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Abstract: (R)-3-Aminotetradecanoic acid (iturinic acid) has been synthesized starting from dodecanoyl chloride. This 

new synthetic approach involved the enantioselective reduction of an ynone to the corresponding propargylic alcohol and 

then into a protected propargylic amine. The iturinic acid was obtained by the transformation of a (phenylseleno)acetylene 

intermediate into a carboxylic group followed by N-deprotection. 
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INTRODUCTION 

Bioactive cyclic lipopeptides, such as the cytotoxic mix-
irins A-C [1], epichlicin [2], mycosubtilin [3], iturins A-E [4] 
and bacillomycins D, E and L [5], have been isolated from 
terrestrial or marine microorganisms. All members are cyclic 
octapeptides with seven -amino acids and one 

3
-amino 

acid. Iturins are produced by Bacillus subtilis and in iturin-A 
(1, Fig. 1) the nature of side chain (R in Fig. 1) in the 

3
-

amino acid (named iturinic acid) is the essential requisite for 
the antifungal activity of the lypopeptide [6]. Iturin-A is 
naturally produced as a mixture of up to eight isomers which 
differ from each other in the length and isomerism of the 

3
-

amino acid side chain R. Thus the iturinic acids in iturin A 
have been determined to have from 13 to 17 carbon atoms 
and the (R)-configuration at the -carbon [7]. The predomi-
nant iturin-A isomer (iturin-A2), contains the n-C14 isomer 
2 of iturinic acid Fig. (1) [6]. Because of the pharmaceutical 
importance of the long-chain 

3
-amino fatty acids, their syn-

thesis has attracted increasing interest. 
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Fig. (1). Structure of iturin-A (R= C13-C17 alkyl chain) and iturinic 

acid. 

Few methods have been reported for the asymmetric syn- 
thesis of iturinic acid. Some are based on the stereoselective  
formation of the C-N bond and other on the transformation  
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of an -amino acid or on the regio- and stereoselective func-
tionalization of linear dicarboxylic acid derivatives. The di-
astereoselective Michael addition of chiral nitrogen nucleo-
philes to enoates has been applied by Ohta [8] who obtained 
the pure enantiomer (R)-2 as the methyl ester in low yield 
after chromatographic separation and N-debenzylation of the 
desired isomer. In a similar way, Enders [9] reported the 
synthesis of (S)-2 (93% ee) by conjugate addition of lithiated 
TMS-SAMP to an , -unsaturated ester. In a different ap-
proach, Bland [10] transformed the carboxylic group at C-1 
of L-aspartic acid into the desired alkyl substituent to obtain, 
after several steps, (R)-2 as Boc derivative and in 99% ee. 
Moreover Sibi [11] prepared the same compound in 97% ee 
through a regio- and stereoselective alkylation of a succinate 
unit attached to a chiral auxiliary (oxazolidinone) and further 
selective conversion of one of the carboxy groups into an 
amino group by Curtius rearrangement. We report here a 
simple and enantioselective procedure to prepare (R)-3-
aminotetradecanoic acid (2) hydrochloride starting from do-
decanoyl chloride. 

RESULTS AND DISCUSSION 

The application of our recent studies [12] on the trans-
formation of terminal alkynes into Se-phenyl selenocarboxy-
lates led us to develop a simple and stereospecific synthesis 
of (R)-3-aminooctanoic acid starting from commercial (S)-1-
octyn-3-ol by conversion into the corresponding (R)-N-
phthalimido propargylic amine [13]. The availability of the 
optically active propargylic alcohols is the limiting factor for 
a wide application of our methodology to the synthesis of 
other naturally occurring 

3
-amino acids as, for instance, 

iturinic acids. However, optically active propargylic alcohols 
can become available by asymmetric reduction of ynones. 
Thus (R)-5 was synthesized according to the reaction se-
quence depicted in Scheme 1. The ynone (4), easily obtained 
from the dodecanoyl chloride (3) by reaction with bis-
trimethylsilylacetylene in the presence of AlCl3 [14] was 
enantioselectively reduced with S-Alpine-Borane, as re-
ported in the literature for the (R) isomer [15], to the (S) 
propargylic alcohol (5) [16]. 
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Scheme 1. i) Me3Si-C CSiMe3 (1.1 equiv.), AlCl3(1 equiv.), 

CH2Cl2, 0 °C, 4 h then K2CO3, 81%; ii) (S)-Alpine-Borane (1.4 

equiv.), 0 °C to rt, neat, 16 h then MeCHO (1.4 equiv.), H2O2 (3 

equiv.), NaOH, 79%; iii) DIAD (1.8 equiv.), PhthNH (1.4 equiv.), 

Ph3P (1.4 equiv.), THF, 0 °C to rt, 9 h, 70%. 

