NOUVELLES PHASES OXYFLUOREES FERROELECTRIQUES NON-STOECHIOMETRIQUES DERIVEES DE LiNbO₃ ET DE LiTaO₃*

J. GUELIN, J. RAVEZ et P. HAGENMULLER

Laboratoire de Chimie du Solide du CNRS, Université de Bordeaux I, 351 Cours de la Libération, 33405 Talence Cédex (France)

(Reçu le 14 juillet; sous forme définitive le 10 septembre 1987)

Résumé

Six nouvelles phases oxyfluorées non-stoechiométriques dérivées de $LiMO_3$ ($M \equiv Nb$, Ta) ont été mises en évidence au sein des systèmes $LiNbO_3$ - $LiF-NbO_2F$ et $LiTaO_3-LiF-TaO_2F$. Des mesures calorimétriques et diélectriques ont montré l'existence d'une transition ferroélectrique-paraélectrique pour chaque composition. La température de Curie T_c augmente avec l'excès de cations et diminue au contraire avec le déficit cationique. La substitution fluor-oxygène a peu d'influence sur T_c contrairement à ce qu'on eût pu prévoir à première vue.

Summary

Six new non-stoichiometric oxyfluoride phases, the compositions of which are related to LiMO_3 (M = Nb, Ta), have been prepared. They belong either to the $\text{LiNbO}_3-\text{LiF}-\text{NbO}_2\text{F}$ or the $\text{LiTaO}_3-\text{LiF}-\text{TaO}_2\text{F}$ system. Thermal and dielectric measurements have shown each composition to present a ferroelectric-paraelectric transition. The Curie temperature T_c increases with cationic excess and decreases with cationic deficit. The F-O substitution has only a small influence on T_c , contrary to what would be expected at first sight.

1. Produits de départ et préparations

Les matériaux ferroélectriques présentent un grand intérêt en raison de leurs applications dont certaines ont depuis longtemps atteint le stade industriel. Il nous a semblé intéressant de préparer et de caractériser de nouvelles phases oxyfluorées dérivées des ferroélectriques LiNbO₃ et LiTaO₃, par remplacement de l'oxygène par le fluor associé à une substitution

^{*}Ce mémoire est dédié au Professeur Harald Schäfer à l'occasion de son 75ème anniversaire.

cationique. Les compositions envisagées appartiennent aux systèmes $LiNbO_3$ - $LiF-NbO_2F$ et $LiTaO_3-LiF-TaO_2F$. Elles impliquent soit le remplacement du niobium par le lithium (excès de cations), soit le départ de lithium, soit l'élimination simultanée des deux types de cations (déficit cationique).

LiNbO₃ et LiTaO₃ sont préparés à partir de Li₂CO₃ et des oxydes Nb₂O₅ et Ta₂O₅ par chauffe de 4 h à 900 °C. LiF est un produit commercial préalablement dégazé. NbO₂F et TaO₂F sont obtenus par action d'une solution de HF à 40% sur Nb₂O₅ et Ta₂O₅.

Les poudres de départ sont mélangées, broyées finement, puis mises sous forme de pastilles de 8 mm de diamètre et d'1 mm environ d'épaisseur. Les échantillons sont ensuite dégazés sous oxygène sec, puis portés en tubes scellés de platine 16 h à 700 °C et enfin 1 h à 1000 °C. Les traitements thermiques sont suivis de trempes à l'air. Ces opérations conduisent à la préparation des phases quaternaires.

2. Etude radiocristallographique (à température ambiante) des systèmes $LiMO_3-LiF-MO_2F$ (M = Nb, Ta)

Les six solutions solides étudiées sont de type $LiNbO_3$ ou $LiTaO_3$. Les atomes de lithium et de tantale occupent deux tiers des octaèdres reliés par les faces et constituant ainsi un réseau hexagonal compact d'oxygène [1]. Elles sont représentées à la Fig. 1 dans le cas du niobium. Elles appartiennent aux systèmes $LiNbO_3-LiF$ (droite A), $LiNbO_3-$ " $LiNbO_2F_2$ " (droite B) et $LiNbO_3-NbO_2F$ (droite C) [2].

Des mesures de densité ont montré antérieurement que la non-stoechiométrie était uniquement de type cationique [3].

Une étude par diffraction X a permis de préciser la limite d'existence des six solutions solides étudiées dans les conditions d'élaboration. Leurs paramètres ainsi que leurs formules sont reportés au Tableau 1. Le paramètre γ

Fig. 1. Etendue des solutions solides (traits épais) de type $LiNbO_3$ étudiées au sein du système ternaire $LiNbO_3-LiF-NbO_2F$.

