DEDICATED CLUSTER FULL PAPERS

Synthesis of Biaryls *via* Palladium-Catalyzed [2+2+2] Cocyclization of Arynes and Diynes: Application to the Synthesis of Aryl-naphthalene Lignans

Yoshihiro Sato,^{a,*} Takayuki Tamura,^a Atsushi Kinbara,^a and Miwako Mori^b

^a Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan Fax: (+81)-11-706-4982; e-mail: biyo@pharm.hokudai.ac.jp

^b Health Sciences University of Hokkaido, Ishikari-tobetsu, Hokkaido 061-0293, Japan

Received: November 12, 2006

This paper is dedicated to Professor Masakatsu Shibasaki on his 60th birthday.

Supporting information for this article is available on the WWW under http://asc.wiley-vch.de/home/.

Abstract: A novel method for construction of biaryls *via* palladium(0)-catalyzed [2+2+2] cocyclization of diynes and arynes was developed. By this [2+2+2] cocyclization, various arylnaphthalene derivatives, including a sterically hindered 2,2'-disubstituted-1,1'-binaphthyl, can be constructed by virtue of a variety of combinations of diynes and aryne precursors. Using

this [2+2+2] cocyclization as a key step, the total syntheses of natural arylnaphthalene lignans, taiwanin C, taiwanin E, and dehydrodesoxypodophyllotox-in were achieved.

Keywords: arynes; biaryls; cycloaddition; dehydrodesoxypodophyllotoxin; palladium; taiwanin

Introduction

Biaryls are an important class of compounds, not only as structures found in a variety of natural products, including molecules of medicinal interest, but also as a chiral source for asymmetric synthesis. A biaryl skeleton such as **III**, which consists of two aromatic rings attached to each other, is usually constructed through an aryl-aryl coupling reaction between two aromatic compounds such as **IV** and **V** (Scheme 1).^[1] On the other hand, a transition metal-catalyzed [2+2+2] co-cyclization of alkynes is a useful and highly atom-eco-nomic way for the construction of various aromatic rings,^[2] and this advantage compared to the above-mentioned usual aryl-aryl coupling methodology prompted us to utilize the [2+2+2] cocyclization for the synthesis of biaryl derivatives. In this context, we have recently established a conceptually new method-

Scheme 1. Synthesis of biaryls *via* [2+2+2] cocyclization.

Adv. Synth. Catal. 2007, 349, 647-661

© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ology for the synthesis of biaryls *via* Ni(0)-catalyzed [2+2+2] cocyclization, by which various biaryls **III** were obtained in excellent yields by the [2+2+2] cocyclization of alkyne **I** and two molecules of acetylene or by that of diyne **II** and one molecule of acetylene.^[3]

DEDICATED CLUSTER

FULL PAPER

We speculated that this methodology could be further expanded to the construction of various arylnaphthalene skeletons **VII** if the [2+2+2] cocyclization of diyne **VI** and an aryne, in which C–C bond formation occurs three times, would proceed (Scheme 2).^[4-7]

Scheme 2. Plan for [2+2+2] cocyclization of diynes and arynes.

Thus, the [2+2+2] cocyclization between **VI** and an aryne is expected to provide us with novel methodology for the synthesis of various arylnaphthalenes **1** in short-step reactions, and these arylnaphthalene derivatives should be key intermediates for the syntheses of chinensin, justicidin B, diphyllin, and taiwanins C and E (Figure 1). Herein we describe the construction of an arylnaphthalene skeleton by the palladium-

Figure 1. Plan for syntheses of arylnaphthalene lignans.

© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

catalyzed [2+2+2] cocyclization of diyne **3** and aryne **2** derived from precursor **2'**.^[8] We also report the application of this reaction to the total syntheses of taiwanin C, taiwanin E, and dehydrodesoxypodo-phyllotoxin.

Results and Discussion

Synthesis of Arylnaphthalene Derivatives by Pd(0)-Catalyzed [2+2+2] Cocyclization of Diynes and Benzyne Derived from an Aryne Precursor with CsF

To examine the feasibility of the above-mentioned plan shown in Scheme 2, we initially investigated the [2+2+2] cocyclization of diynes **3a–d** and benzyne generated from precursor **2'a**^[9] (Table 1). When the reaction of **3a** or **3b** and aryne precursor **2'a** in the presence of CsF was carried out in CH₃CN at room temperature using a Ni(0) catalyst prepared from Ni-

Table 1. [2+2+2] Cocyclization of diynes **3** and benzyne derived from the precursor **2'a** in the presence of CsF.^[a]

Run Substrate Catalyst ^[b]		Ligand	Time	Product	Yield	
				[h]		[%]
1	3a	Ni(acac) ₂ /DIBAL-H	PPh_3	16	1aa	-
2	3b	Ni(acac) ₂ /DIBAL-H	PPh_3	2	1ab	-
3	3a	Pd_2dba_3	-	4	1aa	18
4	3b	Pd_2dba_3	-	18	1ab	43
5	3b	Pd ₂ dba ₃	PPh_3	18	1ab	5
6	3b	Pd_2dba_3	dppb	6	1ab	6
7	3b	Pd_2dba_3	P(o-tol) ₃	2	1ab	73
8	3c	Pd_2dba_3	P(o-tol) ₃	2	1ac	2
9	3d	Pd_2dba_3	$P(o-tol)_3$	2	1ad	78

^[a] All reactions were carried out in CH₃CN at room temperature in the presence of 2'a (3 equivs.) and CsF (6 equivs.).

[b] For runs 1 and 2, the Ni(0) catalyst was prepared by reduction of Ni(acac)₂ (20 mol%) with DIBAL-H (40 mol%) in the presence of PPh₃ (80 mol%). For runs 3–9, 5 mol% of Pd₂dba₃ was used. For runs 5, 7, 8 and 9, 40 mol% of a ligand was used. For run 6, 20 mol% of dppb was used.

(acac)₂, PPh₃, and DIBAL-H,^[3] the desired product 1aa or 1ab was not produced, and a complex mixture containing some polymerization products was obtained (runs 1 and 2). Thus, the catalyst was changed from nickel(0) to palladium(0)^[5-7] (runs 3–9). The reaction of 3a and aryne precursor 2'a in the presence of CsF in CH₃CN at room temperature was again investigated using Pd₂dba₃ as a catalyst, and the desired product **1aa** was obtained in 18% yield (run 3). The reaction of 3b under similar conditions afforded the desired product 1ab in 43% yield (run 4). It is known that an alkyne having an electron-withdrawing substituent is more reactive than that having no or an electron-donating substituent for Ni(0)- or Pd(0)-catalyzed [2+2+2] cocyclization, which is consistent with the results of runs 3 and 4.^[3,10] Next, ligand effects in the reaction of 3b and 2'a under similar conditions were investigated (runs 5-7), and it was found that $P(o-tol)_3$ is suitable for this reaction and that the yield of **1ab** was greatly improved to 73% (run 7). The reaction of 3c, having an aldehyde on the alkyne, with 2'a gave the desired product 1ac in only 2% yield along with a complex mixture of polymerization products as a major product (run 8). On the other hand, the reaction of 3d, which has an N-methoxy-N-methvlcarboxamide moiety and was synthesized with the aim of application to the synthesis of natural arylnaphthalene lignans, under similar conditions gave the desired product in 78% yield (run 9).

To estimate the scope and limitations of the reaction, various divnes were subjected to the above optimal reaction conditions. The results are summarized in Table 2. The reaction of 3e under similar conditions gave the corresponding arylnaphthalene 1ae in good yield (77%) (run 1). The reaction of 3f, having a phenyl group on the alkyne, gave the product **1af** in a slightly lower yield (54%) (run 2). An electron-withdrawing group on the benzene ring is tolerated in this reaction, and the reaction of 3g, having a nitro group on the alkyne, gave the product lag in good yield (66%) (run 3). A substituent (MOM group) at the ortho-position on the benzene ring is also tolerated, and the cyclized product 1ah was obtained in 53% yield from 3h (run 4). The cyclized product 1ai, having a lactam structure in the arylnaphthalene skeleton, was also obtained from the nitrogen-containing diyne **3i** in good yield (run 5). On the other hand, the reaction of 3i, having no electron-withdrawing substituent on the terminus of alkyne, gave the cyclized product in a low yield (27%, run 6) compared to that in the case of the reaction of 3i (run 5), which is consistent with the above-described results in the cases of **3a** and **3b** (Table 1, runs 3 and 4). Binaphthyl skeletons can be also constructed by this reaction. Thus, the reaction of 3k and benzyne derived from 2'a under the similar conditions gave binaphthyl derivative **1ak** in 46% yield (run 7). It is noteworthy that **Table 2.** Pd(0)-catalyzed [2+2+2] cocyclization of various diynes **3** and benzyne derived from the precursor **2'a** and CsF.

the sterically hindered 2,2'-disubstituted-1,1'-binaphthyl derivative **1al** was also obtained by [2+2+2] cocyclization of diyne **3l** and benzyne derived from **2'a**, although the yield was fairly low (run 8).

Application of Pd(0)-Catalyzed [2+2+2] Cocyclization of Diyne and Aryne to the Syntheses of Natural Arylnaphthalene Lignans: Total Syntheses of Taiwanins C and E

Having established the Pd(0)-catalyzed [2+2+2] cocyclization of diynes and benzyne derived from 2'a

DEDICATED CLUSTER FULL PAPERS

producing various arylnaphthalene derivatives, we next turned our attention to applications of this methodology to the synthesis of natural arylnaphthalene lignans. Arylnaphthalene lignans, some of which are shown in Figure 1, occur widely in nature and possess various biological activities.^[11] We planned to synthesize the natural arylnaphthalene lignans, taiwanins C and E,^[12] through [2+2+2] cocyclization of diyne **3d** and aryne precursor **2'b**. The synthesis of aryne precursor **2'b** was achieved by a procedure similar to that reported by Pérez and Guitián,^[6d] as shown in Scheme 3. TMS ether **5**, which was prepared from **4** and HMDS, was reacted with BuLi followed by treatment of the resulting silyl-migration product with Tf₂O, giving **2'b** in 83% yield (3 steps).

Scheme 3. Synthesis of aryne precursor 2'b.

The reaction of diyne **3d** and aryne precursor **2'b** under the above-stated optimized conditions successfully proceeded and gave the arylnaphthalene derivative **1bd** in 61% yield (Scheme 4).

Next, we attempted transformation of arylnaphthalene product **1bd** into taiwanins. In order to convert **1bd** into aldehyde-lactone **6**, chemoselective reduction^[13] of the amide moiety in **1bd** was initially tried using DIBAL-H at -78 °C (Scheme 5).

However, the desired product **6** was not obtained under the conditions used, although lactone-aldehyde **8a** and lactol-aldehyde **8b** were obtained in 17% and 67% yields, respectively. These products would have been produced through reduction of the lactone moiety in **1bd**, indicating that chemoselective reduc-

Scheme 5. Attempts at conversion of 1bd into aldehyde 6.

tion of the lactone moiety in **1bd** is relatively difficult at this stage.^[14] On the other hand, when **1bd** was treated with NaOMe in CH_2Cl_2 at room temperature, ring-opening followed by rearrangement of the lactone ring occurred to produce lactone-ester **9** in 78 % yield (Scheme 6).

