

Tetrahedron Letters 42 (2001) 8923-8926

TETRAHEDRON LETTERS

Rearrangements of cyclopropylmethylchlorocarbene and dicyclopropylmethylchlorocarbene

Robert A. Moss,* Wei Ma, Shunqi Yan and Fengmei Zheng

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA Received 10 September 2001; revised 15 October 2001; accepted 16 October 2001

Abstract—Cyclopropylmethylchlorocarbene (3) and dicyclopropylmethylchlorocarbene (4) give only 1,2-H shift products with $k_{\rm H} = 2.0 \times 10^7$ and 1.3×10^7 s⁻¹, respectively, at 25°C. © 2001 Elsevier Science Ltd. All rights reserved.

The kinetics and energetics of the 1,2-rearrangements of alkyl- and alkylchlorocarbenes have been much studied, both experimentally and computationally.¹ Benzylchlorocarbene (1), in particular, attracted great attention due to the possible occurrence of quantum mechanical tunneling (QMT) coincident with its 1,2-H shift to β -chlorostyrene.² However, the most recent experiments do not provide support for QMT in this reaction at ambient or near-ambient temperatures.^{1d,3}

PhCH₂
$$\ddot{C}$$
CI Ph₂CH \ddot{C} CI \rightarrow CH₂ \ddot{C} CI $\left(\rightarrow \right)_2$ CH \ddot{C} CI 1 2 3 $(\rightarrow \right)_2$ CH \ddot{C} CI

Benzylchlorocarbene was also a testing ground for the electronic effects of the phenyl 'bystander' substituent on the kinetics of the carbene's 1,2-H shift. The matter has been extensively explored, ^{1a,d,2–5} with extension to the properties of diphenylmethylchlorocarbene, **2**.^{4,6,7} For both carbenes **1** and **2**, 1,2-H migration exceeded 1,2-Ph migration: with **1**, the 1,2-H/1,2-Ph product shift ratio was 13.8 (*hv*, isooctane, 25°C),³ whereas it was 14.2 (*hv*, 22°C) or 13.7 (Δ , 78°C) for carbene **2** in pentane.⁶

Computationally, it was shown that the preference for 1,2-H shift is mainly due to the greater ability of the bystander Ph substituent to accelerate a 1,2-H shift than that of a bystander H to foster a 1,2-Ph shift.^{4,7} The bystander effect dominates an intrinsic Ph>H migratory aptitude for 1,2-carbenic rearrangements, and arises from the superior propensity of the phenyl substituent to stabilize the partial positive charge that

develops at C2 during the hydride-like migration of H from C2 to C1.^{1,4,8} The bystander effect of Ph is geometry dependent: the Ph group must assume a conformation appropriate for (resonance) electronic interaction with the developing p orbital at C2; steric inhibition of the rotational freedom (and hence of resonance) reduces the potency of phenyl as a bystander.

The cyclopropyl (Cy) substituent effectively stabilizes adjacent carbocation centers;⁹ indeed "cyclopropylmethyl cations are even more stable than the benzyl type."¹⁰ Cy also strongly interacts with the vacant *p* orbital of an adjacent carbenic center, conferring unusual properties on CyCCl.¹¹ Indeed, 'resonance' electron donation from the *p*-rich σ bonds of Cy to an adjacent vacant *p* orbital is stronger than the analogous π electron donation from Ph.¹²

Accordingly, we have now examined the products, kinetics, and (computed) transition states of the 1,2-rearrangements of cyclopropylmethylchlorocarbene (3) and dicyclopropylmethylchlorocarbene (4), the cyclopropyl analogues of carbenes 1 and 2. Our findings define the comparative rearrangement proclivities and bystander effects of Cy and Ph substituents in 1,2-carbenic rearrangements.

Carbenes 3 and 4 were generated from diazirines 5 and 6, which required the prior preparation of amidinium salts 7 and 8. Cyclopropylacetamidinium chloride (7) was obtained in 60% yield from α -cyclopropylacetonitrile by sequential treatment with HCl/EtOH and NH₃/ EtOH.¹³ Dicyclopropylacetamidinium chloride (8) was obtained in 60% yield from α, α -dicyclopropylacetonitrile by reaction with methylchloroaluminum amide

Keywords: carbenes; diazirines; kinetics.

