5-oxadiazines;³ reactions of HFA and MTFP benzovlimines with 6-aminouracil give⁴ pvrimidoand pyrrolopyrimidines, respectively; dehydration of the adduct of HFA ethoxycarbonylimine and 2-aminopyrimidine with PCl₅ gives pyridotriazine.⁵ In the present work, we studied the cyclocondensation of HFA and MTFP acylimines with 2-aminopyridines, which yields earlier unknown fluoro-containing 2H-pyrido[1,2-a][1,3,5]triazines. The compounds obtained can be regarded as potential biologically active substances. Pyridotriazines are known to exhibit high fungicidal,⁶ antimitotic,⁷ and cytostatic activities.8,9

The transformations studied follow a two-step scheme: (1) addition of 2-aminopyridine to the C=N bond of imines 1 and 2 to give adducts 4 and 5 and (2) dehydration of adducts 4 and 5 with PCl_5 to 2H-pyrido[1,2-a][1,3,5]triazines 6 and 7. In the case of 2-amino-4-methylpyridine (3a), intermediate adducts 4a and 5a (Scheme 1) were isolated in the individual state and characterized.

The cyclocondensation of 2-aminopyridines 3b-f with acylimines of HFA (1b-f) and MTFP (2b-e) (equimolar amounts of the reagents were mixed in benzene at 20 °C; after the exothermic reaction was completed, PCl₅ was added and the reaction mixture was refluxed until the precipitate dissolved; intermediate adducts were not isolated) afforded 2,2-bis(trifluoromethyl)-2*H*-pyrido[1,2-*a*][1,3,5]triazines **6b**-**h** and methyl 2-trifluoromethyl-2*H*-pyrido[1,2-*a*][1,3,5]triazine-2-carboxy-lates **7b**-**f** in 55 to 74% yields (Scheme 2).

Scheme 1

X = CF₃ (1a, 4a, 6a); C(O)OMe (2a, 5a, 7a)

Pyridotriazines **6a—h** and **7a—f** are crystalline solids; their compositions and structures were proved by elemental analysis, NMR spectroscopy, and chemical transformations. Their ¹⁹F NMR spectra show characteristic signals at δ –1.0 to 1.0 for geminal trifluoromethyl groups (**6a—h**) and a trifluoromethyl group (**7a—f**).

The reaction of ester 7a with hydrazine hydrate in MeOH gave 2H-pyrido[1,2-a][1,3,5]triazine-2-carbo-hydrazide 8 (Scheme 3).

Thus, the annelation of substituted 2-aminopyridines with HFA and MTFP acylimines proceeds *via* the

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1470-1473, June, 2005.

1066-5285/05/5406-1514 © 2005 Springer Science+Business Media, Inc.

6b—h, 7b—f

X = CF₃ (**1b**—**f**, **6b**—**h**); C(O)OMe (**2b**—**e**, **7b**—**f**)

- **1:** $R = Me(\mathbf{b}), 3-MeC_6H_4(\mathbf{c}), 4-FC_6H_4(\mathbf{d}),$
- $2-FC_{6}H_{4}(\mathbf{e}), 4-ClC_{6}H_{4}(\mathbf{f})$
- **2:** $R = 4-MeC_6H_4$ (**b**), $4-FC_6H_4$ (**c**), $3-FC_6H_4$ (**d**), 2-furyl (**e**)
- **3:** R' = H(b), 3-Me(c), 5-Me(d), 5-Cl(e), 3,5-Cl₂(f)
- **7:** $R = 4-MeC_6H_4$, R' = 8-Me(b); $R = 4-FC_6H_4$, R' = 9-Me(c); $R = 4-FC_6H_4$, R' = 8-Me(d); $R = 3-FC_6H_4$, R' = 9-Me(e); R = 2-furyl, R' = H(f)

cyclocondensation mechanism to yield 2H-pyrido[1,2-*a*][1,3,5]triazine derivatives. The compounds obtained are promising from the viewpoint of medicinal and combinatorial chemistry.

Experimental

¹H and ¹⁹F NMR spectra were recorded on a Bruker DXP 200 spectrometer. Melting points were determined in a glass capillary. Acylimines of HFA **1a**–**f** and MTFP **2a**–**e** were prepared according to known procedures. ^{10,11} The starting substituted 2-aminopyridines 3a-f (Aldrich Co.) were used as purchased.

