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Summary: The Diels-Alder reaction between 3-fluorobenzyne (1) and P-a/kylfurans (2) gives a 
mixture of syn adduct 3 and anti adduct 4. The syn cycloadduct invariably predomi- 
nates and the regioselectivity increases in the order: R = Me < Et c i-Pr -C t-Bu, to a 
maximum of 90% syn adduct 3d for P-tert-butylfuran. These results are rationalized in 
terms of a concerted nonsynchronous transition state that reflects an alkyl steric effect 
and a polarized aryne 1. 

Diels-Alder reactions of arynes and x-excessive heterocycles (e.g., furans, pyrroles, isohenzofurans) have 

been widely studiedl9 since Wittig’s early work with benzyne and furan. 3 In recent years, several examples of 

unanticipated regioselectivity in such cycloadditions have been reported.4 In this Letter, we describe unexpected 

regioselectivity in Diels-Alder reactions between f-fluorobenzyne (1) and 2-alkylfurans (2), wherein the regio - 

selectivity, which invariably favors the syn cycloadduct 3, increases in the order: R = Me c Et < i-Pr < r-Bu. 
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Jn continuing our hydrogen-fluorine long-range spin-spin coupling studies in aromatic systems,5 we have 

examined the reaction between 3-fluotobenzyne (~6 and 2-alkylfurans (2) to give the .ryn (3) and anti (4) 

naphthalen-1,4-oxides (Scheme 1). Subsequent deoxygenation provides the corresponding naphthalenes.3*4d,6h,7 

During this previous work, Qjb we observed that the reaction of 3-fluorobenzyne (1) and similar arynes with 2- 

methyJfuran (2a), 2-ethylfuran (2b), and some related pynoles consistently gives mixtures of Diels-Alder adducts 

in which the synlanri product ratio is >l. We have extended these studies to other 2-alkylfurans and now report 

our results (Table). 
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Table. Reaction of 3-Fluorobenzyne (1) with Alkylfurans (2 and 9). 

Furan Metlmda Yield, %b % syn (3) 96 anti (4) 

2a 

2a 

2a 

2a 

2b 

2c 

2d 

9 

61 63 37 

16 64 36 

47 64 36 

16 65 35 

71 78 22 

39 89 11 

59 90 10 

55 46 (11) 54 (10) 

aMethod A: ref. 6; Method B: same as Method A but using 1,Zdifluorobenzene; Method C: same as Method A but 
adding 2-lithio-1,3-difluorobenzene to a solution of 2a at O’C, Method D: generated from 3-fluoroaniline (ref. 
13). 

bIsolated yield of cycloadducts after flash chromatography over Si@. The other products formed in these 
reactions will be discussed in a full paper. 

As seen in the Table, the synlanti cycloadduct ratio is invariably >l for the reaction of 3-fluorobenzyne (1)6 

with 2-methyl- (2a)9,2-ethyl- (2b)g, 2-isopropyl- (2c)lo, and 2-tert-butylfuran (2d).ll The ratio increases in the 

series 2 (R = Me, Et, i-Pr, t-Bu) from 1.8 for R = Me to 9.0 for R = t-Bu. In each case, the isomeric ratio was 

determined by 1H NMR and/or capillary GC analysis of the crude reaction mixture, and confi’ied by isolation 

and identification of the individual isomers. 12 Thus, separation of the adduct mixture by flash chromatography 

gives 3a-d and 4a-d (Scheme 2). ‘Ihe syn isomers 3a-d m easily ch aracteked by virtue of long-range “zig 

zag” spin-spin coupling between the fluorine and the bridgehead proton (shown for 3).& Moreover, the anti 

isomers 4a-d display the bridgehead proton at lower field (-0.2 ppm) than the corresponding proton in the syn 

isomers. In addition, as shown in Scheme 2, we have converted most of the individual isomers (3 and 4) into 

their respective naphthalenes 7 and 8,lz for which only the l,&derivatives (7a-d) exhibit the characteristic 

“through-space” spin-spin coupling between the alkyl group R (1H and 13C) and the fluorine atom.5 For 

example, the methyl protons appear as a doublet (5Jm = 7.5 Hz) in 7a but as a singlet in 8a. Thus, the identity 

of the cycloadducts 3 and 4 is secure. 12 

Scheme 2 
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To verify the observed synlunti ratios, we generated the presumed intermediate 3-fluorobenzyne (1) using 

two other methods (Table). Thus, treatment of 1,2difluorobenzene with n-butyllithium in the presence of 2- 

methylfuran (2a) gives a 3a/4a ratio of 64~36, and diazotization 13 of 3-fluoroaniline in the presence of 2a affords 

a 3a/4a ratio of 65:35. In both cases, the ratio is essentially unchanged from that obtained from 1,3difluoroben - 

zene and n-butyllithium (normal and inverse. addition). 

Interestingly, the cycloaddition of 3-rert-butylfumn (9)*4 with 1 gives a mixture of adduct@ (39%) in which 

the anti isomer 10 predominates slightly over the syn isomer 11 (ratio = 54:46). This indicates that in the pre - 

sumed absence of an appreciable steric effect, there mmains a small electronic effect in the furan component. 

6 3’ 1 : + 0 r-Bu - &&B; &$yBu 
1 9 10 11 

We believe that the observed regiochemical preference for the syn adduct 3 is a manifestation of a concerted 

nonsynchronous Diels-Alder transition state 15 that reflects the polarization of 3-fhtombenzynel6J7 (electrophihc 

dienophilels) coupled with the slight polarization of the 2-alkylfuran (electron-rich dienel9) (cf., Scheme 3, which 

shows the proposed transition states between the HOMO of 2 and the LUMO of 1). Since the electronic proper- 

ties of ahcyl groups are essentially uniform, 20 the observed trend in the syn/unti ratio (3/4) is consistent with a 

steric interaction between the a&y1 group R and the aryne. superimposed on the inherent electronic effect of the 

alkyl group in the furan. In fact, based on at values (Me = -0.31, r-Bu = -0.26),m and neglecting steric effects, 

one would have predicted a slightly larger synlunfi ratio for 2-methylfuran than for 2-rerr-butylfuran. 

Scheme 3 

syn adduct 3 
fast 

anti adduct 4 

To be sure, it seems reasonable that a two-step (nonconcerted) mechanism involving a fluorine-stabilized 

zwitterionic (12) or biradical(l3) intermediate would give rise to high and similar synlunti ratios for all 2- 

alkylfurans (2), since steric effects ate expected to be much less important in the transition states leading to 12 or 

13.21 Therefore, as discussed above, we favor a concerted nonsynchronous mechanism to explain our results. 
I= F 
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