^{*} Corresponding author.

^{0040-4039/01/\$ -} see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)01968-2

 $(90^{\circ}C, 35 h, 2 \text{ equiv. of MeAl(Cl)NH}_2)$.¹⁴ The nitrile was itself obtained in 40% yield from dicyclopropylketone by reaction with *p*-toluenesulfonylmethyl isocyanide.¹⁵

Amidinium salts 7 and 8 were converted to diazirines 5 and 6 in ~40% yields by Graham oxidation with 12% HOCl.¹⁶ The diazirines were purified by chromatography on silica gel (1:2 CH₂Cl₂/pentane), and exhibited UV maxima in pentane at 342, 358 nm (5) and 344, 356 nm (6).

Photolysis of diazirine 5 in pentane ($A_{max} = 0.5$, Rayonet reactor, 350 nm, 30 min, 25°C) afforded only E,Z-1chloro-2-cyclopropylethene (9) via 1,2-H shift of carbene 3.¹⁷ Capillary GC and GC–MS analysis gave no evidence for the formation of the 1,2-Cy migration product of 3; 1-chloro-1-cyclopropylethene. Thermolysis i.e. of diazirine 5 in pentane (100°C, 24 h, sealed tube) also afforded only \hat{H} -shift products 9.¹⁷ The identity of E, Z-9 was established by GC-MS and GC-spiking experiments with the authentic alkenes, obtained in 65% yield from the reaction of cyclopropanecarboxyaldehyde with triphenylphosphonium chloromethylide,¹⁸ purified by preparative GC on SF-96, and characterized by NMR and HRMS.

Photolysis or thermolysis (as above) of diazirine **6** afforded only the 1,2-H shift product of carbene **4**, 1-chloro-2,2-dicyclopropylethene, **10**. Again, capillary GC and GC–MS gave no evidence for the 1,2-Cy migration product. Alkene **10** was identified by GC–MS and GC-spiking experiments with an authentic sample obtained in 45% yield by reaction of dicyclopropylketone with triphenylphosphonium chloromethylide.¹⁸ It was characterized by NMR and GC–MS.

Absolute rate constants (reproducibility $\pm 10\%$) for the 1,2-H shifts of carbenes **3** and **4** were determined at 25°C in pentane by laser flash photolysis (LFP)¹⁹ at 351 nm of diazirines **5** and **6**. Data were obtained with the pyridine ylide method,²⁰ monitoring the growth of the 3/pyridine or 4/pyridine ylides at 390 nm as [pyr] was varied from 1.2–7.4 mM (**3**) or 6–80 mM (**4**). Details of this methodology, as applied to carbenic rearrangements, have been described.^{20,21} In the present instance, excellent linearities (r > 0.99) were obtained for correlations of k_{obs} for the formation of the carbene–pyridine ylides and [pyr]. From intercepts of these correlations at [pyr]=0, we obtained $k_{\rm H} = 2.0 \times 10^7 \, {\rm s}^{-1}$ for **3** and $k_{\rm H} = 1.3 \times 10^7 \, {\rm s}^{-1}$ for **4**.²² These rate constants together with the corresponding data for MeCCl,²³ **1** and **2** are collected in Table 1. Errors in the rate constants are estimated at 10%, so

that the small difference between the $k_{\rm H}$ values of 3 and 4 is probably significant, whereas the $k_{\rm H}$ values of 2 and 3 are identical within experimental error.

We attempted to determine the activation energy for the 1,2-H shift of **3** by measuring $k_{\rm H}$ at eight temperatures between -29 and 41°C. However, scatter in the correlation of ln $k_{\rm H}$ versus 1/T was much too large to permit the extraction of E_a ; a value computed at the B3LYP/6-31G* level is included in Table 1, and discussed below.

Table 1 indicates that Cy is slightly inferior to Ph in its bystander effect on $k_{\rm H}$: the 1,2-H shift is 2.7 times faster for carbene **1** than its Cy analogue **3**, whereas the kinetic disparity between the 1,2-H shifts of the disubstituted Ph₂ and Cy₂ carbenes, **2** and **4**, is 1.6. Thus, the anticipated superior ability of Cy over Ph in stabilizing an adjacent positive *p* orbital¹² is not fully expressed in these carbenic rearrangements. Moreover, *no* 1,2-Cy shifts are observed with either **3** or **4**, although minor contributions (6–7%) of 1,2-Ph migrations are observed in the rearrangements of **1** and **2**.^{3,6} The π mediated 1,2-shift of Ph is clearly more facile than the parallel migration of Cy. This difference is computationally quantified below.