Table 1. Yields, melting points, and elemental analysis data for compounds 6b-h and 7a-f

Com- pound	Yield (%)	M.p. /°C	Found Calculated (%)			Molecular formula
			С	Н	N	
6b	75	92—94	<u>34.27</u>	<u>1.34</u>	<u>10.78</u>	$C_{10}H_5Cl_2F_6N_3$
			34.12	1.43	11.94	
6c	72	144—146	<u>53.31</u>	<u>3.27</u>	<u>11.61</u>	$C_{16}H_{11}F_6N_3$
			53.49	3.09	11.70	
6d	65	126-128	<u>48.63</u>	<u>2.39</u>	<u>10.83</u>	C ₁₆ H ₁₀ ClF ₆ N ₃
			48.81	2.56	10.67	
6e	72	138-140	<u>51.12</u>	<u>2.49</u>	<u>11.02</u>	$C_{16}H_{10}F_7N_3$
			50.94	2.67	11.14	
6f	68	140-142	<u>50.78</u>	<u>2.49</u>	<u>11.32</u>	$C_{16}H_{10}F_7N_3$
			50.94	2.67	11.14	
6g	64	141-142	40.34	1.51	<u>9.19</u>	$C_{15}H_6Cl_3F_6N_3$
			40.16	1.35	9.37	10 0 0 0 0
6h	60	115-117	<u>52.29</u>	<u>3.49</u>	<u>10.61</u>	$C_{17}H_{13}F_6N_3O$
			52.45	3.37	10.79	
7a	58	137-139	<u>58.31</u>	4.22	12.21	$C_{17}H_{14}F_{3}N_{3}O_{2}$
			58.45	4.04	12.03	1, 1, 0, 0, 2
7b	64	147-149	<u>59.33</u>	4.28	<u>11.75</u>	$C_{18}H_{16}F_{3}N_{3}O_{2}$
			59.50	4.44	11.57	10 10 5 5 2
7c	55	143-145	55.41	3.42	11.26	$C_{17}H_{13}F_4N_3O_2$
			55.59	3.57	11.44	17 15 1 5 2
7d	73	102-104	<u>55.40</u>	<u>3.38</u>	<u>11.62</u>	$C_{17}H_{13}F_4N_3O_7$
			55.59	3.57	11.44	1, 15 4 5 2
7e	69	133-135	<u>55.44</u>	<u>3.39</u>	<u>11.29</u>	$C_{17}H_{13}F_4N_3O_2$
			55.59	3.57	11.44	1, 15 4 5 2
7f	62	151-152	51.57	3.25	12.77	$C_{14}H_{10}F_3N_3O_3$
			51.70	3.10	12.92	17 10 5 5 5

N-[1,1,1,3,3,3-Hexafluoro-2-(4-methylpyridin-2-ylamino)propan-2-yl]benzamide (4a). 2-Amino-4-methylpyridine (3a) (1.08 g, 0.01 mol) was added to a solution of imine 1a (2.69 g, 0.01 mol) in benzene (20 mL). After the exothermic reaction was completed, the solvent was removed and the residue was recrystallized from benzene—hexane (1 : 1) to give benzamide 4a (3.25 g, 86%), m.p. 118—120 °C. Found (%): C, 50.77; H, 3.29; N, 11.32. C₁₆H₁₃F₆N₃O. Calculated (%): C, 50.94; H, 3.47; N, 11.14. ¹H NMR (DMSO-d₆), δ : 2.27 (s, 3 H, Me); 6.61 (d, 1 H, H arom., *J* = 8.0 Hz); 7.02 (s, 1 H, H arom.); 7.19 (s, 1 H, NH); 7.49, 7.92 (both m, 3 H each, H arom.); 12.68 (s, 1 H, NH). ¹⁹F NMR (DMSO-d₆), δ : 4.68 (s).