By reaction with phthalimide under Mitsunobu condi-
tions, compound (5) was easily converted into (R)-N-
phthalimido propargylic amine (6) [17] with the expected 
complete inversion of configuration at the stereogenic car-

bon atom (Scheme 1). The enantiomeric purity of (R)-6 was 
estimated by HPLC analysis on chiral stationary phase. 
Compound (6) presented an enantiomeric ratio of 92:8 which 
is identical to that of the alkynol (R)-5 reported in the litera-
ture [15]. The N-protected propargylic amine (6) (Scheme 2) 
was then converted, in nearly quantitative yield, into the cor-
responding alkynyl phenyl selenide (7) which was directly 
employed in the reaction with p-toluenesulfonic acid mono-
hydrate [12] to give the Se-phenyl selenocarboxylate (8). No 
racemization occurred during this conversion as demon-
strated by HPLC analysis of the corresponding methyl ester 
derivative (9) [18]

 
prepared by reaction of 8 with methanol in 

acetonitrile and in the presence of anhydrous cupric chloride 
[12]. 

When the crude 8 was treated with cupric chloride hy-
drate in acetonitrile at room temperature the corresponding 
(R)-N-phthalimido-3-aminotetradecanoic acid (10) [19] was 
obtained in good yield (Scheme 2). The use of cupric chlo-
ride hydrate described here represents a new and very simple 
procedure to obtain carboxylic acids from the Se-phenyl se-
lenocarboxylates. This procedure is more convenient than 

that which uses hydrogen peroxide [13]. Moreover, by the 
use of cupric chloride the selenium was recovered as 
diphenyl diselenide. Finally, the phthalimido group was re-
moved by treating 10 with hydrazine hydrate in refluxing 
ethanol. Compound (R)-2 was isolated as the hydrochloride 
in 68% yield [20]. Because under these reaction conditions 
the stereogenic carbon atom is not involved, it is suggested 
that the enantiomeric ratio of (R)-2 hydrochloride was 92:8 
as in the case of compound (6). This was established by 
treating the (R)-2 hydrochloride with N-ethoxycarbonyl-
phthalimide in tetrahydrofuran [21] to obtain the acid (R)-10 
which was esterified with methyl iodide in DMF and in the 
presence of potassium carbonate [22] to afford (R)-9 which 
showed the same enantiomeric ratio of the compound pre-
pared from 8, as described above. 

In order to confidently determine the enantiomeric ex-
cesses by HPLC it was necessary to dispose of the enanti-
omers ent-6 and ent-9. These two compounds were obtained 
following the same procedure and using the R-Alpine-
Borane as reducing agent of the ynone (4). The HPLC analy-
sis on chiral stationary phase of ent-6 and ent-9 was effected 

as described above for the (R) enantiomers and the measured 
ratio was 93:7. Compound ent-10 could then be transformed 
into the (S) enantiomeric form of 2.  

In summary, the present paper describes a new enantiose-
lective synthesis of iturinic acid (2) hydrochloride and we 
can envision that the present procedure with the use of the 
appropriate acid chloride will allow the synthesis of the dif-
ferent iturinic acid side chains to be easily effected. 
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Scheme 2. i) PhSeBr (1.1 equiv.), CuI (2 equiv.), DMF, rt, 36 h; ii) p-TsOH (2 equiv.), CH2Cl2, reflux, 6 h; iii) CuCl2 dry (1.1 equiv.), 

MeOH/ MeCN, rt, 6 h, 40% (three steps); iv) CuCl2·H2O (1.1 equiv.), MeCN, rt, 14 h, 68% (three steps); v) H2N-NH2 (2.2 equiv.), EtOH, 

100 °C, 5 h then HCl, 68%.  