Note that a second Cy substituent (4) leads to a lower $k_{\rm H}$ than a single Cy substituent (3), in concord with the behavior of their Ph analogues, 2 and 1. Just as the second Ph substituent of 2 may prevent either Ph from assuming an appropriate rotational conformation for optimal electronic stabilization of the developing p orbital at C2 during the 1,2-H shift,^{4,6} the second Cy substituent of 4 similarly interferes, relative to the mono-Cy carbene 3.

Of course, both α -Ph and α -Cy substitution accelerates the 1,2-H shift: $k_{\rm H}$ (1) is 19 times greater than $k_{\rm H}$ (MeCCl), and $k_{\rm H}$ (3) is 6.7 times greater. However, an

Table 1. Kinetic data for 1,2-H rearrangements^a

Carbene	$k_{\rm H} \; ({\rm s}^{-1})$	$E_{\rm a}$ (kcal/mol)	$Log A (s^{-1})$	Refs.
MeCCl PhCH ₂ CCl (1) Ph ₂ CHCCl (2) CyCH ₂ CCl (3) Cy ₂ CHCCl (4)	3×10^{6} 5.4×10^{7} 2.1×10^{7b} 2.0×10^{7} 1.3×10^{7}	4.9 4.5-4.8 c 6.0-7.1 ^d 5.9 ^d	9.7 11.1–11.3 c	23 5 6 e

^a In hydrocarbon solvents at 25°C.

^b $k = 1.5 \times 10^{6} \text{ s}^{-1}$ for 1,2-Ph migration.

^c In tetrachloroethane, $E_a = 1.65$ kcal/mol and log A = 8.6 s⁻¹.

^d Computed values; see below.

e This work.

 α -Me substituent is a more effective bystander than either α -Ph or α -Cy; both MeCH₂CCl and Me₂CHCCl exhibit $k_{\rm H} > 10^8 {\rm s}^{-1}.^{23}$ The advantage of Me over Ph or Cy must stem from the former's lack of a stringent conformational requirement in order to exert its bystander electronic effect.

Computational studies at the B3LYP/6-31G* level²⁴ support the foregoing analysis. Optimized transition states for the 1,2-H migrations of '*cis*' and '*trans*' **3**, and also carbene **4**, appear in Fig. 1.²⁵ The computed E_a 's (0 K, with zero point energy correction) are 6.0, 7.1, and 5.9 kcal/mol, respectively, and the associated ΔS^{\neq} values (298 K) are -2.5, -2.9, and -1.1 e.u. Fig. 2 depicts optimized transition states for the 1,2-Cy shifts of carbenes **3** ($E_a = 16.3$ kcal/mol) and **4** ($E_a = 10.8$ kcal/mol).

The computed barrier for the 1,2-H migration of 1 (5.5 kcal/mol)⁴ is slightly lower than that of 3 (6.0 kcal/mol), consistent with 1s experimental kinetic advantage of 2.7 (Table 1).^{26,27} The computed E_a values for the 1,2-Cy shifts of *cis*-3 (16.3 kcal/mol) and

4 (10.8 kcal/mol) are considerably higher than the E_a 's for the alternative 1,2-H shifts (6.0 and 5.9 kcal/mol, respectively), so that the absence of observable 1,2-Cy shift products from carbenes **3** and **4** is understandable. The operation of bystander effects^{1d,4,7} on the 1,2-H shifts can also be discerned in the computed activation barriers (kcal/mol): MeCCl (11.5),⁴ CyCH₂CCl (6.0), and PhCH₂CCl (5.5).^{4,28}

Finally, given the interest in possible QMT attending the 1,2-H shift of 1,^{2,3} we determined LFP values of $k_{\rm H}$ and $k_{\rm D}$ for carbenes **3** and α,α -**3**- d_2 at various temperatures between 5 and 60°C in isooctane. Values of the kinetic isotope effect, $k_{\rm H}/k_{\rm D}$, were 1.09 (60°C), 1.53 (50°C), 1.57 (40°C), 1.73 (30°C), 2.79 (20°C), 4.11 (15°C), and 4.77 (5°C). The last two values are not very reliable because the pyridine ylide signals from which $k_{\rm abs}$ was derived were quite small. However, neither the magnitude nor the trend of these isotope effects provides compelling evidence for QMT in the 1,2-H shift of carbene **3** in the ambient temperature regime.