Methyl 2-benzoylamino-3,3,3-trifluoro-2-(4-methylpyridin-2-ylamino)propionate (5a) was obtained analogously from imine 2a (0.01 mol) and 2-amino-4-methylpyridine (3a) (0.01 mol). The yield of compound 5a was 3.15 g (86%), m.p. 156–158 °C. Found (%): C, 55.41; H, 4.22; N, 11.31. C₁₇H₁₆F₃N₃O₃. Calculated (%): C, 55.59; H, 4.39; N, 11.44. ¹H NMR (DMSO-d₆), δ: 2.17 (s, 3 H, Me); 3.79 (s, 3 H, MeO); 6.42 (d, 1 H, H arom., J = 7.8 Hz); 6.67 (s, 1 H, H arom.); 7.19 (s, 1 H, NH); 7.42 (m, 3 H, H arom.); 7.64 (s, 1 H, NH); 7.83 (m, 3 H, H arom.); 9.14 (s, 1 H, NH). ¹⁹F NMR (DMSO-d₆), δ: 2.62 (s).

8-Methyl-4-phenyl-2,2-bis(trifluoromethyl)-2H-pyrido[1,2-*a*][1,3,5]**triazine (6a).** *A*. A mixture of benzamide **4a** (3.77 g, 0.01 mol) and PCl₅ (2.09 g, 0.01 mol) in benzene (50 mL) was refluxed to homogenization. The solvent and POCl₃ were removed and the residue was recrystallized from hexane to give triazine **6a** (2.55 g, 71%), m.p. 121–123 °C. Found (%): C, 55.31; H, 3.22; N, 11.51. $C_{16}H_{11}F_6N_3$. Calculated (%): C, 53.49; H, 3.09; N, 11.70. ¹H NMR (DMSO-d₆), δ : 2.13 (s, 3 H, Me); 5.85 (d, 1 H, H arom., J = 7.9 Hz); 6.56 (s, 1 H, H arom.); 6.96 (d, 1 H, H arom., J = 8.0 Hz); 7.55 (m, 5 H, H arom.). ¹⁹F NMR (DMSO-d₆), δ : -1.04 (s).

B. 2-Amino-4-methylpyridine (**3a**) (1.08 g, 0.01 mol) was added to a solution of imine **1a** (2.69 g, 0.01 mol) in benzene (50 mL). After the exothermic reaction was completed, PCl₅ (2.09 g, 0.01 mol) was added and the reaction mixture was refluxed to homogenization. The solvent and POCl₃ were removed and the residue was recrystallized from hexane to give triazine **6a** (2.12 g, 56%), m.p. 121–123 °C.

7,8-Dichloro-4-methyl-2,2-bis(trifluoromethyl)-2H-pyrido[1,2-a][1,3,5]triazine (6b), 4-(2-methylphenyl)-2,2-bis(trifluoromethyl)-2H-pyrido[1,2-a][1,3,5]triazine (6c), 7-chloro-4-(2-methylphenyl)-2,2-bis(trifluoromethyl)-2Hpyrido[1,2-a][1,3,5]triazine (6d), 4-(4-fluorophenyl)-9-methyl-2,2-bis(trifluoromethyl)-2H-pyrido[1,2-a][1,3,5]triazine (6e), 4-(2-fluorophenyl)-7-methyl-2,2-bis(trifluoromethyl)-2H-pyrido[1,2-a][1,3,5]triazine (6f), 7,9-dichloro-4-(4-chlorophenyl)-2,2-bis(trifluoromethyl)-2H-pyrido[1,2-a][1,3,5]triazine (6g), 4-(4-methoxyphenyl)-7-methyl-2,2-bis(trifluoromethyl)-2Hpyrido[1,2-a][1,3,5]triazine (6h), methyl 8-methyl-4-phenyl-2trifluoromethyl-2*H*-pyrido[1,2-*a*][1,3,5]triazine-2-carboxylate (7a), methyl 8-methyl-4-(4-methylphenyl)-2-trifluoromethyl-2H-pyrido[1,2-a][1,3,5]triazine-2-carboxylate (7b), methyl 4-(4-fluorophenyl)-9-methyl-2-trifluoromethyl-2H-pyrido[1,2-a][1,3,5]triazine-2-carboxylate (7c), methyl 4-(4-fluoro-

Table 2. ¹H and ¹⁹F NMR spectra of compounds **6b**—h and **7a**—f (in DMSO-d₆)