Chemoselective reduction of the lactone moiety in 9 proceeded successfully, giving lactol 10 in good yield. Treatment of 10 with NaBH₄ followed by acidic work-up gave the desired alcohol-lactone 12 in excellent yield in a one-pot operation *via* diol 11. PCC oxidation of 12 afforded the desired aldehyde-lactone 6 in 89% yield.

Finally, transformations of aldehyde-lactone 6 into taiwanins C and E were investigated (Scheme 7).

Baeyer–Villiger oxidation of **6** with *m*CPBA followed by hydrolysis of the corresponding formate gave taiwanin E in 88% yield (2 steps). The spectral

650 www.asc.wiley-vch.de

© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

6: 89%

12: 95%

Scheme 6. Conversion of 1bd into aldehyde 6.

11

Scheme 7. Total syntheses of taiwanins C and E.

data were identical to those previously reported.^[12] On the other hand, taiwanin C was obtained in 64% yield directly from the same intermediate **6** in one step through a decarbonylation reaction by treatment of **6** with a stoichiometric amount of Wilkinson's catalyst.^[15] In addition, conversion of aldehyde-lactone **6** into taiwanin C was also achieved without the use of a stoichiometric amount of expensive rhodium catalyst *via* Pd(0)-catalyzed hydrogenolysis^[16] of triflate **13** derived from taiwanin E (Scheme 7).

Total Synthesis of Dehydrodesoxypodophyllotoxin

Encouraged by the successful syntheses of taiwanins C and E, we applied the present method to the total synthesis of dehydrodesoxypodophyllotoxin.^[17] The [2+2+2] cocyclization of diyne **3m** and aryne precursor **2'b** under the optimized conditions again successfully proceeded and gave the corresponding product **1bm** in 71 % yield (Scheme 8).

Scheme 8. [2+2+2] Cocyclization of diyne 3m and aryne precursor 2'b.

Conversion of **1bm** into dehydrodesoxypodophyllotoxin was succesfully achieved in a similar manner to the synthesis of taiwanin C via Pd(0)-catalyzed hydrogenolysis of the corresponding triflate **16** (Scheme 9). The spectral data of the synthetic dehydrodesoxypodophyllotoxin were identical to those previously reported.

Conclusions

DEDICATED

We succeeded in developing the novel method for the synthesis of biaryls *via* Pd(0)-catalyzed [2+2+2] cocyclization of diynes and arynes, that could apply to the construction of various arylnaphthalene skeletons including the sterically hindered 2,2'-disubstituted-1,1'-binaphthyl. Furthermore, using this cocyclization as a key step, the total syntheses of taiwanin C, taiwanin E, and dehydrodesoxypodophyllotoxin were achieved. The present convergent strategy paves the way

for the synthesis of various arylnaphthalene lignans by virtue of a variety of combinations of diynes and aryne precursors.

Experimental Section

General Information

All manipulations were performed under an argon atmosphere unless otherwise mentioned. All solvents and reagents were purified when necessary using standard procedures. Column chromatography was performed on silica gel 60 (Merck, 70–230 mesh), and flash chromatography was performed on silica gel 60 (Merck, 230–400 mesh).

Preparation of Substrates 3a-j (See Scheme 10). Prop-2-ynyl 3-(Benzo[d][1,3]dioxol-5-yl)propiolate (3a)

To a solution of 3-(benzo[d][1,3]dioxol-5-yl)propiolic acid (**17**)^[18] (2.21 g, 12 mmol), propargyl alcohol (**18a**) (1.4 mL,

Scheme 10. Synthesis of substrates 3a-d.

24 mmol), and DMAP (0.43 g, 3.4 mmol) in CH₂Cl₂ (55 mL) was added DCC (3.65 g, 18 mmol) at 0°C, and the mixture was stirred at room temperature for 4 h. The mixture was diluted with CH₂Cl₂, and the solution was washed with 5% aqueous HCl, saturated aqueous NaHCO₃, and brine, and dried. After removal of the solvent, the residue was purified by flash column chromatography on silica gel (hexane/ AcOEt = 12/1) to give **3a** as an off-white solid; yield: 2.36 g (89%); mp 62-63°C; IR (neat): v=3268, 2214, 2133, 1716 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): $\delta = 7.17$ (dd, J = 1.6, 7.9 Hz, 1 H), 7.01 (d, J=1.6 Hz, 1 H), 6.80 (d, J=7.9 Hz, 1 H), 6.03 (s, 2 H), 4.81 (d, J = 2.6 Hz, 2 H), 2.54 (t, J =2.6 Hz, 1H); ¹³C NMR (67.5 MHz, CDCl₃): $\delta = 53.1$, 75.7, 76.8, 78.8, 88.2, 101.7, 108.7, 112.1, 112.5, 129.0, 47.5, 150.1, 153.0; EI-LR-MS: *m/z* = 228 (M⁺), 173, 146; EI-HR-MS: *m/* z = 228.0418, calcd. for C₁₃H₈O₄: 228.0422.

Methyl 4-[3-(Benzo[*d*][1,3]dioxol-5-yl)propioloyloxy]but-2-ynoate (3b)

Following the similar procedure for **3a**, the crude product, which was prepared from the carboxylic acid **17** (200 mg, 1.1 mmol), the propargylic alcohol **18b**^[19] (181 mg, 1.6 mmol), DMAP (39 mg, 0.32 mmol), and DCC (326 mg, 1.6 mmol) in CH₂Cl₂ (5 mL) at room temperature for 20 min, was purified by column chromatography on silica gel (hexane/AcOEt=3/1) to give **3b** as an off-white solid; yield: 258 mg (86%); mp 102–103 °C; IR (neat): v=2210, 1717, 1602 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): δ =7.18 (dd, J=1.6, 8.1 Hz, 1 H), 7.01 (d, J=1.6 Hz, 1 H), 6.82 (d, J= 8.1 Hz, 1 H), 6.03 (s, 2 H), 4.92 (s, 2 H), 3.80 (s, 3 H); EI-LR-MS: m/z=286 (M⁺), 271, 173; EI-HR-MS: m/z=286.0476, calcd. for C₁₅H₁₀O₆: 286.0477.

4-*tert*-Butyldimethylsilyloxybut-2-ynyl 3-(Benzo[*d*][1,3]dioxol-5-yl)propiolate (19)

Following the similar procedure for **3a**, the crude product, which was prepared from **17** (82 mg, 0.42 mmol), the propargylic alcohol **18c**^[20] (132 mg, 0.66 mmol), DMAP (15 mg, 0.12 mmol), and DCC (133 mg, 0.64 mmol) in CH₂Cl₂ (2 mL) at room temperature for 1.5 h, was purified by column chromatography on silica gel (hexane/AcOEt = 4/1) to give **19** as a colorless oil; yield: 195 mg (100%); IR (nujol): v = 2212, 1715, 1602 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): $\delta = 7.16$ (dd, J = 1.6, 7.9 Hz, 1 H), 7.01 (d, J = 1.6 Hz, 1 H), 6.80 (d, J = 7.9 Hz, 1 H), 6.02 (s, 2 H), 4.85 (t, J = 2.0 Hz, 2 H), 4.37 (t, J = 2.0 Hz, 2 H), 0.91 (s, 9 H), 0.12 (s, 6 H); EI-LR-MS: m/z = 372 (M⁺), 329, 315, 241, 173; EI-HR-MS: m/z = 372.1380, calcd. for C₂₀H₂₄O₅Si (M⁺): 372.1393.

4-Hydroxybut-2-ynyl 3-(Benzo[*d*][1,3]dioxol-5-yl)propiolate

To a solution of 19 (273 mg, 0.73 mmol) in CH₃CN (3.4 mL) was added HF-CH₃CN solution (prepared by mixing concentrated aqueous HF with CH₃CN (ratio of 1:9), 0.9 mL) at 0°C, and the mixture was stirred at room temperature for 2 h. To the solution was added saturated aqueous NaHCO₃ solution, and the mixture was extracted with Et₂O. The organic layer was washed with brine, and dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (hexane/AcOEt = 3/2) to give the corresponding alcohol as a colorless solid: yield: 179 mg 9(4%); mp 95–96°C; IR (nujol): v = 3517, 2211, 1681 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): $\delta = 7.17$ (dd, J = 1.6, 8.3 Hz, 1 H), 7.01 (d, J=1.6 Hz, 1 H), 6.81 (d, J=8.3 Hz, 1 H), 6.03 (s, 2 H), 4.86 (t, J = 1.6 Hz, 2 H), 4.33 (dt, J = 1.6, 6.3 Hz, 2 H), 1.58 (t, J = 6.3 Hz, 1 H); EI-LR-MS: m/z = 258 (M^+) , 241, 173; EI-HR-MS: m/z = 258.0534, calcd. for C₁₄H₁₀O₅ (M⁺): 258.0528.

3-Formylprop-2-ynyl 3-(Benzo[*d*][1,3]dioxol-5-yl)propiolate (3c)

To a solution of the above alcohol (86 mg, 0.33 mmol) in CH₂Cl₂ (1.6 mL) were added MS 4 Å (643 mg) and PCC (214 mg, 0.99 mmol) at 0°C, and the mixture was stirred at the same temperature for 1.5 h. The mixture was diluted with Et₂O, and filtered through a pad of Florisil. The filtrate was concentrated, and the residue was purified by column chromatography on silica gel (hexane/AcOEt=3/1) to give **3c** as a yellowish oil; yield: 57 mg (67%); IR (nujol): v = 2907, 2209, 1714, 1673, 1602 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): δ =9.25 (s, 1H), 7.21 (dd, *J*=1.6, 7.9 Hz, 1H), 7.02 (d, *J*=1.6 Hz, 1H), 6.82 (d, *J*=7.9 Hz, 1H), 6.03 (s, 2H), 4.99 (s, 2H); EI-LR-MS: *m*/*z*=256 (M⁺), 227, 199; EI-HR-MS: *m*/*z*=256.0363, calcd. for C₁₄H₈O₅ (M⁺): 256.0371.

N-Methoxy-*N*-methyl-4-(tetrahydro-2*H*-pyran-2-yloxy)but-2-ynamide (22)

A solution of **20** (100 mg, 0.71 mmol), $21^{[21]}$ (137 mg, 1.1 mmol), PdCl₂(CH₃CN)₂ (5.8 mg, 0.02 mmol), PPh₃ (30 mg, 0.11 mmol), and CuI (15 mg, 0.077 mmol) in Et₃N (3.6 mL) was stirred at 90 °C for 2 h. The mixture was con-

centrated, and the residue was purified by column chromatography on silica gel (hexane/AcOEt=8/1 to 2/1) to give **22** as a colorless oil; yield: 98 mg (61%); IR (neat): v =2240, 1644 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): $\delta = 4.84$ (s, 1H), 4.44 (s, 2H), 3.88–3.80 (m, 1H), 3.78 (s, 3H), 3.58–3.50 (m, 1H), 3.24 (s, 3H), 1.90–1.55 (m, 6H); EI-LR-MS: m/z =227 (M⁺), 167, 127; EI-HR-MS: m/z = 227.1156, calcd. for C₁₁H₁₇NO₄: 227.1157.