Caracteristiques des six	solutionis	solides etudiees au seili des syste	sines ternal	res: mmo3-		r (m = 140, 14 <i>)</i>	
Systèmes	Droites	Formules	Nombre de cations	Ecart à la stoechio- métrie cationi- que γ	Valeurs limites de x (±0,005)	Paramètres des compositions limites (Å)	^{cH} / _{aH} (±0,001)
LiNbO ₃ -LiF	A	$Li_{1+2x}Nb_{1-x}O_{3-3x}F_{3x}$	2 + x		0,017	$a_{\rm H} = 5,152 \pm 0,002$ $c_{\rm H} = 13,870 \pm 0,004$	2,692
$LiNbO_3^{-}$ "LiNbO ₂ F ₂ "	В	$Li_{1-x/4}Nb_{1-x/4}O_{3-3x/2}F_{3x/2}$	2 × 2 ×	5 X 	0,135	$a_{\rm H} = 5,160 \pm 0,002$ $c_{\rm H} = 13,870 \pm 0,004$	2,688
LiNbO ₃ -NbO ₂ F	C	$Li_{1-x}NbO_{3-x}F_{x}$	2 - x	x	0,100	$a_{\rm H} = 5,160 \pm 0,002$ $c_{\rm H} = 13,886 \pm 0,004$	2,691
LiTaO ₃ –LiF	A	${ m Li}_{1+2x}{ m Ta}_{1-x}{ m O}_{3-3x}{ m F}_{3x}$	2 + x	×+ *	0,026	$a_{\rm H}$ = 5,155 ± 0,002 $c_{\rm H}$ = 13,780 ± 0,004	2,673
LiTaO ₃ -"LiTaO ₂ F ₂ "	В	$Li_{1-x/4}Ta_{1-x/4}O_{3-3x/2}F_{3x/2}$	5 X 7	4 01 	0,145	$a_{\rm H} = 5,164 \pm 0,002$ $c_{\rm H} = 13,779 \pm 0,004$	2,668
LiTaO ₃ -TaO ₂ F	C	$\mathrm{Li}_{1-x}\mathrm{TaO}_{3-x}\mathrm{F}_{x}$	2 - x	x 	0,100	$a_{\rm H} = 5,164 \pm 0,002$ $c_{\rm H} = 13,777 \pm 0,004$	2,668

TABLEAU 1 Caractéristiques des six solutions solides étudiées au sein des systèmes ternaires: LiMO₂–LiF–MO₂F (M ≡ Nb. Ta)

représentant l'écart à la stoechiométrie (2 - nombre de cations) par motif LiMO_3 ($M \equiv \text{Nb}$, Ta) figure également au Tableau 1. Il est caractéristique d'un excès (droite A) ou d'un déficit cationique (droites B et C). L'étendue des solutions solides comportant un excès cationique (A) est très faible. Ce résultat avait déjà été observé sur des phases non-stoechiométriques uniquement oxygénées [4].

Les variations en composition des paramètres $a_{\rm H}$, $c_{\rm H}$ et du rapport $c_{\rm H}/a_{\rm H}$ sont reportées aux Figs. 2 et 3. Les valeurs de $a_{\rm H}$ et de $c_{\rm H}$ augmentent lorsque la composition s'écarte de LiMO₃, c'est-à-dire avec l'écart à la stoechiométrie; les variations du paramètre $a_{\rm H}$ des systèmes LiMO₃-LiF sont cependant faibles. L'évolution du rapport $c_{\rm H}/a_{\rm H}$ est particulièrement significative. Celui-ci diminue pour un déficit cationique, il augmente au contraire pour un excès cationique. Ce résultat est conforme aux travaux antérieurs relatifs à des phases uniquement oxygénées [5]. Les deux compositions limites des solutions solides à base de tantale et déficitaires en cations comportent des valeurs identiques du rapport $c_{\rm H}/a_{\rm H}$ (Fig. 3).

Fig. 2. Variation avec la composition des paramètres $a_{\rm H}$ et $c_{\rm H}$ et du rapport $a_{\rm H}/c_{\rm H}$ pour le système LiNbO₃-LiF-NbO₂F.

Fig. 3. Variation avec la composition des paramètres $a_{\rm H}$ et $c_{\rm H}$ et du rapport $a_{\rm H}/c_{\rm H}$ pour le système LiTaO₃-LiF-TaO₂F.

3. Etude de la transition ferroélectrique-paraélectrique

Nous nous sommes limités à l'étude diélectrique des solutions solides dérivées de LiTaO₃ ($T_c = 953$ K). En effet la température de Curie de LiNbO₃ qui est très élevée ($T_c = 1483$ K), rend très difficile les mesures de capacité, en raison des pertes diélectriques très importantes à haute température. Les

Fig. 4. Variation thermique de la permittivité et du facteur de pertes diélectriques pour une céramique de composition $Li_{0,968}Ta_{0,968}O_{2,806}F_{0,194}$.