Com-	δ (<i>J</i> /Hz)					
pound	¹ H	¹⁹ F				
6b	2.48 (s, 3 H, Me); 7.32, 7.84 (both s, 1 H each, H arom.)	0.82 (s)				
6c	2.28 (s, 3 H, Me); 5.93 (t, 1 H, H arom., $J = 7.5$); 6.66 (m, 2 H, H arom.);	0.86 (s)				
	7.06 (m, 1 H, H arom.); 7.28–7.41 (m, 4 H, H arom.)					
6d	2.29 (s, 3 H, Me); 6.74 (m, 2 H, H arom.); 7.07 (d, 1 H, H arom., $J = 8.1$);	0.70 (s)				
	7.30–7.52 (m, 4 H, H arom.)					
6e	2.16 (s, 3 H, Me); 5.95 (t, 1 H, H arom., $J = 7.6$); 6.97 (m, 2 H, H arom.);	-0.67 (s, 3 F);				
	7.27 (t, 2 H, H arom., $J = 7.9$); 7.59 (m, 2 H, H arom.)	28.82 (m, 1 F)				
6f	1.98 (s, 3 H, Me); 6.62 (d, 2 H, H arom., $J = 7.9$); 6.96 (d, 1 H, H arom.,	-0.81 (s, 3 F);				
	J = 7.8); 7.37 (m, 2 H, H arom.); 7.51, 7.78 (both m, 1 H each, H arom.)	-34.55 (m, 1 F)				
6g	7.23, 7.38 (both s, 1 H each, H arom.); 7.53, 7.66 (both d, 2 H each, H arom., $J = 7.8$)	0.55 (s)				
6h	1.96 (s, 3 H, Me); 3.88 (s, 3 H, MeO); 6.64 (d, 1 H, H arom., <i>J</i> = 7.7);	0.52 (s)				
	6.90 (s, 1 H, H arom.); 6.93–7.07 (m, 3 H, H arom.); 7.49 (d, 2 H, H arom., J = 7.8)					
7a	2.13 (s, 3 H, Me); 3.80 (s, 3 H, MeO); 5.78 (d, 1 H, H arom., J = 8.1);	-0.26 (s)				
	6.42 (s, 1 H, H arom.); 6.91 (d, 1 H, H arom., J = 8.0); 7.53 (m, 5 H, H arom.)					
7b	2.17, 2.48 (both s, 3 H each, Me); 3.84 (s, 3 H, MeO); 5.88 (d, 1 H, H arom., $J = 7.7$);	-0.12 (s)				
	6.45 (s, 1 H, H arom.); 6.96 (d, 1 H, H arom., J = 7.7); 7.33, 7.47 (both d, 2 H each, H arom., J = 8.0)					
7c	2.11 (s, 3 H, Me); 3.82 (s, 3 H, MeO); 5.84 (t, 1 H, H arom., $J = 7.8$);	0.35 (s, 3 F);				
	6.86 (m, 2 H, H arom.); 7.25 (t, 2 H, H arom., J = 7.5); 7.57 (m, 2 H, H arom.)	-29.36 (m, 1 F)				
7d	2.09 (s, 3 H, Me); 3.81 (s, 3 H, MeO); 5.74 (d, 1 H, H arom., $J = 7.7$);	-0.55 (s, 3 F);				
	6.49 (s, 1 H, H arom.); 6.82 (d, 1 H, H arom., $J = 7.9$); 7.18 (t, 2 H, H arom.,	29.02 (m, 1 F)				
	J = 7.7; 7.57 (m, 2 H, H arom.)					
7e	2.11 (s, 3 H, Me); 3.83 (s, 3 H, MeO); 5.91 (t, 1 H, H arom., $J = 7.9$); 6.84 (d, 2 H,	-0.16 (s, 3 F);				
	H arom., $J = 7.9$); 7.27–7.36 (m, 3 H, H arom.); 7.52 (m, 3 H, H arom.)	-33.44 (m, 1 F)				
7f	3.78 (s, 3 H, MeO); 6.05 (t, 1 H, H arom., $J = 7.7$); 6.61–6.67 (m, 2 H, H arom.);	0.07 (s)				
	6.98-7.09 (m, 1 H, H arom.); 7.16, 7.44 (both d, 1 H each, H arom., $J = 8.1$);					
	7.83 (m, 1 H, H arom.)					