4-Hydroxy-N-methoxy-N-methylbut-2-ynamide (18d)

To a solution of **22** (949 mg, 4.2 mmol) in MeOH (11 mL) was added *p*-TsOH (80 mg, 0.42 mmol), and the mixture was stirred at room temperature for 2 h. To the mixture was added saturated aqueous NaHCO₃ solution, and the solution was concentrated. The solution was extracted with CH₂Cl₂ and the organic layer was washed with brine, and dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (hexane/AcOEt=1/2) to give **18d** as a colorless oil; yield: 429 mg (81%); IR (neat): v=3395, 2239, 1639 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): δ =4.45 (s, 2H), 3.79 (s, 3H), 3.24 (s, 3H), 2.78 (br. s, 1H); EI-LR-MS: m/z=143 (M⁺), 83; EI-HR-MS: m/z=143.0576, calcd. for C₆H₉NO₃: 143.0582.

3-(*N*-Methoxy-*N*-methylcarbamoyl)prop-2-ynyl **3-**(Benzo[*d*][1,3]dioxol-5-yl)propiolate (3d)

Following the similar procedure for **3a**, the crude product, which was prepared from **17** (405 mg, 2.1 mmol), the propargylic alcohol **18d** (358 mg, 2.5 mmol), DMAP (77 mg, 0.63 mmol), and DCC (676 mg, 3.3 mmol) in CH₂Cl₂ (15 mL) at room temperature for 20 min, was purified by flash column chromatography on silica gel (hexane/AcOEt=2/1) to give **3d** as a yellowish solid; yield: 576 mg (86%); mp 103–105 °C; IR (film): v=2210, 1714, 1644 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): δ =7.17 (dd, *J*=1.6, 8.1 Hz, 1H), 7.01 (d, *J*=1.6 Hz, 1H), 6.81 (d, *J*=8.1 Hz, 1H), 6.03 (s, 2H), 4.96 (s, 2H), 3.79 (s, 3H), 3.24 (s, 3H); EI-LR-MS: m/z=315 (M⁺), 284, 255, 183; EI-HR-MS: m/z=315.0731, calcd. for C₁₆H₁₃NO₆: 315.0743.

Methyl 4-[3-(3,4-Dimethoxyphenyl)propioloyloxy]but-2-ynoate (3e)

To a solution of methyl methyl 3-(3,4-dimethoxyphenyl)propiolate^[22] (1.00 g, 4.5 mmol) in MeOH (90 mL) was added 10% aqueous NaOH solution (45 mL), and the mixture was stirred at room temperature for 13.5 h. The mixture was acidified by the addition of 1M aqueous HCl solution, and extracted with AcOEt. The organic layer was washed with brine, and dried over Na₂SO₄. After removal of the solvent, the crude material of 3-(3,4-dimethoxyphenyl)propiolic acid was obtained, which was used in the next step without further purification; yield: 902 mg.

To a solution of the crude carboxylic acid (200 mg, 0.97 mmol) and **18b** (132 mg, 1.2 mmol) in THF (6.7 mL) were successively added PPh₃ (304 mg, 1.2 mmol) and a solution of DIAD (diisopropyl azodicarboxylate) (0.23 mL, 1.2 mmol) in THF (3.0 mL) at 0 °C, and the mixture was stirred at 70 °C for 4 h. The mixture was diluted with CH₂Cl₂, and the solution was washed with saturated aqueous NaHCO₃ solution and brine, dried over Na₂SO₄. After re-

moval of the solvent, the residue was purified by column chromatography on silica gel (hexane/AcOEt=3/1) to give **3e** as a colorless solid; yield: 203 mg (69% for 2 steps); mp 125–126°C; IR (film): v=2207, 1711, 1595, 1514, 1443 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ =3.80 (s, 3H), 3.89 (s, 3H), 3.92 (s, 3H), 4.93 (s, 2H), 6.85–6.87 (m, 1H), 7.08–7.08 (m, 1H), 7.24–7.26 (m, 1H); EI-LR-MS: *m*/*z*=302 (M⁺), 301, 287, 273, 189, 75; EI-HR-MS: *m*/*z*=302.0789, calcd. for C₁₆H₁₄O₆: 302.0732.

Methyl 4-(3-Phenylpropioloyloxy)but-2-ynoate (3f)

To a solution of 3-phenylpropiolic acid (commercially available from Aldrich[®], 200 mg, 0.97 mmol) and 18b (133 mg, 1.2 mmol) in THF (6.3 mL) were successively added PPh₃ (306 mg, 1.2 mmol) and a solution of DIAD (0.23 mL, 1.2 mmol) in THF (3.2 mL) at 0 °C, and the mixture was stirred at room temperature for 2 h. The mixture was diluted with CH₂Cl₂, and the solution was washed with saturated aqueous NaHCO₃ solution and brine, dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (hexane/AcOEt = 10/1) to give **3f** as a colorless solid; yield: 171 mg (72%); mp 50-52°C; IR (film): v=2958, 2223, 1719, 1490, 1435, 1262, 1184, 1162 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.59-7.61$ (m, 2H), 7.45–7.50 (m, 1H), 7.39 (br. t, J=7.6 Hz, 2H), 4.94 (s, 2H), 3.80 (s, 3H); EI-LR-MS: m/z = 241 (M⁺-H), 227, 184, 129, 101; EI-HR-MS: m/z = 241.0498, calcd. for $C_{14}H_9O_4$: 241.0501.

Methyl 4-[3-(4-Nitrophenyl)propioloyloxy]but-2-ynoate (3g)

To a solution of 3-(4-nitrophenyl)propiolic acid (CAS Registry No. 2216–24–2, 88 mg, 0.458 mmol) and 18b (63 mg, 0.55 mmol) in THF (3.5 mL) were successively added PPh₃ (306 mg, 1.2 mmol) and a solution of DIAD (0.10 mL, 0.55 mmol) in THF (1.5 mL) at 0°C, and the mixture was stirred at 70°C for 12 h. The mixture was diluted with CH₂Cl₂, and the solution was washed with saturated aqueous NaHCO₃ solution and brine, dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (hexane/AcOEt=3/1) to give **3g** as a colorless solid; yield: 61 mg (47%); mp 115–116°C; IR (film): v=2231, 1716, 1597, 1524, 1436, 1349, 1263, 1169 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.27$ (d, J =8.8 Hz, 2H), 7.77 (d, J=8.8 Hz, 2H), 4.97 (s, 2H), 3.81 (s, 3H); ¹³C NMR (67.9 MHz, CDCl₃): $\delta = 153.0$, 152.0, 148.7, 133.8, 125.6, 123.8, 84.8, 82.8, 79.6, 78.6, 53.0, 52.7; EI-MS: $m/z = 286 (M^+-1), 272, 258, 240, 229, 213, 184, 174, 128; EI-$ HR-MS: m/z = 286.0366, calcd. for C₁₄H₈NO₆: 286.0351.

Methyl 3-[2-(Methoxymethoxy)phenyl]propiolate

To a solution of 1-(2,2-dibromovinyl)-2-(methoxymethoxy)benzene^[23] (4.29 g, 13.3 mmol) in THF (44 mL) was added BuLi (1.47 M hexane solution, 27.2 mL, 40 mmol) at -78 °C, and the mixture was stirred at the same temperature for 10 min. To the solution was added methyl chloroformate (3.1 mL, 40 mmol) at -78 °C, and the mixture was stirred at 0 °C for 1.5 h. To the mixture was added saturated aqueous NH₄Cl solution, and the mixture was extracted with AcOEt. The organic layer was washed with brine, and dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (hexane/AcOEt=50/1) to give the ester as a yellowish oil; yield: 1.51 (52%); IR (neat): v=3021, 2955, 2829, 2224, 1711, 1598, 1577, 1491, 1452, 1435, 1404, 1274, 1176 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ =7.50–7.55 (m, 1H), 7.35–7.31 (m, 1H), 7.15 (d, *J*=8.4 Hz, 1H), 6.97–7.02 (m, 1H),), 5.26 (s, 2H), 3.84 (s, 3H), 3.52 (s, 3H); EI-MS: *m/z*=220 (M⁺), 205, 189, 175, 161, 144, 77; EI-HR-MS: *m/z*=220.0722, calcd. for C₂₄H₁₆O₄: 220.0735.

Methyl 4-{3-[2-(Methoxymethoxy)phenyl]propioloyloxy}but-2-ynoate (3h)

To a solution of methyl 3-[2-(methoxymethoxy)phenyl]propiolate (1.21 g, 5.5 mmol) in MeOH (70 mL) was added 10% aqueous NaOH solution (55 mL), and the mixture was stirred at room temperature for 1 h. The mixture was acidified by the addition of 1M aqueous HCl solution, and the mixture was extracted with AcOEt. The organic layer was washed with brine, and dried over Na₂SO₄. After removal of the solvent, the crude material of 3-[2-(Methoxymethoxy)-phenyl]propiolic acid was obtained, which was used in the next step without further purification; yield: 1.04 g.

To a solution of the crude carboxylic acid (247 mg, 1.2 mmol) and 18b (164 mg, 1.4 mmol) in THF (7.5 mL) were successively added PPh3 (378 mg, 1.4 mmol) and a solution of DEAD (0.23 mL, 1.4 mL) in THF (4.5 mL) at 0°C, and the mixture was stirred at room temperature for 2.5 h. The mixture was diluted with CH₂Cl₂, and the solution was washed with saturated aqueous NaHCO₃ solution and brine, dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (hexane/AcOEt = 10/1) to give **3h** as a yellowish oil; yield: 292 mg (80%); IR (neat): v = 2956, 2219, 1721, 1597, 1576, 1490, 1452, 1437, 1298, 1265, 1199, 1170 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.54$ (dd, J = 7.7, 1.7 Hz, 1 H), 7.41 (ddd, J=8.6, 7.5, 1.7 Hz, 1H), 7.17 (d, J=8.6 Hz, 1H), 7.01 (br. t, J=7.6 Hz, 1H), 5.28 (s, 2H), 4.94 (s, 2H), 3.80 (s, 3 H), 3.53 (s, 3 H); EI-MS: m/z = 301 (M⁺-H), 287, 271, 241, 189, 159, 144, 116, 77; EI-HR-MS: *m*/*z* = 301.0707, calcd. for C₁₆H₁₃O₆: 301.0712.

3-[2-(Methoxymethoxy)phenyl]-N-(prop-2-ynyl)propiolamide

To a solution of the above-mentioned crude 3-[2-(methoxymethoxy)phenyl]propiolic acid (100 mg, 0.49 mmol) in CH₃CN (0.6 mL) were added PPh₃ (127 mg, 0.49 mmol), Et₃N (0.07 mL, 0.49 mmol), propargylamine (0.03 mL, 0.39 mmol), and CCl₄^[24] (0.05 mL, 0.49 mmol) at room temperature, and the mixture was stirred for 10 h. After removal of the solvent, the residue was dissolved in Et₂O, and the Et₂O solution was filtered through a pad of Celite. The filtrate was washed with saturated aqueous NaHCO₃ solution and brine, and dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (hexane/AcOEt = 10/1) to give the amide as a colorless oil; yield: 52 mg (44%); IR (neat): v=3438, 3307, 3019, 2220, 1653, 1598, 1508, 1452, 1274 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.49$ (dd, J = 7.5, 1.7 Hz, 1 H), 7.33– 7.39 (m, 1H), 7.15 (br, d, J=8.5 Hz, 1H), 6.95–7.02 (m, 1 H), 6.12 (br. S, 1 H), 5.26 (s, 2 H), 4.15–4.18 (m, 2 H), 3.52 (s, 3 H), 2.27–2.32 (m, 1 H); EI-MS: m/z = 243 (M⁺), 212, 198, 130, 77; EI-HR-MS: m/z = 243.0892, calcd. for C₁₄H₁₃NO₃: 243.0895.