Fig. 5. Variation de T_c avec $|\gamma|$ pour les solutions solides dérivées de LiTaO₃.

mesures sont effectuées sous vide dynamique à une fréquence de 1 kHz, de 300 K à 1073 K sur des céramiques de compacité voisine de 0,80.

Il apparaît pour chaque composition étudiée un maximum de permittivité ϵ_r' associé à un minimum du facteur de pertes diélectriques tg δ ; la température relative à ces anomalies correspond à la température de Curie ferroélectrique. La Fig. 4 donne à titre d'exemple les variations thermiques de ϵ_r' et de tg δ pour une céramique de composition $\operatorname{Li}_{0,968}\operatorname{Ta}_{0,968}\operatorname{O}_{2,806}\operatorname{F}_{0,194}$. La Fig. 5 montre les variations de T_c en fonction de $|\gamma|$ pour les trois solutions solides étudiées.

Ces résultats ont été confirmés par calorimétrie. Les poudres sont placées dans des tubes de platine scellés sous oxygène sec. Un phénomène thermique de faible intensité et relativement étalé en température est mis en évidence pour chaque composition à la température de Curie.

Par ailleurs, les travaux antérieurs effectués sur les systèmes $LiTaO_3$ - Li_2O et $LiTaO_3$ - Ta_2O_5 avaient montré l'existence de solutions solides de compositions proches de LiTaO₃. Ces résultats sont reportés au Tableau 2 [4]. La variation de la température de Curie avec la composition permet de ranger tant les oxydes que les oxyfluorures en deux familles distinctes:

les phases appartenant aux systèmes $LiTaO_3-LiF$ ou $LiTaO_3-Li_2O$ (excès cationiques) pour lesquels T_c croît lorsque la composition s'écarte de $LiTaO_3$;

les phases appartenant aux systèmes $LiTaO_3-TaO_2F$, $LiTaO_3-$ "LiTa O_2F_2 ", $LiTaO_3-Ta_2O_5$ (déficits cationiques) pour lesquelles au contraire T_c décroît.

TABLEAU 2

Systèmes	Formules	Nombre de cations	γ	Valeurs limites de x (±0,005)	T _c (K) (compositions limites)
LiTaO ₃ –Li ₂ O	$Li_{1+x}Ta_{1-x/5}O_3$	$2 + \frac{4x}{5}$	$+\frac{4x}{5}$	0,013	963
LiTaO ₃ –Ta ₂ O ₅	$Li_{1-x}Ta_{1+x/5}O_3$	$2-\frac{4x}{5}$	$-\frac{4x}{5}$	0,127	783

Caractéristiques des solutions solides oxygénées non-stoechiométriques dérivées du type $LiTaO_3$ [4]

4. Discussion

La température de Curie des composés de type LiMO₃ ($M \equiv Nb$, Ta) correspond à une transition de phases non centrosymétrique (ferroélectrique) \rightarrow centrosymétrique ($R3c \rightarrow R3c$). Dans la phase ferroélectrique, l'atome M est légèrement excentré dans son octaèdre et l'atome de lithium se trouve dans un octaèdre voisin, très près de la face triangulaire commune avec le troisième octaèdre qui, lui, est vide. Dans la variété paraélectrique centrosymétrique, l'atome M occupe le centre de gravité de son environnement octaédrique (un tiers des octaèdres du réseau) et l'atome de lithium vibre entre deux positions situées de part et d'autre d'une face triangulaire commune à deux octaèdres (les deux tiers des octaèdres restants). Toute modification susceptible de conduire à de telles localisations atomiques contribue à la diminution de la température de Curie. Dans ce travail, c'est l'influence de la non-stoechiométrie résultant de la substitution F-O dans LiTaO₃ qui est envisagée, bien que l'on puisse prévoir que le remplacement de l'oxygène par le fluor entraîne une chute de T_c .

4.1. Relation entre T_c et le rapport c_H/a_H

Le rapport $c_{\rm H}/a_{\rm H}$ est directement lié à la structure LiTaO₃ par la relation [6]

 $\frac{c_{\rm H}}{a_{\rm H}} = \frac{\sqrt{6}}{\cos\omega}$

où ω est l'angle que décrivent les octaèdres par rapport à leur axe ternaire, lorsque la structure évolue du type perovskite ($\omega = 0$) au type hexagonal compact ($\omega = 30^{\circ}$) [6]. Le Tableau 3 donne les valeurs de ω pour quelques compositions étudiées.