phenyl)-8-methyl-2-trifluoromethyl-2*H*-pyrido[1,2-*a*][1,3,5]triazine-2-carboxylate (7d), methyl 4-(3-fluorophenyl)-9-methyl-2-trifluoromethyl-2*H*-pyrido[1,2-*a*][1,3,5]triazine-2-carboxylate (7e), and methyl 4-(2-furyl)-2-trifluoromethyl-2*H*-pyrido[1,2-*a*][1,3,5]triazine-2-carboxylate (7f) were obtained from imine 1 or 2 (0.01 mol), 2-aminopyridines 3 (0.01 mol), and PCl₅ (0.01 mol) as described for triazine 6a. The yields, melting points, and spectroscopic characteristics of compounds 6b—h and 7a—f are given in Tables 1 and 2.

8-Methyl-4-phenyl-2-trifluoromethyl-2*H***-pyrido[1,2***a***][1,3,5]triazine-2-carbohydrazide (8). Hydrazine hydrate (1.01 g, 0.02 mol) was added to a solution of triazine 7a (3.49 g, 0.01 mol) in MeOH (20 mL). The reaction mixture was kept at 20 °C for 24 h and the precipitate that formed was filtered off and recrystallized from 50% EtOH. The yield of hydrazide 8 was 2.75 g (79%), m.p. 168–170 °C. Found (%): C, 55.19; H, 4.21; N, 19.88. C₁₆H₁₄F₃N₅O. Calculated (%): C, 55.02; H, 4.04; N, 20.05. ¹H NMR (DMSO-d₆), \delta: 2.14 (s, 3 H, Me); 4.16 (s, 2 H, NH₂); 5.76 (d, 1 H, H arom., J = 7.6 Hz); 6.46 (s, 1 H, H arom.); 6.92 (d, 1 H, NH. ¹⁹F NMR (DMSO-d₆), \delta: -0.94.**

References

- A. V. Fokin, A. F. Kolomiets, and N. V. Vasil'ev, Usp. Khim., 1984, 53, 398 [Russ. Chem. Rev., 1984, 53 (Engl. Transl.)].
- S. N. Osipov, A. F. Kolomiets, and A. V. Fokin, *Usp. Khim.*, 1992, 61, 1457 [*Russ. Chem. Rev.*, 1992, 61 (Engl. Transl.)].

- Yu. V. Sinyakov, N. V. Vasil'ev, A. F. Kolomiets, and G. A. Sokol'skii, *Zh. Org. Khim.*, 1989, 24, 642 [*J. Org. Chem.* USSR, 1989, 24 (Engl. Transl.)].
- 4. V. B. Sokolov, A. Yu. Aksinenko, and I. V. Martynov, *Izv. Akad. Nauk, Ser. Khim.*, 2001, 1064 [*Russ. Chem. Bull., Int. Ed.*, 2001, **50**, 1113].
- V. B. Sokolov and A. Yu. Aksinenko, *Izv. Akad. Nauk, Ser. Khim.*, 2003, 2053 [*Russ. Chem. Bull., Int. Ed.*, 2003, 52, 2167].
- M. F. Reich, P. F. Fabio, V. J. Lee, N. A. Kuck, and R. T. Testa, J. Med. Chem., 1989, 32, 2474.
- 7. C. Temple, Jr. and G. A. Rener, J. Med. Chem., 1990, 33, 3044.
- 8. C. Temple, Jr. and G. A. Rener, J. Med. Chem., 1989, 32, 2089.
- 9. C. Temple, Jr., G. A. Rener, and R. N. Comber, J. Med. Chem., 1989, **32**, 2363.
- V. B. Sokolov and A. Yu. Aksinenko, *Izv. Akad. Nauk, Ser. Khim.*, 1998, 748 [*Russ. Chem. Bull.*, 1998, **47**, 727 (Engl. Transl.)].
- S. N. Osipov, V. B. Sokolov, A. F. Kolomiets, I. V. Martynov, and A. V. Fokin, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1987, 1185 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1987, **36**, 1098 (Engl. Transl.)].

Received February 17, 2005; in revised form April 11, 2005