Methyl 4-{3-[2-(Methoxymethoxy)phenyl]-*N*-(methoxycarbonyl)propiolamido}but-2-ynoate (3i) and Methyl 3-[2-(Methoxymethoxy)phenyl]propioloyl(prop-2-ynyl)carbamate (3j)

To a THF solution of LDA, which was prepared in situ by mixing i-Pr₂NH (0.09 mL, 0.65 mmol) and BuLi (1.56 M hexane solution, 0.41 mL, 0.65 mmol) in THF (1.1 mL) at 0°C for 15 min, was added a solution of the above-mentioned 3-[2-(methoxymethoxy)phenyl]-N-(prop-2-ynyl)propiolamide (52 mg, 0.22 mmol) in THF (1.1 mL) at -78°C, and the mixture was stirred at the same temperature for 1 h. To the solution was added methyl chloroformate (0.04 mL, 0.45 mmol) at -78 °C, and the mixture was stirred at the same temperature for 2 h. To the mixture was added saturated aqueous NH₄Cl solution, and the solution was extracted with Et₂O. The organic layer was washed with brine, and dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (hexane/AcOEt = 6/1) to give **3i** (yield: 28 mg, 36%) and **3j** (yield: 38 mg, 59%) as a yellowish oil, respectively.

Spectral data of 3i: IR (neat): v = 3021, 2957, 2208, 1718, 1659, 1597, 1575, 1490, 1441, 1411, 1262 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.57$ (dd, J = 7.7, 1.7 Hz, 1H), 7.40 (ddd, J = 8.5, 7.4, 1.7 Hz, 1H), 7.16 (br. d, J = 8.5 Hz, 1H), 7.02 (m, 1H), 5.28 (s, 2H), 4.75 (s, 2H), 3.96 (s, 2H), 3.77 (s, 2H), 3.53 (s, 2H); EI-MS: m/z = 359 (M⁺), 343, 329, 314, 283, 254; EI-HR-MS: m/z = 359.1011, calcd. for C₁₈H₁₇NO₇: 359.1005.

Spectral data of 3j: IR (neat): v = 3020, 2958, 2208, 1752, 1656, 1597, 1491, 1442, 1279 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.57$ (dd, J = 7.7, 1.7 Hz, 1H), 7.39 (ddd, J = 8.5, 7.5, 1.7 Hz, 1H), 7.16 (br. d, J = 8.5 Hz, 1H), 7.01 (ddd, J = 7.7, 7.5, 0.9 Hz, 1H), 5.28 (s, 2H), 4.61 (d, J = 2.5 Hz, 2H), 3.96 (s, 3H), 3.53 (s, 3H), 2.22 (t, J = 2.5 Hz, 1H); EI-MS: m/z = 301 (M⁺), 271, 241, 189, 77; EI-HR-MS: m/z = 300.0874 (M⁺-H), calcd. for C₁₆H₁₄NO₅: 300.0872.

Methyl 4-[3-(Naphthalen-1-yl)propioloyloxy]but-2-ynoate (3k)

Following the similar procedure for **3a**, the crude product, which was prepared from 3-(naphthalen-1-yl)propiolic acid^[25] (1.63 g, 8.3 mmol), the propargylic alcohol **18b**^[19] (1.09 g, 9.5 mmol), DMAP (310 mg, 2.5 mmol), and DCC (2.79 g, 13.5 mmol) in CH₂Cl₂ (47 mL) at room temperature for 1.5 h, was purified by column chromatography on silica gel (hexane/AcOEt=10/1) to give **3k** as a yellowish solid; yield: 1.29 g (53 %); mp 92–94 °C; IR (film): v=3021, 2954, 2250, 2217, 1714, 1586, 1509, 1436, 1273, 1196, 1167 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.32$ (br. d, J = 8.3 Hz, 1H), 7.98 (br. d, J = 8.3 Hz, 1H), 7.86–7.91 (m, 2H), 7.62–7.68 (m, 1H), 7.55–7.60 (m, 1H), 7.48 (dd, J = 8.3, 7.5 Hz, 1H), 5.00 (s, 2H), 3.82 (s, 3H); EI-MS: m/z = 291.0658(M⁺–H), calcd. for C₁₈H₁₁O₄: 291.0657.

Methyl 4-{3-[2-(Methoxymethoxy)naphthalen-1-yl]propioloyloxy}but-2-ynoate (31)

To a solution of methyl 3-[2-(methoxymethoxy)naphthalen-1-yl]propiolate^[3c] (571 mg, 2.1 mmol) on MeOH (26 mL) was added 10% aqueous NaOH solution (21 mL), and the mixture was stirred at room temperature for 1 h. The mixture was acidified by the addition of 1 M HCl aqueous solution, and the mixture was extracted with AcOEt. The organic layer was washed with brine, and dried over Na₂SO₄. After removal of the solvent, the crude carboxylic acid was obtained, which was used in the next step without further purification; yield: 563 mg.

Following the similar procedure for **3a**, the crude product, which was prepared from the carboxylic acid (410 mg, 1.6 mmol), the propargylic alcohol **18b**^[19] (236 mg, 2.1 mmol), DMAP (58.6 mg, 0.48 mmol), and DCC (528 mg, 2.6 mmol) in CH₂Cl₂ (8.0 mL) at room temperature for 1.5 h, was purified by column chromatography on silica gel (hexane/AcOEt=10/1) to give **3l** as a yellowish oil; yield: 283 mg (50%); IR (neat): v=3021, 2210, 1719, 1260 cm⁻¹; ¹H NMR (400 MHz CDCl₃): δ = 8.23 (br. d, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 8.9 Hz, 1H), 7.81 (br. d, *J* = 8.1 Hz, 1H), 7.61 (ddd, *J* = 8.4, 7.0, 1.3 Hz, 1H), 7.45 (ddd, *J* = 8.1, 7.0, 1.1 Hz, 1H), 7.43 (d, *J* = 8.9 Hz, 1H), 5.40 (s, 2H), 4.99 (s, 2H), 3.81 (s, 3H), 3.58 (s, 3H); EI-MS: *m*/*z* = 352 (M⁺), 321, 239, 194; EI-HR-MS: *m*/*z* = 352.0942, calcd. for C₂₀H₁₆O₆: 352.0947.

[2+2+2] Cocyclization of Diynes 3a–l and Benzyne; General Procedure

A solution of Pd₂(dba)₃·CHCl₃ (5 mol% to substrate divne), $P(o-tol)_3$ (40 mol% to substrate diyne), and CsF (dried under vacuum at 100°C for 2 h just before its use, 6.0 equivs. to substrate diyne) in degassed CH₃CN (0.04M to Pd catalyst) was stirred at room temperature for 20 min. To the catalyst solution was added a solution of substrate divne and benzyne precursor (3.0 equivs. to divne) in CH₃CN (0.16M to diyne) via a cannula at 0°C, and the mixture was stirred at room temperature until the diyne disappeared on TLC. To the mixture was added saturated aqueous NH₄Cl solution, and the solution was stirred for 1 h with exposure to air. Then the mixture was extracted with AcOEt, the organic layer was washed with brine and dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel to give the cyclized product.

9-(Benzo[d][1,3]dioxol-5-yl)naphtho[2,3-c]furan-1(3H)-

one (1aa): Mp 229–231 °C; IR (nujol): v=1760, 1635 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): $\delta = 7.96$ (d, J = 8.3 Hz, 1H), 7.89 (s, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.64 (dd, J = 7.1, 8.3 Hz, 1H), 7.50 (dd, J = 7.1, 8.3 Hz, 1H), 6.98 (d, J =7.9 Hz, 1H), 6.86–6.82 (m, 2H), 6.08 (d, J = 6.7 Hz, 1H), 6.08 (d, J = 6.7 Hz, 1H), 5.45 (s, 2H); EI-LR-MS: m/z = 304(M⁺), 275; EI-HR-MS: m/z = 304.0737, calcd. for C₁₉H₁₂O₄: 304.0735.

Methyl 9-(Benzo[*d*][1,3]dioxol-5-yl)-1,3-dihydro-1-oxonaphtho[2,3-*c*]furan-4-carboxylate (1ab): Mp. 218–219 °C; IR (nujol): v=1770, 1717 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): $\delta = 9.10$ (d, J = 8.7 Hz, 1 H), 7.93 (d, J = 7.9 Hz, 1 H), 7.81–7.75 (m, 1 H), 7.59–7.53 (m, 1 H), 6.99 (d, J = 7.9 Hz, 1 H), 6.84–6.83 (m, 2 H), 6.09 (d, J = 6.3 Hz, 2 H), 5.64 (s, 2 H), 4.10 (s, 3 H); ¹³C NMR (67.5 MHz, CDCl₃): $\delta = 52.5$, **9-(Benzo[***d***][1,3]dioxol-5-yl)-1-oxo-1,3-dihydronaphtho-[2,3-***c***]furan-4-carbaldehyde (1ac):** Mp. 209–211 °C (sublim.); IR (neat): v = 2926, 1679, 1672 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): $\delta = 11.16$ (s, 1 H), 8.84 (d, J = 8.6 Hz, 1 H), 8.03 (d, J = 8.6 Hz, 1 H), 7.90 (t, J = 7.9, 8.6 Hz, 1 H), 7.62 (dd, J =7.9, 8.6 Hz, 1 H), 7.00 (d, J = 7.9 Hz, 1 H), 6.85–6.82 (m, 2 H), 6.11 (s, 1 H), 6.09 (s, 1 H), 5.77 (s, 2 H); EI-LR-MS: m/z =332 (M⁺), 303; EI-HR-MS: m/z = 332.0691, calcd. for $C_{20}H_{12}O_5$: 332.0684.

9-(Benzo[d][1,3]dioxol-5-yl)-1,3-dihydro-*N***-methoxy-***N***-methyl-1-oxonaphtho[2,3-c]furan-4-carboxamide (1ad):** IR (neat): v = 1768, 1646 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): $\delta = 7.99$ (d, J = 8.7 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.69 (t, J = 7.5 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 7.5 Hz, 1H), 6.89–6.79 (m, 2H), 6.08 (s, 1H), 6.05 (s, 1H), 5.43 (s, 2H), 3.55 (s, 3H), 3.39 (s, 3H); EI-LR-MS: m/z = 391 (M⁺), 331; EI-HR-MS; m/z = 391.1065, calcd. for C₂₂H₁₇NO₆: 391.1056.

Methyl9-(3,4-Dimethoxyphenyl)-1,3-dihydro-1-oxo-
naphtho[2,3-c]furan-4-carboxylate (1ae): Mp 67-69°C; IR
(film): v = 2953, 1768, 1719, 1592, 1511, 1453 cm⁻¹; ¹H NMR
(270 MHz, CDCl₃): $\delta = 3.87$ (s, 3H), 4.00 (s, 3H), 4.11 (s,
3H), 5.64 (s, 2H), 6.88–6.95 (m, 2H), 7.04–7.07 (m, 1H),
7.75–7.81 (m, 1H), 7.93–7.96 (m, 1H), 9.11 (m, 1H); EI-LR-
MS: m/z = 378 (M⁺), 363, 347, 331, 75; EI-HR-MS: m/z =
378.1103, calcd. for C₂₂H₁₈O₆: 378.1106.