Figure 1. Computed 1,2-H transition states for (left to right) carbenes *cis*-3, *trans*-3, and 4. The numbers are bond distances in Å.

Figure 2. Computed 1,2-Cy transitions states for carbones 3 (left) and 4.

Acknowledgements

We are grateful to the National Science Foundation for financial support.

References

- Reviews: (a) Moss, R. A. Advances in Carbene Chemistry; Brinker, U. H., Ed.; JAI: Greenwich, 1994; Vol. 1, p. 59f; (b) Bonneau, R.; Liu, M. T. H. Advances in Carbene Chemistry; Brinker, U. H., Ed.; JAI: Stamford, 1998; Vol. 2, p. lf; (c) Platz, M. S. Advances in Carbene Chemistry; Brinker, U. H., Ed.; JAI: Stamford, 1998; Vol. 2, p. 133f; (d) Merrer, D. C.; Moss, R. A. Advances in Carbene Chemistry; Brinker, U. H., Ed., Elsevier: Oxford, 2001; Vol. 3, p. 53f.
- (a) Liu, M. T. H.; Bonneau, R.; Wierlacher, S.; Sander, W. J. Photochem. Photobiol., A: Chem. 1994, 84, 133; (b) Wierlacher, S.; Sander, W.; Liu, M. T. H. J. Am. Chem. Soc. 1993, 115, 8943.
- Merrer, D. C.; Moss, R. A.; Liu, M. T. H.; Banks, J. T.; Ingold, K. U. J. Org. Chem. 1998, 63, 3010.
- Keating, A. E.; Garcia-Garibay, M. A.; Houk, K. N. J. Phys. Chem. A 1998, 102, 8467.
- Liu, M. T. H.; Bonneau, R. J. Am. Chem. Soc. 1990, 112, 3915.
- 6. Moss, R. A.; Ma, W. Tetrahedron Lett. 1999, 40, 5101.
- On bystander effects, see: Nickon, A. Acc. Chem. Res. 1993, 26, 84. Kenar, J. A.; Nickon, A. Tetrahedron 1997, 53, 14871.
- Migration of Ph in 1 is opposed by a (computed) barrier of 9.5 kcal/mol, whereas the migration of H in CH₃CCl is opposed by a barrier of 11.5 kcal/mol.⁴ However, the Ph bystander of carbene 1 lowers E_a for the 1,2-H shift from 11.5 to 5.5 kcal/mol.⁴
- (a) Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, 4th ed.; Kluwer Academic/Plenum: New York, 2000; p. 284f and references cited therein; (b) Hahn, R. C.; Corbin, T. F.; Shecter, H. J. Am. Chem. Soc. 1968, 90, 3404; (c) Kerber, R. C.; Hsu, C.-M. J. Am. Chem. Soc. 1973, 95, 3239; (d) Moss, R. A.; Munjal, R. C. Tetrahedron Lett. 1980, 21, 1221.
- (a) March, J. Advanced Organic Chemistry, 4th ed.; Wiley: New York, 1992; pp. 169–170, 323–324 and references cited therein; (b) See also Richey, H. G. In Carbonium Ions; Olah, G. A.; Schleyer, P.v. R., Eds.; Wiley: New York, 1972; Vol. III, p. 1201f.
- (a) Moss, R. A.; Fantina, M. E. J. Am. Chem. Soc. 1978, 100, 6788; (b) Moss, R. A.; Vezza, M.; Guo, W.; Munjal, R. C.; Houk, K. N.; Rondan, N. G. J. Am. Chem. Soc. 1979, 101, 5088.
- 12. $\sigma_R^+ = -0.38$ for Cy^{11b} versus -0.30 for Ph. Ehrenson, S.; Brownlee, R. T. C.; Taft, R. W. *Prog. Phys. Org. Chem.* **1973**, *10*, 1. In a more recent evaluation, $\sigma_R^+(Cy) = -0.27$, $\sigma_R^+(Ph) = -0.17$. Charton, M. *Prog. Phys. Org. Chem.* **1981**, *13*, 119.