24      Letters in Organic Chemistry, 2009, Vol. 6, No. 1 Temperini et al. 

[3] Walton, R.B.; Woodruff, H.B. J. Clin. Invest., 1949, 28, 924. 
[4] Peypoux, F.; Guinand, M.; Michel, G.; Delcambe, L.; Das, B.C.; 

Varenne, P.; Lederer, E. Tetrahedron, 1973, 29, 3455. 
[5] Volpon, L; Besson, F.; Lancelin, J. M. Eur. J. Biochem., 1999, 264, 

200. 
[6] Bland, J.M. J. Org. Chem., 1996, 61, 5663. 
[7] Nagai, U.; Besson, F.; Peypoux, F. Tetrahedron Lett., 1979, 20, 

2359. 
[8] Kawato, H.C.; Nakayama, K.; Inagaki, H.; Nakajima, R.; Kitamura, 

A.; Someya, K.; Ohta, T. Org. Lett., 2000, 2, 973. 
[9] Enders, D.; Wahl, H.; Bettray, W. Angew. Chem. Int. Ed., 1995, 34, 

455. 
[10] Bland, J.M. Synth. Commun., 1995, 25, 467. 
[11] Sibi, M.P.; Deshpande, P.K. J. Chem. Soc. Perkin Trans.1, 2000, 

1461. 
[12] Tiecco, M.; Testaferri, L.; Temperini, A.; Bagnoli, L.; Marini, F.; 

Santi, C.; Terlizzi, R. Eur. J. Org. Chem., 2004, 3447. 
[13] Tiecco, M.; Testaferri, L.; Temperini, A.; Terlizzi, R.; Bagnoli, L.; 

Marini, F.; Santi, C. Tetrahedron Lett., 2007, 48, 4343. 
[14] Schwab, J.M.; Lin, D.C.T. J. Am. Chem. Soc., 1985, 107, 6046. 
[15] Pons, J.-M.; Kocienski, P. Tetrahedron Lett., 1989, 30, 1833. 
[16] Noyori, R.; Tomino, I.; Yamada, M.; Nishizawa, M. J. Am. Chem. 

Soc., 1984, 106, 6717. 

[17] Selected data for compound (6): colorless wax mp 30-32 °C; [ ]D
27 

= + 3.51 (c = 1.69 in Et2O); HPLC analysis: Chiracel OD-H col-
umn (250x4 mm, Daicel), eluent: i-PrOH/hexane (0.4:99.6) flow 
rate: 0.5 mL/min, UV detection at 230 nm; tR 27.3 min: er = 92:8; 
1H NMR (200 MHz, CDCl3, TMS): = 0.94 (t, J = 6.9 Hz, 3H, 

CH3), 1.27-1.49 (m, 18H, CH2), 2.09-2.30 (m, 2H, CH2), 2.43 (d, J 
= 2.5 Hz, 1H, CH), 5.11 (td, J = 8.0, 2.5 Hz, 1 H; CHN), 7.73-7.95 

(m, 4H, CH); 13C NMR (50 MHz, CDCl3, TMS):  = 14.0, 22.6, 

26.1, 28.7, 29.2, 29.3, 29.4, 29.5 (2C), 31.8, 33.3, 41.4, 71.7, 80.3, 
123.3 (2C), 131.7 (2C), 134.0 (2C), 167.0 (2C); GC-MS (EI, 70 
eV): m/z (%) = 296 (17)[M-41]+, 212 (10), 199 (16), 184 (100), 130 
(21), 94 (12); FT-IR (diffuse reflectance): 2922, 2115, 1766, 1713, 
1385, 1077 cm-1; Anal. Calcd for C22H29NO2 (339.4): C, 77.84; H, 
8.61; N, 4.13. Found: C, 77.41; H, 8.90; N, 3.85. 

[18] Selected data for compound (9): pale yellow oil; [ ]D
29 = 2.48 (c= 

1.43 in CHCl3); HPLC analysis: Chiracel OD-H column (250x4 
mm, Daicel), eluent: i-PrOH/hexane (1:99) flow rate: 0.5 mL/min, 
UV detection at 230 nm; tR 33.6 min: er = 92:8; 1H NMR (200 

MHz, CDCl3, TMS):  = 0.68-0.92 (m, 3H, CH3), 1.05-1.31 (m, 

18H, CH2), 1.55-1.76 (m, 2H, CH2), 2.61 (dd, J= 16.1 , 5.3 Hz, 1H, 
CH2), 3.11 (dd, J= 16.1, 9.5 Hz, 1H, CH2), 3.55 (s, 3H, CH3) 4.58 
(m, 1H, CHN), 7.65-7.90 (m, 4H, CH); 13C NMR (50 MHz, CDCl3, 

TMS):  = 14.0, 22.5, 26.2, 28.7, 29.4 (4C), 31.0, 31.7, 32.2, 36.6, 

47.9, 51.6, 123.1 (2C), 131.6 (2C), 133.8 (2C), 168.2 (2C), 171.3; 

GC-MS (EI, 70 eV): m/z (%) = 387 (61) [M]+, 314 (53), 232 (52), 
200 (100), 160 (54), 130 (35); FT-IR (diffuse reflectance): 2915, 
1733, 1702, 1370, 976 cm-1; Anal. Calcd for C23H33NO4 (387.5): C, 
71.29; H, 8.58; N, 3.61; Found: C, 71.66; H, 8.21; N, 3.19. 