Methyl 1-Oxo-9-phenyl-1,3-dihydronaphtho[**2,3-***c*]**furan-4carboxylate (1af):** Mp 225–230 °C; IR (film): v=3020, 2952, 1769, 1719, 1261, 1216 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 9.14$ (d, J = 8.7 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.78 (ddd, J = 8.8, 6.8, 1.3 Hz, 1H), 7.50–7.58 (m, 4H), 7.33–7.38 (m, 2H), 5.65 (s, 2H), 4.11 (s, 3H); EI-MS: m/z = 318 (M⁺), 243, 215, 129, 101, 77; EI-HR-MS: m/z = 318.0891, calcd. for C₂₀H₁₄O₄: 318.0892.

Methyl 9-(4-Nitrophenyl)-1,3-dihydro-1-oxonaphtho[**2,3-***c*]**furan-4-carboxylate (1ag):** Mp 263–265 °C; IR (film): v = 1766, 1718, 1514, 1347, 1027 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): $\delta = 9.16$ (d, J = 8.6 Hz, 1H), 8.43 (d, J = 8.6 Hz, 2H), 7.83 (ddd, J = 8.6, 6.6, 1.3 Hz, 1H), 7.69 (d, J = 7.9 Hz, 1H), 7.50–7.70 (m, 3H), 5.69 (s, 2H), 4.13 (s, 3H); EI-MS: m/z = 363 (M⁺), 348,334, 319, 303, 288, 276, 257, 230, 201, 189; EI-HR-MS: m/z = 363.0747, calcd. for C₂₀H₁₃NO₆: 363.0743.

Methyl 9-[2-(Methoxymethoxy)phenyl]-1-oxo-1,3-dihydronaphtho[2,3-*c***]furan-4-carboxylate (1ah):** Mp 184–186 °C; IR (film): v=3019, 2956, 2852, 1764, 1712, 1600, 1490, 1438, 1404, 1283, 1258, 1195 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta=9.12$ (d, J=8.7 Hz, 1H), 7.84 (d, J=8.7 Hz, 1H), 7.77 (ddd, J=8.8, 6.8, 1.2 Hz, 1H), 7.45–7.55 (m, 2H), 7.34 (d, J=8.3 Hz, 1H), 7.15–7.22 (m, 2H), 5.67 (d, J=16.0 Hz, 1H), 5.62 (d, J=16.0 Hz), 5.09 (d, J=7.0 Hz, 1H), 4.90 (d, J=7.0 Hz, 1H), 4.10 (s, 3H), 3.18 (s, 3H); EI-MS: m/z=378(M⁺), 346, 316, 274; EI-HR-MS: m/z=378.1102, calcd. for $C_{22}H_{18}O_6$ (M⁺-H): 378.1103.

Methyl 9-[(2-Methoxymethoxy)phenyl]-2-methoxycarbonyl-1-oxo-2,3-dihydro-1*H*-benzo[*f*]isoindole-4-carboxylate (1ai): Mp 70–74 °C; IR (film): v=3020, 2955, 1785, 1722, 1607, 1492, 1440, 1282, 1255, 1177 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ =8.86 (d, *J*=8.8 Hz, 1H), 7.78 (br. d, *J*=8.5 Hz, 1 H), 7.72 (ddd, J=8.7, 6.6, 1.3 Hz, 1 H), 7.46–7.7.53 (m, 1 H), 7.46 (ddd, J=8.5, 6.6, 2.6 Hz, 1 H), 7.25–7.35 (m, 1 H), 7.10–7.18 (m, 2 H), 5.17 (s, 2 H), 5.11 (d, J=6.8 Hz, 1 H), 4.83 (d, J=6.8 Hz, 1 H), 4.13 (s, 3 H), 3.92 (s, 3 H), 3.12 (s, 3 H); EI-MS: m/z=435 (M⁺), 420, 390, 374, 358, 344, 302; EI-HR-MS: m/z=435.1320, calcd. for C₂₄H₂₁NO₇: 435.1318.

9-[(2-Methoxymethoxy)phenyl]-2-methoxycarbonyl-1oxo-2,3-dihydro-1*H***-benzo[***f***]isoindole (1aj): Mp 201–203 °C; IR (film): v = 3060, 3006, 2955, 1771, 1629, 1581, 1489, 1438, 1400, 1271, 1236, 1194 cm⁻¹; 1H NMR (400 MHz, CDCl₃): \delta = 7.94 (br. d, J = 8.5 Hz, 1H), 7.93 (br. s, 1H), 7.73 (d, J = 8.7 Hz, 1H), 7.58–7.63 (m, 1H), 7.41–7.47 (m, 2H), 7.29 (br. d, J = 8.3 Hz, 1H), 7.10–7.19 (m, 1H), 5.10 (d, J = 6.8 Hz, 1H), 4.97 (s, 2H), 4.84 (d, J = 6.8 Hz, 1H), 3.91 (s, 3H), 3.13 (s, 3H); EI-MS: m/z = 377 (M⁺), 332, 316; EI-HR-MS: m/z = 377.1259, calcd. for C₂₂H₁₉NO₅: 377.1263.**

Methyl 9-(Naphthalen-1-yl)-1-oxo-1,3-dihydronaphtho-[2,3-c]furan-4-carboxylate (1ak): Mp 215–222 °C; IR (film): v=3019, 2952, 1771, 1694, 1605, 1508, 1437 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta=9.16$ (br. d, J=8.7 Hz, 1H), 8.04 (d, J=8.3 Hz, 1H), 7.97 (d, J=8.3 Hz, 1H), 7.77 (ddd, J=8.7, 6.6, 1.3 Hz, 1H), 7.65 (dd, J=8.3, 7.0 Hz, 1H), 7.58 (br. d, J=7.5 Hz, 1H), 7.39–7.50 (m, 3H), 7.22–7.28 (m, 1H), 7.04 (br. d, J=8.3 Hz, 1H),), 5.69 (s, 2H), 4.14 (s, 3H); EI-MS: m/z=368 (M⁺-H), 353, 293; EI-HR-MS: m/z=368.1053, calcd. for C₂₄H₁₆O₄: 368.1048.

Methyl 9-[2-(Methoxymethoxy)naphthalen-1-yl]-1-oxo-1,3-dihydronaphtho[2,3-c]furan-4-carboxylate (1al): Mp 180–184 °C; IR (nujol): v = 1771, 1725, 1593, 1508, 1239, 802, 776 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 9.17$ (br. d, J =8.8 Hz, 1H), 8.04 (d, J = 9.0 Hz, 1H), 7.90 (d, J = 8.3 Hz, 1H), 7.77 (ddd, J = 8.8, 6.8, 1.3 Hz, 1H), 7.63 (d, J = 9.0 Hz, 1H), 7.60 (br. d, J = 7.9 Hz, 1H), 7.39–7.45 (m, 1H), 7.31– 7.37 (m, 1H), 7.15–7.21 (m, 1H), 6.79 (br. d, J = 8.5 Hz, 1H), 5.69 (s, 2H), 5.16 (d, J = 7.0 Hz, 1H), 4.96 (d, J =7.0 Hz, 1H), 4.14 (s, 3H), 3.15 (s, 3H); EI-MS: m/z =428.1263, calcd. for C₂₆H₂₀O₆: 428.1260.

Total Synthesis of Taiwanins; 5-Bromobenzo[*d*][1,3]dioxol-6-yl Trifluoromethanesulfonate (Aryne Precursor, 2'b)

To a solution of 6-bromobenzo[d][1,3]dioxol-5-ol (4) (876 mg, 4.0 mmol) in THF (17 mL) was added hexamethyldisilazane (1.3 mL, 6.2 mmol), and the mixture was refluxed with stirring for 3 h. The mixture was concentrated under vacuum, and the residual crude 5 was dissolved in THF (17 mL). To the mixture was added BuLi (1.65 M hexane solution, 2.6 mL, 4.3 mmol) at -100 °C, and the temperature of the mixture was raised to -80°C for 20 min. The mixture was again cooled to -100 °C, and Et₂O (17 mL) and trifluoromethanesulfonic anhydride (0.88 mL, 5.2 mmol) were added to the mixture. The temperature of the mixture was again raised to -80 °C for 20 min, and the reaction mixture was quenched with saturated aqueous NaHCO₃ solution at the same temperature, and the mixture was slowly warmed to room temperature. The solution was extracted with Et₂O, and the organic layer was washed with brine, dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (hexane/ AcOEt = 30/1) to give **2'b** as a purplish oil; yield: 1.15 g (83% from 4); IR (neat): v=1330, 1142 cm^{-1} ; ¹H NMR (270 MHz, CDCl₃): $\delta = 6.88$ (s, 1H), 6.84 (s, 1H), 6.03 (s, 2H), 0.33 (s, 9H); EI-LR-MS: m/z = 342 (M⁺), 327, 194; EI-HR-MS: m/z = 342.0197, calcd. for C₁₁H₁₃O₅F₃SSi: 342.0205; anal. calcd. for C₁₁H₁₃O₅F₃SSi: C 38.59, H 3.83; found: C 38.58, H 3.83.

[2+2+2] Cocyclization of 3d and 2'b Producing 1bd

Pd₂(dba)₃·CHCl₃ (26 mg, 0.025 mmol) and P(o-tol)₃ (61 mg, 0.20 mmol) were dissolved in CH₃CN (1.2 mL), and the mixture was stirred at room temperature for 15 min. The catalyst solution was added via a cannula using CH₃CN (1.0 mL) for washing to a solution of 3d (160 mg, 0.51 mmol), 2'b (530 mg, 1.6 mmol) and CsF (472 mg, 3.1 mmol) in CH₃CN (1.8 mL) at 0°C, and the mixture was stirred at room temperature for 4 h. To the mixture was added saturataed aqueous NH₄Cl solution, and the solution was extracted with AcOEt. The organic layer was washed with brine and dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (hexane/ AcOEt = 3/2) to give **1bd** (yield: 134 mg, 61%) as a yellowish solid along with the recovery of unchanged 2'b (257 mg, 48% recovery). 1bd: Mp 239–241°C (decomp.); IR (neat): $v = 1762, 1653 \text{ cm}^{-1}; {}^{1}\text{H NMR}$ (270 MHz, CDCl₃): $\delta = 7.26$ (s, 1H), 7.25 (s, 1H), 6.97 (d, J = 7.9 Hz, 1H), 6.83–6.74 (m, 2H), 6,10-6.06 (m, 4H), 5.35 (s, 2H), 3.51 (s, 3H), 3.43 (s, 3H); EI-LR-MS m/z = 435 (M⁺), 375; EI-HR-MS: m/z =435.0942, calcd. for C₂₃H₁₇NO₈: 435.0954.