L'augmentation de ω provoque donc un resserrement de la face triangulaire commune à deux octaèdres, rendant ainsi le passage du lithium plus difficile et entraînant une élévation de la température de Curie. Inversement

TABLEAU 3

Composés	$rac{c_{\rm H}}{a_{\rm H}}$ (±0,001)	ω (deg)
Limite de la solution solide du système LiTaO ₃ –LiF	2,673	23,60
LiTaO ₃	2,672	23,55
Limite de la solution solide du système LiTa O_3 -"LiTa O_2F_2 "	2,668	23,35
Limite de la solution solide du système LiTaO ₃ -TaO ₂ F	2,668	23,35

Valeurs de ω pour les compositions limites des diverses solutions solides étudiées

la diminution de ω rend plus aisé le passage du lithium par le goulot d'étranglement. Il occasionne donc une baisse de T_c (Fig. 6).

L'influence sur T_c du rapport c_H/a_H apparaît nettement lors de l'étude radiocristallographique en température d'une phase de type LiTaO₃. La Fig. 7 montre l'évolution thermique des paramètres a_H , c_H et du rapport c_H/a_H pour la composition Li_{0,968}Ta_{0,968}O_{2,806}F_{0,194}. Le rapport c_H/a_H diminue progressivement avec la température. Cette évolution est en bon accord avec les relations entre T_c et c_H/a_H énoncées plus haut.

Fig. 6. Evolution du réseau cristallin avec l'angle ω ; la face triangulaire proche du lithium est hachurée.

Fig. 7. Evolution des paramètres en fonction de la température pour la composition $Li_{0.968}Ta_{0.968}O_{2,806}F_{0,194}$.

4.2. Influence de la non-stoechiométrie sur la température de Curie

La nature de la lacune semble jouer un rôle important; en effet, la diminution de la quantité de lithium présente a pour effet de réduire la taille des octaèdres qui entourent le tantale (les atomes d'oxygène sont plus attirés par le tantale en l'absence de lithium) (Fig. 8(a)). On peut penser que cette décroissance limite le déplacement du tantale hors de son centre, entraînant ainsi une baisse de la température de Curie. Les défauts en tantale ont en revanche une influence négligeable sur la température de Curie (Fig. 5) [7, 8].

Un excès de lithium (Fig. 8(b)) provoque au contraire une croissance de la taille des octaèdres de tantale, et par conséquent une augmentation de la température de Curie, De tels résultats sont observés tant pour les oxyfluorures que pour les oxydes. L'augmentation du nombre de cations implique également une énergie plus élevée pour rompre les liaisons chimiques désormais plus nombreuses et permettre leur réarrangement.

Fig. 8. Déplacement des anions dans le cas d'une non-stoechiométrie en lithium, avec soit un défaut (a) soit un excès cationique (b).

4.3. Influence de la substitution fluor-oxygène

Contrairement à ce qui avait été observé pour les phases de type perovskite ou "bronzes quadratiques de tungstène", la substitution F-O a peu d'influence sur la température de Curie. (Tableau 2) [9].

Pour ces dernières la chute brutale de T_c était due à la diminution de la covalence des liaisons M-X (X \equiv O, F) lorsque le fluor remplaçait l'oxygène. Les réseaux cristallins correspondants comportaient des octaèdres liés par les sommets dans la direction de l'axe polaire. L'angle M-X-M était voisin de 180°. C'est cette configuration qui était responsable de la forte corrélation entre T_c et la covalence des liaisons (donc du déplacement du cation hors du centre de gravité de l'octaèdre).

Au contraire dans les phases de type LiTaO_3 les octaèdres sont liés par les sommets dans une direction différente de celle de l'axe polaire et de plus les liaisons M-X-M forment un angle différent de 180° (approximativement 140°). Cet arrangement, moins propice à l'effet coopératif des moments dipolaires qui donnent naissance macroscopiquement à la polarisation spontanée, explique sans doute la faible influence de la substitution F-O sur T_c . Le nombre et les positions des cations présents semblent des facteurs déterminants.

Bibliographie

- 1 S. C. Abrahams, W. S. Hamilton et A. Sequeira, J. Phys. Chem. Solids, 28 (1967) 1693.
- 2 M. Vlasse, J. P. Chaminade et M. Pouchard, Mater. Res. Bull., 8 (1973) 117.
- 3 M. Zriouil, Thèse 3ème cycle, Rabat, Maroc, 1981.
- 4 R. L. Barns et J. R. Carruthers, J. Appl. Cryst., 3 (1970) 395.
- 5 H. D. Megaw, Acta Crystallogr., Sect. A, 24 (1968) 583.
- 6 J. M. Moreau, C. Michel, R. Gerson et W. J. James, Acta Crystallogr., Sect. B, 26 (1970) 1425.
- 7 M. Zriouil, J. Senegas, B. Elouadi et J. B. Goodenough, Mater. Res. Bull., 20 (1985) 679.
- 8 J. Ravez, G. T. Joo, J. Senegas et P. Hagenmuller, Jpn. J. Appl. Phys., 24 (1985) 1000.
- 9 J. Ravez, Rev. Chim. Miner., 23 (1985) 460.