[19] Conversion of selenocarboxylic acid Se-phenyl esters (8) into acid 
(10): A mixture of selenocarboxylic acid Se-phenyl ester (8) (1 
mmol) and copper (II) chloride hydrated (1.1 mmol) in acetonitrile 
(8 mL) was stirred at room temperature. The progress of the reac-
tion was monitored by TLC. After 14 h the selenolester was com-
pletely consumed. Tartaric acid (1.2 mmol) was then added. The 
reaction mixture was stirred for few minutes, then filtered through 
a celite path and the filtrate concentrated. The crude product was 
purified by column chromatography on silica gel using a 98:2 mix-
ture of dichloromethane and methanol as eluant. Compound (10) 
was obtained as colorless oil in 68% global yield. Selected data for 

compound (10): [ ]D
31 = -29.57 (c= 0.45 in DMSO); 1H NMR (200 

MHz, CDCl3, TMS):  = 0.85 (t, J = 6.5 Hz, 3H, CH3), 1.10-1.31 

(m, 18H, CH2), 1.58-1.81 (m, 1H, CH2), 1.96-2.21 (m, 1H, CH2), 
2.82 (dd, J= 16.6, 5.4 Hz, 1H, CH2), 3.21 (dd, J= 16.6, 9.5 Hz, 1H, 
CH2), 4.65 (m, 1H, CHN), 7.76-7.90 (m, 4H, CH), 8.56 (brs, 1H, 

OH); 13C NMR (50 MHz, CDCl3, TMS):  = 13.9, 22.5, 26.1, 28.9, 

29.1, 29.2, 29.3, 29.4 (2C), 31.7, 32.2, 36.6, 47.6, 123.1 (2C), 129.2 
(2C), 135.3 (2C), 168.2 (2C), 176.7; FT-IR (diffuse reflectance): 
2921, 2853, 1704.7, 1712.5, 1375.4 cm-1; Anal. Calcd for 
C22H31NO4 (373.4): C, 70.75; H, 8.37; N, 3.75: Found: C, 70.30; H, 
8.99; N, 4.08. 

[20] Formation of (R)-2 hydrochloride by deprotection of 10: Hydrazine 
hydrate (0.11 mL, 2.2 mmol) was added to a stirred solution of 10 
(0.37 g, 1 mmol) in EtOH (3 mL). After stirring for 5 h at 100 °C, 
the reaction mixture was allowed to slowly reach room temperature 
and concentrated. The residue was treated with 6 mL of 2N hydro-
chloric acid, the solid was allowed to settle down and then filtered. 
Evaporation of the filtrate gave a residue which was dried under 
reduced pressure to afford (R)-2 hydrochloride in 68% yield. Selec-

ted data for compound 2: White solid mp 131-135 °C; [ ]D
25 =  

-17.80 (c= 0.59 in H2O). 1H NMR (200 MHz, D2O):  = 0.65-0.81 

(m, 3H, CH3), 0.97-1.35 (m, 18H, CH2), 1.42-1.78 (m, 2H, CH2), 
2.62 (d, J= 6.3 Hz, 2H, CH2), 3.38-3.57 (m, 1H, CHN); 13C NMR 

(50 MHz, D2O):  = 14.4, 23.3, 26.0, 28.9, 29.9, 30.2, 30.3, 30.5 

(2C), 32.6, 32.8, 48.9, 67.2, 174.2; FT-IR (diffuse reflectance): 
2923, 1946.7, 1711.5, 1482.9 cm-1; Anal. Calcd for C14H30ClNO2 
(279.8): C, 60.09; H, 10.81; N, 5.01. Found: C, 59.80; H, 11.27; N, 
4.78. 

[21] McArthur, C.R.; Worster, P.M.; Okon, A.U. Synth. Commun., 
1983, 13, 311. 

[22] Bocchi, V.; Casnati, G.; Dossena, A.; Marchelli, R. Synthesis, 
1984, 961. 

 