Transformation of 1bd into Taiwanins C and E; Reduction of 1bd with DIBAL-H Producing 8a and 8b (Scheme 5)

To a solution of **1bd** (40 mg, 0.09 mmol) in CH_2Cl_2 (1 mL) was DIBAL-H (1.0M toluene solution, 0.1 mL, 0.01 mmol) at -78 °C, and the mixture was stirred at the same temperature for 4 h. To the solution was added an additional DIBAL-H (0.1 mL, 0.01 mmol) at the same temperature, and the mixture was stirred for 1.5 h. To the mixture were successively added MeOH (0.03 mL) and saturated potassium sodium tartrate aqueous solution at -78 °C, and the solution was extracted with Et₂O, and the organic layer was washed with brine, dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (CH₂Cl₂/Et₂O = $30/1 \sim 8/1$) to give **8a** (yield: 6 mg, 17%) and **8b** (yield: 23 mg, 67%).

8a: IR (nujol): v=2901, 1753, 1673 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): $\delta=9.89$ (s, 1H), 8.52 (s, 1H), 7.08 (s, 1H), 7.00 (d, J=7.9 Hz, 1H), 6.87 (d, J=2.0 Hz, 1H), 6.84 (dd, J=7.9, 2.0 Hz, 1H), 6.15 (s, 2H), 6.13 (d, J=5.3 Hz, 1H), 6.13 (d, J=5.3 Hz, 1H), 5.67 (s, 2H); EI-LR-MS: m/z=376 (M⁺), 347, 319; EI-HR-MS: m/z=376.0591, calcd. for C₂₁H₁₂O₇: 376.0583.

8b: IR (neat): v = 3382, 2922, 1673 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): $\delta = 9.84$ (s, 1H), 7.42 (s, 1H), 7.01 (s, 1H), 6.96 (d, J = 7.3 Hz, 1H), 6.84 (d, J = 1.3 Hz, 1H), 6.82 (s, 1H), 6.79 (d, J = 1.3, 7.3 Hz, 1H), 6.11–6.08 (m, 4H), 5.70–5.61 (m, 1H), 5.44 (dd, J = 4.6, 15.2 Hz, 1H), 3.31 (s, 1H); EI-LR-MS: m/z = 360 (M⁺–OH–1), 332 $(M^+-OH-CHO)$; EI-HR-MS: m/z = 360.0626, calcd. for $C_{21}H_{12}O_6$ (M⁺-OH-1): 360.0634.

1,3,7,9-Tetrahydro-5-(benzo[*d*][1,3]dioxol-5-yl)-4carbomethoxy-1-oxo-2,7,9-trioxaindeno[5,6-*e*]indene (9)

To a solution of **1bd** (320 mg, 0.74 mmol) in CH₂Cl₂ (7 mL) were successively added MeOH (7 mL) and NaH (88 mg, 60% dispersion in mineral oil, 2.2 mmol) at 0°C, and the mixture was stirred at room temperature for 5 h. To the mixture was added saturated aqueous NH₄Cl at 0°C, and the solution was evaporated in order to remove MeOH. The resultant aqueous layer was extracted with AcOEt, and the organic layer was washed with brine, dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel ($CH_2Cl_2/Et_2O=45/1$) to give 9 as a colorless solid; yield: 236 mg (78%); mp 218-220°C; IR (neat): v = 1732, 1703 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): $\delta = 8.51$ (s, 1 H), 6.98 (s, 1 H), 6.94 (d, J = 7.9 Hz, 1 H), 6.74 (d, J = 1.6 Hz, 1 H), 6.71 (dd, J = 1.6, 7.9 Hz, 1 H), 6.12 (s, 2H), 6.08 (d, J=2.8 Hz, 1H), 6.08 (d, J=2.8 Hz, 1H), 5.54 (d, J=3.2 Hz, 2H), 3.69 (s, 3H); EI-LR-MS: m/z=406 (M^+) , 374, 346; EI-HR-MS: m/z = 406.0692, calcd. for C₂₂H₁₄O₈ (M⁺) 406.0688.

1,3,7,9-Tetrahydro-5-(benzo[*d*][1,3]dioxol-5-yl)-4carbomethoxy-1-hydroxy-2,7,9-trioxaindeno[5,6*e*]indene (10)

To a solution of 9 (26 mg, 0.064 mmol) in CH₂Cl₂ (1.6 mL) was added DIBAL-H (1.0M toluene solution, 0.076 mL, 0.076 mmol) at -78 °C, and the mixture was stirred at the same temperature for 2 h. To the mixture were successively added MeOH (0.03 mL) and saturated aqueous potassium sodium tartrate solution at -78°C, and the solution was warmed to room temperature. The solution was extracted with Et₂O, and the organic layer was washed with brine, dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel $(CH_2Cl_2/Et_2O = 50/1 \text{ to } 6/1)$ to give **10** (yield: 16 mg, 63 %) as a colorless solid along with the starting material 9 (3 mg, 12%). **10:** Mp 182–183°C; IR (neat): v = 3381, 1706 cm⁻¹ ¹H NMR (270 MHz, CDCl₃): $\delta = 7.39$ (s, 1H), 6.95 (s, 1H), 6.90 (d, J = 7.9 Hz, 1H), 6.87–6.84 (m, 1H), 6.73 (d, J =7.9 Hz, 1H), 6.69–6.63 (m, 1H), 6.06 (s, 1H), 5.60–5.50 (m, 1 H), 5.30 (m, 1 H), 3.63 (s, 3 H), 3.09 (d, J = 7.9 Hz, 1 H); EI-LR-MS: m/z = 408 (M⁺), 390, 376; EI-HR-MS: m/z =408.0850, calcd for $C_{22}H_{16}O_8$ (M⁺): 408.0845.

1,3,6,8-Tetrahydro-4-(benzo[*d*][**1,3**]dioxol-5-yl)-10hydroxymethyl-3-oxo-2,6,8-trioxaindeno[5,6-*f*]indene (12)

To a solution of **10** (124 mg, 0.30 mmol) in MeOH/THF (8 mL/8 mL) was added NaBH₄ (59 mg, 1.5 mmol) at 0 °C, and the mixture was stirred at room temperature for 4 h. To the mixture was added again NaBH₄ (59 mg, 1.5 mmol) at 0 °C, and the mixture was stirred at room temperature for 15 h. Then, to the mixture was added again NaBH₄ (22 mg, 0.60 mmol) at 0 °C, and the mixture was stirred at room temperature for 2 h. To the mixture was added 5% aqueous

HCl at 0°C, then the mixture was evaporated in order to remove MeOH and THF. The resultant aqueous layer was extracted with CH₂Cl₂, and the organic layer was washed with saturated aqueous NaHCO₃, brine, and dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (CH₂Cl₂/ Et₂O=9/2) to give **12** as a colorless solid; yield: 109 mg (95%); mp 240–241 °C; IR (neat): v=3438, 1751 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): δ =7.47 (s, 1H), 7.13 (s, 1H), 6.95 (d, *J*=7.5 Hz, 1H), 6.07 (d, *J*=6.9 Hz, 1H), 5.53 (s, 2H), 5.16 (s, 2H); EI-LR-MS: *m*/*z*=378 (M⁺), 349; EI-HR-MS: *m*/*z*=378.0741, calcd. for C₂₁H₁₄O₇ (M⁺): 378.0740.

1,3,6,8-Tetrahydro-4-(benzo[*d*][1,3]dioxol-5-yl)-10formyl-3-oxo-2,6,8-trioxaindeno[5,6-*f*]indene (6)

To a solution of **12** (109 mg, 0.29 mmol) in CH₂Cl₂ (4 mL) were added MS 4 Å (545 mg) and PCC (186 mg, 0.86 mmol) at 0 °C, and the mixture was stirred at the same temperature for 1.5 h. The mixture was dilute with Et₂O, and filtered through a pad of Florisil. The filtrate was concentrated, and the residue was purified by column chromatography on silica gel (CH₂Cl₂/Et₂O = 50/1) to give **6** as a yellowish solid; yield: 96 mg (89 %); mp 269–270 °C (sublim.); IR (neat): v = 2907, 1757, 1682 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): δ =10.9 (s, 1H), 8.16 (s, 1H), 7.22 (s, 1H), 6.99 (d, *J*=7.3 Hz, 1H), 6.80 (s, 1H), 6.79 (d, *J*=7.3 Hz, 1H), 6.17 (s, 2H), 6.09 (d, *J*=6.6 Hz, 2H), 5.70 (s, 1H); EI-LR-MS: *m*/*z*=376 (M⁺), 358, 347; EI-HR-MS: *m*/*z*=376.0584, calcd. for C₂₁H₁₂O₇ (M⁺): 376.0583.

Synthesis of Taiwanin C from 6 Using RhCl(PPh₃)₃

To a solution of **6** (14 mg, 0.037 mmol) in C₂H₅CN (2 mL) was added RhCl(PPh₃)₃ (48 mg, 0.052 mmol), and the mixture was refluxed for 2 h. The reaction mixture was cooled to 0 °C, and EtOH was added to the solution. The mixture was concentrated, and the residue was purified by column chromatography on silica gel (CH₂Cl₂/Et₂O = 60/1) to taiwanin C (yield: 8 mg, 64%) as a colorless solid, whose spectral data were identical with those previously reported by Padwa et al.^[12n]

Synthesis of Taiwanin E from 6

To a solution of 6 (64 mg, 0.17 mmol) in CH_2Cl_2 (4.2 mL) was added mCPBA (8234 mg, 1.4 mmol) at 0°C, and the mixture was stirred at room temperature for 1 h. The mixture was diluted with Et₂O. The solution was successively washed with 10% saturated aqueous Na₂S₂O₃, NaHCO₃, and brine, and dried over Na₂SO₄. After removal of the solvent, the crude formate was dissolved in MeOH (7 mL), and K_2CO_3 (35 mg, 0.25 mmol) was added to the solution. The mixture was stirred at room temperature for 30 min, and the mixture was diluted with Et₂O, and filtered. The filtrate was washed with brine, and dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (CH₂Cl₂/Et₂O = 30/1) to give taiwanin E (yield: 54 mg, 88% from 6) as a colorless solid, whose spectral data were identical with those previously reported by Iwasaki et al.^[12i]

Conversion of Taiwanin E into Taiwanin C via Triflate 13

To a solution of taiwani E (30 mg, 0.084 mmol) in THF (4.2 mL) was added LHMDS (1.0M THF solution, 0.13 mL, 0.13 mmol) at -78°C, and the mixture was stirred at the same temperature for 1 h. To the mixture was added Tf₂O (0.028 mL, 0.17 mmol) at $-78 \,^{\circ}\text{C}$, and the mixture was stirred at -78°C for 1.5 h. The reaction mixture was quenched with saturated aqueous NaHCO₃ solution at -78 °C, and the mixture was slowly warmed to room temperature. The solution was extracted with Et₂O, and the organic layer was washed with brine, dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (CH_2Cl_2) to give 13 as a colorless solid; yield: 27 mg (66%); mp 165–166°C; IR (film): v=1778, 1468, 1215, 1037 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): $\delta = 7.44$ (s, 1H), 7.16 (s, 1H), 6.97 (s, 1H), 6.79-6.75 (m, 2H), 6.16 (s, 2 H), 6.09 (d, J = 6.5 Hz, 1 H), 6.08 (d, J = 6.5 Hz, 1 H), 5.47 (s, 2H); EI-LR-MS: m/z = 496 (M⁺), 363, 335; EI-HR-MS: m/z = 496.0086, calcd. for C₂₁H₁₁SO₉F₃: 496.0075.