- Dox, A. W.; Whitmore, F. C. Organic Synthesis, 2nd ed.; Gilman, H.; Blatt, A. H., Eds.; Wiley: New York, 1941; Coll. Vol. I, p. 5f.
- (a) Garigipati, R. S. *Tetrahedron Lett.* **1990**, *31*, 1969; (b) Moss, R. A.; Ma, W.; Merrer, D. C.; Xue, S. *Tetrahedron Lett.* **1995**, *36*, 8761.
- Oldenziel, O. H.; Leusen, D.v.; Leusen, A. M.v. J. Org. Chem. 1977, 42, 3114.
- 16. Graham, W. H. J. Am. Chem. Soc. 1965, 87, 4396.
- 17. The isomers were not individually assigned, but their ratio was ~ 4.5 (*hv*) or 1.7:1 (thermolysis, 100°C).
- Cf. Miyano, S.; Izumi, Y.; Hashimoto, H. Chem. Commun. 1978, 446.
- Moss, R. A.; Johnson, L. A.; Merrer, D. C.; Lee, Jr., G. E. J. Am. Chem. Soc. 1999, 121, 5940.
- Jackson, J. E.; Soundararajan, N.; Platz, M. S.; Liu, M. T. H. J. Am. Chem. Soc. 1988, 110, 5595.
- (a) Moss, R. A.; Xue, S.; Ma, W.; Ma, H. *Tetrahedron Lett.* 1997, 38, 4379; (b) Moss, R. A.; Merrer, D. C. *Tetrahedron Lett.* 1998, 39, 8067.
- 22. The slopes of the correlations represent the bimolecular rate constants for the formation of the carbene–pyridine ylide: $k_2 = 8.7 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ (3), and $k_2 = 3.2 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ (4).
- (a) Bonneau, R.; Liu, M. T. H.; Rayez, M. T. J. Am. Chem. Soc. 1989, 111, 5973; (b) Liu, M. T. H.; Bonneau, R. J. Am. Chem. Soc. 1989, 111, 6873; (c) LaVilla, J. A.; Goodman, J. L. J. Am. Chem. Soc. 1989, 111, 6877; (d) Liu, M. T. H.; Bonneau, R. J. Am. Chem. Soc. 1996, 118, 8098.
- 24. Optimizations utilized Gaussian 94, Revision E.2. with default convergence criteria: Gaussian, Inc.; Pittsburgh, PA, 1995. DFT computations employed Becke's three parameter hybrid method using the LYP correlation functional: Becke, A. D. J. Chem. Phys. 1993, 98, 5648. Transition states were confirmed by frequency calculations that displayed only one negative frequency.
- 25. We compute E_a for the conversion of *cis*-3 to *trans*-3 as 1.8 kcal/mol, with an energy difference of only 0.3 kcal/mol favoring *trans*-3.
- 26. For carbene 1, E_a (1,2-H) is computed at 5.5 kcal/mol and E_a (1,2-Ph) at 9.5 kcal/mol.⁴ The 6.5% of 1,2-Ph migration observed for photochemically generated 1³ may reflect rearrangement occurring in the excited diazirine precursor of the carbene.⁶
- 27. A B3LYP/6-31G* calculation carried out for Ph₂CHCCl (2) using Gaussian 98.A7 gave $E_a = 7.40$ kcal/mol (with zero point energy correction) for the 1,2-H shift. This value is higher than E_a (1), calculated⁴ at 5.5 kcal/mol, consistent with the suggestion⁴ that the second phenyl group of 2 leads to steric interactions between the *gem*-C₂ phenyl groups, preventing increased stabilization of the 1,2-H shift transition state. The experimental rate constants (Table 1) are in a sequence consistent with these computed E_a 's.
- 28. An additional Cy bystander effect is apparent in the 5.5 kcal/mol computed reduction in $E_{\rm a}$ for 1,2-Cy migration of carbene 4, relative to carbene 3. The second Cy substituent of 4 significantly stabilizes the transition state for migration of the other Cy group.