To a solution of **13** (27 mg, 0.054 mmol), $Pd(OAc)_2$ (1.0 mg, 4.5 µmol), PPh₃ (2.3 mg, 8.7 µmol) in DMF (1.2 mL) were added triethylamine (0.023 mL, 0.165 mmol) and formic acid (0.004 mL, 0.106 mmol), and the mixture was stirred at 60 °C for 1.5 h. To the mixture was added brine, and the solution was extracted with Et₂O. The organic layer was washed with brine, dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (CH₂Cl₂/Et₂O = 40/1) to give taiwanin C; yield: 14 mg (76%).

Total Synthesis of Dehydroxydesoxypodophyllotoxin; Synthesis of 3-(*N*-Methoxy-*N*-methylcarbamoyl)prop-2-ynyl 3-(3,4,5-Trimethoxyphenyl)propiolate (3m)

Following the similar procedure for **3e**, the crude product, which was prepared from 3-(3,4,5-trimethoxyphenyl)propiolic acid (CAS Registry No. 4698–21–9, 980 mg, 4.1 mmol), propargylic alcohol **18d** (710 mg, 5.0 mmol), PPh₃ (1.3 g, 5.0 mmol) and DIAD (1.0 mL, 5.0 mmol) in THF (14 mL) at 0 °C for 2 h, was purified by column chromatography on silica gel (hexane/AcOEt=3/1) to give **3m** as a yellowish oil; yield: 1.2 g (88 %); IR (neat): v=2940, 2213, 1717, 1649, 1577, 1454, 1414 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): δ =3.24 (br, 3H), 3.79–3.90 (m, 12H), 4.98 (s, 2H), 6.85 (s, 2H); EI-LR-MS: m/z=361.1154, calcd. for C₁₈H₁₉NO₇: 361.1161.

[2+2+2] Cocyclization of 3m and 2'b Producing 1bm

Pd₂(dba)₃·CHCl₃ (41 mg, 0.040 mmol), P(o-tol)₃ (97 mg, 0.32 mmol), and CsF (727 mg, 4.79 mmol) were dissolved in CH₃CN (1.0 mL), and the mixture was stirred at room temperature for 20 min. To the catalyst solution was added a solution of **3m** (288 mg, 0.80 mmol) and **2b** (821 mg, 2.4 mmol) in CH₃CN (1.8 mL) at 0°C, and the mixture was stirred at room temperature for 40 h. To the mixture was added saturated aqueous NH₄Cl solution, and the solution was extracted with AcOEt. The organic layer was washed with brine and dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (hexane/AcOEt = 30/1) to give **1bm** as a yellowish solid;

yield: 272 mg (71%); mp 266–268°C; IR (film): v=2937, 1767, 1644, 1580, 1504, 1465, 1413 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.26$ (s, 1H), 7.14 (s, 1H), 6.51–6.58 (m, 2H), 6.11 (s, 2H), 5.37 (br, 2H), 3.97 (s, 3H), 3.84–3.86 (m, 6H), 3.44–3.52 (m, 6H); EI-LR-MS: m/z=481 (M⁺), 451, 421, 406, 393; EI-HR-MS: m/z=481.1368, calcd. for C₂₅H₂₃NO₉ (M⁺): 481.1372.

Methyl 1-Oxo-5-(3,4,5-trimethoxyphenyl)-1,3-dihydro-2,7,9-trioxadicyclopenta[*a*,*g*]naphthalene-4-carboxylate

Following the similar procedure for **9**, the crude product, which was prepared from **1bm** (263 mg, 0.55 mmol), MeOH (2.8 mL), and NaH (66 mg, 60% dispersion in mineral oil, 1.6 mmol) in CH₂Cl₂ (2.8 mL) at room temperature for 24 h, was purified by column chromatography on silica gel (hexane/AcOEt = 3/1) to give the corresponding lactone as a colorless solid; yield: 210 mg (85%); mp 287–289°C; IR (film): v=2912, 1730, 1580, 1498, 1464, 1410 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 3.64$ (s, 3H), 3.85–3.97 (m, 9H), 3.53 (s, 2H), 6.13 (s, 2H), 6.48 (s, 2H), 6.99 (s, 1H), 8.47 (s, 1H); ¹³C NMR (68 MHz, CDCl₃): $\delta = 52.1$, 56.2, 61.1, 70.2, 100.2, 102.1, 105.1, 106.5, 119.3, 120.5, 129.0, 130.7, 134.0, 137.6, 145.9, 147.4, 149.0, 151.4, 153.1, 166.4, 171.1; EI-LR-MS: m/z = 452 (M⁺-H), 437, 423, 405, 389, 377; EI-HR-MS m/z = 452.11059 (M⁺-H), calcd. for C₂₄H₂₀O₉: 452.11070.

1-Hydroxy-5-(3,4,5-trimethoxy-phenyl)-1,3-dihydro-2,7,9-trioxa-dicyclopenta[*a*,*g*]naphthalene-4-carboxylic acid methyl ester (14)

Following the similar procedure for 10, the crude product, which was prepared from the above lactone (110 mg, 0.24 mmol) and DIBAL-H (1.0M toluene solution, 0.29 mL, 0.29 mmol) in CH₂Cl₂ (6.0 mL) at -78 °C for 2 h, was purified by column chromatography on silica gel (hexane/ AcOEt = 2/1) to give 14 (yield: 67 mg, 61%) as a colorless solid along with the recovered lactone (8 mg, 7%). 14: Mp 208–210°C; IR (film): n=3441, 2940, 1701, 1582, 1508, 1465 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): $\delta = 2.93$ (m, 1H), 3.60 (s, 3H), 3.83 (m, 6H), 3.95 (s, 3H), 5.35 (s, 1H), 5.53-5.60 (m, 1H), 6.07 (s, 2H), 6.47-6.48 (m, 2H), 6.85-6.89 (m, 1H), 6.98 (s, 1H), 7.40 (s, 1H); ¹³C NMR (68 MHz, CDCl₃): $\delta = 51.9, 56.2$ (2H), 61.0, 73.7, 100.3, 101.7, 101.8, 104.8, 106.8, 106.9, 121.3, 127.2, 130.1, 133.6, 134.6, 135.1, 137.3, 142.3, 148.2, 149.6, 152.9, 167.6; EI-LR-MS: m/z=452 (M^+-2H) , 436, 421, 405; FAB-HR-MS: m/z = 452.1117 (M^+-2H) , calcd. for $C_{24}H_{20}O_9$: 452.1139.

9-Hydroxymethyl-5-(3,4,5-trimethoxyphenyl)-8*H*-furo[3',4':6,7]naphtho[2,3-*d*][1,3]dioxol-6-one

Following the similar procedure for **12**, the crude diol, which was prepared from **14** (61 mg, 0.13 mmol) and NaBH₄ (36 mg, 1.1 mmol) in THF (3.4 mL) and MeOH (3.4 mL) at 0°C for 16 h, was treated with 5% HCl at 0°C. After the usual work-up, the residue was purified by column chromatography on silica gel (hexane/AcOEt = 1/1) to give the corresponding alcohol as a colorless solid; yield: 52 mg (92%); mp 276–279°C; IR (film): ν =3489, 2920, 1747, 1734, 1614, 1582, 1507, 1468, 1410 cm⁻¹; ¹H NMR (270 MHz, DMSO-

*d*₆): δ = 3.77–3.82 (m, 9H), 5.01 (d, *J*=5.5 Hz, 2H), 5.51 (d, *J*=5.5 Hz, 1H), 6.23 (s, 2H), 6.61 (s, 2H), 6.95 (s, 1H), 7.63 (s, 1H); ¹³C NMR (68 MHz, DMSO-*d*₆): δ =56.9, 59.5, 61.0, 69.1, 101.3, 103.1, 103.8, 108.3, 119.0, 130.7, 131.0, 131.6, 132.6, 137.9, 139.0, 139.4, 148.8, 150.7, 153.4, 170.1; EI-LR-MS: *m*/*z*=424 (M⁺), 409, 393, 381; EI-HR-MS: *m*/*z*=424.1155 (M⁺), calcd. for C₂₃H₂₀O₈: 424.1158.

8-Oxo-9-(3,4,5-trimethoxy-phenyl)-6,8-dihydrofuro-[3',4':6,7]naphtho[2,3-*d*][1,3]dioxole-5-carbaldehyde (15)

Following the similar procedure for **6**, the crude product, which was prepared from the above alcohol (33 mg, 0.24 mmol), PCC (50 mg, 0.23 mmol), and MS 4 Å (150 mg) in CH₂Cl₂ (3.8 mL) at 0°C for 2 h, was purified by column chromatography on silica gel (hexane/AcOEt = 1/2) to give **15** as a colorless solid; yield: 32 mg (98%); mp 285–286°C; IR (film): v=3389, 2914, 1761, 1676, 1620, 1586, 1498, 1475, 1417 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ =3.85 (s, 6H), 3.98 (s, 3H), 5.71 (s, 2H), 6.18 (s, 2H), 6.52 (s, 1 2), 7.21 (s, 1H), 8.16 (s, 1H), 10.94 (s, 1H); ¹³C NMR (68 MHz, CDCl₃): δ =56.2, 61.0, 69.9, 98.5, 102.5, 104.9, 106.9, 119.2, 122.8, 129.5, 131.6, 134.0, 138.3, 144.7, 146.4, 148.7, 152.3, 153.1, 168.5, 189.1; EI-LR-MS: m/z=422 (M⁺), 422, 407, 391, 347; EI-HR-MS: m/z=422.1008, calcd. for C₂₃H₁₈O₈: 422.1001.

8-Oxo-9-(3,4,5-trimethoxyphenyl)-6,8-dihydrofuro-[3',4':6,7]naphtho[2,3-*d*][1,3]dioxol-5-yl Trifluoromethanesulfonate (16)

Following the similar procedure for conversion of 6 to 13, the crude alcohol was obtained through Bayer-Villiger oxidation of 15 (16 mg, 0.037 mmol) using mCPBA (51 mg, 0.29 mmol) in CH₂Cl₂ (0.9 mL) at 0°C for 2 h followed by hydrolysis using K_2CO_3 (7.6 mg, 0.55 mmol) in MeOH (1.2 mL) at room temperature for 4 h. Then the crude alcohol was treated with LHMDS (1.0M THF solution, 0.05 mL, 0.05 mmol) and Tf₂O (8.4 µL, 0.05 mmol) in THF (1.8 mL) at -78°C. After the usual work-up, the residue was purified by column chromatography on silica gel (hexane/AcOEt =1/1) to give **16** as a colorless solid; yield: 9 mg (46%, 3 steps); mp 221–224 °C; IR (film): $v = 2924,1766 \text{ cm}^{-1}$; ¹H NMR (270 MHz, CDCl₃): $\delta = 3.85$ (s, 6H), 3.97 (s, 3H), 5.48 (s, 2H), 6.16 (s, 2H), 6.53 (s, 2H), 7.16 (s, 1H), 7.45 (s, 1 H); EI-LR-MS: m/z = 542 (M⁺), 409, 350; EI-HR-MS: m/z = 542.0489, calcd. for C₂₃H₁₇F₃O₁₀S: 542.0494.

Dehydrodesoxypodophyllotoxin

To a solution of **16** (7 mg, 0.013 mmol), Pd(OAc)₂ (0.2 mg, 0.001 mmol), PPh₃ (0.6 mg, 0.002 mmol) in DMF (0.3 mL) were added triethylamine (0.006 mL, 0.043 mmol) and formic acid (0.001 mL, 0.03 mmol), and the mixture was stirred at 60 °C for 1.5 h. To the mixture was added brine, and the solution was extracted with Et₂O. The organic layer was washed with brine, dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel (hexane/AcOEt=4/1) to give dehydrodesoxy-podophyllotoxin (yield: 4 mg, 80%) as a colorless solid, whose spectral data were identical with those previously reported by Nishii et al.^[17c]

Acknowledgements

This work was financially supported by Grant-in-Aid for Scientific Research (C) (No. 17590001) from the Japan Society for the Promotion of Sciences (JSPS), and by the Naito Foundation, which are gratefully acknowledged.

References

- For reviews, see: a) M. Sainsbury, *Tetrahedron* 1980, 36, 3327; b) G. Bringmann, R. Walter, R. Weirich, Angew. Chem. Int. Ed. Engl. 1990, 29, 977; c) D. W. Knight, in: Comprehensive Organic Synthesis, Vol. 3, (Eds.: B. M. Trost, I. Fleming), Pergamon Press, Oxford, 1991, pp 481–520; d) S. P. Stanforth, *Tetrahedron* 1998, 54, 263; e) J. Hassan, M. Sévignon, C. Gozzi, E. Schultz, M. Lemaire, Chem. Rev. 2002, 102, 1359.
- [2] For reviews, see: a) K. P. C. Vollhardt, Angew. Chem. Int. Ed. Engl. 1984, 23, 539; b) N. E. Shore, Chem. Rev. 1988, 88, 1081; c) D. B. Grotjahn, in: Comprehensive Organometallic Chemistry II, Vol. 12, (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Pergamon Press, Oxford, 1995, pp 741–770; d) M. Lautens, W. Klute, W. Tam. Chem. Rev. 1996, 96, 49; e) S. Saito, Y. Yamamoto, Chem. Rev. 2000, 100, 2901.
- [3] For our recent papers on Ni-catalyzed [2+2+2] cocyclization, see: a) Y. Sato, T. Nishimata, M. Mori, J. Org. Chem. 1994, 59, 6133; b) Y. Sato, T. Nishimata, M. Mori, Heterocycles 1997, 44, 443; c) Y. Sato, K. Ohashi, M. Mori, Tetrahedron Lett. 1999, 40, 5231.
- [4] For [2+2+2] cycloaddition of Ni(0)-aryne complex and alkynes, see: a) M. A. Bennett, E. Wenger, Organometallics 1995, 14, 1267; b) M. A. Bennett, E. Wenger, Organometallics 1996, 15, 5536; c) M. A. Bennett, E. Wenger, Chem. Ber. 1997, 130, 1029.
- [5] For Pd(0)-catalyzed [2+2+2] homocyclotrimerization of three molecules of arynes, see: a) D. Peña, S. Escudero, D. Pérez, E. Guitián, L. Castedo, Angew. Chem. Int. Ed. 1998, 37, 2659; b) D. Peña, D. Pérez, E. Guitián, L. Castedo, Org. Lett. 1999, 1, 1555; c) D. Peña, A. Cobas, D. Pérez, E. Guitián, L. Castedo, Org. Lett. 2000, 2, 1629; d) D. Peña, A. Cobas, D. Pérez, E. Guitián, L. Castedo, Org. Lett. 2003, 5, 1863.
- [6] For Pd(0)-catalyzed [2+2+2] cocyclotrimerization of aryne-aryne-alkyne or aryne-alkyne producing phenanthrene or naphthalene derivatives, see: a) D. Peña, D. Pérez, E. Guitián, L. Castedo, J. Am. Chem. Soc. 1999, 121, 5827; b) K. V. Radhakrishnan, E. Yoshikawa, Y. Yamamoto, Tetrahedron Lett. 1999, 40, 7533; c) D. Peña, D. Pérez, E. Guitián, L. Castedo, Synlett 2000, 1061; d) D. Peña, D. Pérez, E. Guitián, L. Castedo, J. Org. Chem. 2000, 65, 6944.
- [7] For Pd(0)-catalyzed [2+2+2] cocyclotrimerization of aryne-aryne-alkene or aryne-alkyne-alkene, see: a) E. Yoshikawa, Y. Yamamoto, *Angew. Chem. Int. Ed.* 2000, 39, 173; b) E. Yoshikawa, K. V. Radhakrishnan, Y. Yamamoto, *J. Am. Chem. Soc.* 2000, 122, 7280.
- [8] A part of this work has recently been communicated; see: Y. Sato, T. Tamura, M. Mori, *Angew. Chem. Int. Ed.* 2004, 43, 2346.

www.asc.wiley-vch.de

 $\ensuremath{\mathbb S}$ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

- [9] The *in situ* formation of benzyne from 2'a with fluoride ion was reported, see: Y. Himeshima, T. Sonoda, H. Kobayashi, *Chem. Lett.* 1983, 1211.
- [10] a) L. D. Brown, K. Itoh, H. Suzuki, K. Hirai, J. A. Ibers, *J. Am. Chem. Soc.* **1978**, *100*, 8232; b) C. Stephan, C. Munz, H. Dieck, *J. Organomet. Chem.* **1993**, *452*, 223; see also see ref.^[6a]
- [11] For recent leading reviews of arylnaphthalene lignans, see: a) R. S. Ward, *Nat. Prod. Rep.* 1995, *12*, 183;
 b) R. S. Ward, *Nat. Prod. Rep.* 1997, *14*, 43; c) R. S. Ward, *Nat. Prod. Rep.* 1999, *16*, 75.
- [12] For references on the previous syntheses of taiwanin C and/or taiwanin E, see: a) T. L. Holmes, R. Stevenson, J. Org. Chem. 1971, 36, 3450; b) B. J. Arnold, S. M. Mellows, P. G. Sammes, J. Chem. Soc., Perkin Trans. 1 1973, 1266; c) Z. Horii, M. Tsujiuchi, K. Kanai, T. Momose, Chem. Pharm. Bull. 1977, 25, 1803; T. Momose, K. Kanai, K. Hayashi, Chem. Pharm. Bull. 1978, 26, 3195; d) H. P. Plaumann, J. G. Smith, R. Rodrigo, J. Chem. Soc., Chem. Commun. 1980, 354; S. O. De Silva, C. St. Denis, R. Rodrigo, J. Chem. Soc., Chem. Commun. 1980, 995; e) J. Mann, S. E. Piper, L. K. P. Yeung, J. Chem. Soc., Perkin Trans. 1 1984, 2081; f) S. Takano, S. Otaki, K. Ogasawara, Tetrahedron Lett. 1985, 26, 1659; g) Y. Ishii, T. Ikariya, M. Saburi, S. Yoshikawa, Tetrahedron Lett. 1986, 27, 365; h) R. Stevenson, J. V. Weber, J. Nat. Prod. 1989, 52, 367; i) T. Ogiku, M. Seki, M. Takahashi, H. Ohmizu, T. Iwasaki, Tetrahedron Lett. 1990, 31, 5487; T. Ogiku, S. Yoshida, H. Ohmizu, T. Iwasaki, J. Org. Chem. 1995, 60, 4585, and references cited therein; j) S. Seko, Y. Tanabe, G. Suzukamo, Tetrahedron Lett. 1990, 31, 6883; Y. Tanabe, S. Seko, Y. Nishii, T. Yoshida, N. Utsumi, G. Suzukamo, J. Chem. Soc., Perkin Trans. 1 1996, 2157; k) D. C. Harrowven, Tetrahedron Lett. 1991, 32, 3735; S. R. Flanagan, D. C. Harrowven, M. Bradley, Tetrahedron 2002, 58, 5989, and references cited therein; 1) K. Kobavashi, Y. Kanno, S. Seko, H. Suginome, J. Chem. Soc., Perkin Trans. 1 1992, 3111; m) T. Hattori, H. Tanaka, Y. Okaishi, S. Miyano, J. Chem. Soc., Perkin Trans. 1 1995, 235; n) J. E. Cochran, A. Padwa, J. Org. Chem. 1995, 60, 3938; A. Padwa, J. E. Cochran, C. O. Kappe, J. Org. Chem. 1996, 61, 3706; o) C. Cow, C. Leung, J. L. Charlton, Can. J. Chem. 2000, 78, 553.
- [13] a) S. Nahm, S. M. Weinreb, *Tetrahedron Lett.* 1981, 22, 3815; for reviews, see: b) M. P. Sibi, *Org. Prep. Proc. Int.* 1993, 25, 15; c) M. Mentzel, H. M. R. Hoffmann, *J. Prakt. Chem.* 1997, 339, 517; d) J. Singh, N. Satyamurthi, I. S. Aidhen, *J. Prakt. Chem.* 2000, 342, 340.
- [14] Attempts at chemoselective reduction of **1bd** using other reducing reagents such as LiAl(OtBu)₃H^[14a] and L-Selectride with MeOTf^[14b] were unfruitful: a) M. Paris, C. Pothion, A. Heitz, J. Martinez, J.-A. Fehrentz, *Tetrahedron Lett.* **1998**, *39*, 1341; b) S.-C. Tsay, J. A. Robl, J. R. Hwu, J. Chem. Soc., Perkin Trans. 1 **1990**, 757.
- [15] All spectral data of synthetic taiwanin C are completely identical with those previously reported.^[12n]
- [16] S. Cacchi, P. G. Ciattini, E. Morea, G. Ortar, *Tetrahedron Lett.* **1986**, 27, 5541.
- [17] For the isolation of dehydrodesoxypodophillotoxin, see: a) H. Yamaguchi, M. Arimoro, M. Tanoguchi, T. Ishida, M. Inoue, *Chem. Pharm. Bull.* **1982**, *30*, 3212; for references on the synthesis of dehydrodesoxypodophyllotoxin, see: b) C. Cow, C. Leung, J. L. Charlton, *Can. J. Chem.* **2000**, *78*, 553; c) Y. Nishii, T. Yoshida, H. Asano, K. Wakasugi, J.-i. Morita, Y. Aso, E. Yoshida, J. Motoyoshiya, H. Aoyama, Y. Tanabe, *J. Org. Chem.* **2005**, *70*, 2667.
- [18] Carboxylic acid 17 [CAS Registry No. 10231–46–6] was prepared in 91% yield by hydrolysis of the corresponding methyl ester, which was obtained from piperonal in 90% yield (2 steps) via dibromo-olefination with CBr₄-PPh₃ followed by treatment with BuLi-methyl chloroformate.
- [19] R. C. Larock, C.-L. Liu, J. Org. Chem. 1983, 48, 2151.
- [20] R. Livingston, L. R. Cox, S. Odermatt, F. Diederich, *Helv. Chim. Acta* 2002, 85, 3052.
- [21] M. Murakami, Y. Hoshino, H. Ito, Y. Ito, Chem. Lett. 1998, 163.
- [22] D. H. Wadsworth, S. M. Geer, M. R. Detty, J. Org. Chem. 1987, 52, 3662.
- [23] S. Thielges, E. Meddah, P. Bisseret, J. Eustache, *Tetrahedron Lett.* 2004, 45, 907.
- [24] L. E. Barstow, V. J. Hruby, J. Org. Chem. 1971, 36, 1305.
- [25] K. Okuhara, J. Org. Chem. 1976, 41, 1487.