
U. Sydow and P. J. Plath: Structure Formation During Precipitation Reaction in Gels 1683 

Structure Formation During Precipitation Reaction in Gels 
New Liesegang Patterns 

U. Sydow and P. J. Plath 
Institut fur Angewandte und Physikalische Chemie AG. Chemische Synegetik, Universitat Bremen, Bibliothekstrde N W  2. 

D-28334 Bremen, Germany 

Key Words: Chemical Kinetics / Colloides / DifSusion /Nonlinear Phenomena /Nucleation 

The paper reports on an investigation canied out into one- to three-dimensional Liesegang systems (test tube 
arrangement) composed of hfferent concentrations of lead nitrate in Agar gel with either potassium iodide or 
potassium dichromate as the precipitation reagent. A rich variety of different structure formations, including 
screw formations of the weakly soluble reaction product is documented. 

Measurements of the progression of the precipitation front show a dependence of the diffusion path on 
time that which deviates from the Einstein-Smoluchowski root mean square displacement. The measured 
exponent n of the displacement x”=f(r) is discussed in detail and interpreted as the dynamic dimension d, of 
the diffusion through the fractal medium of the gel, the backbone dimension of which could be estimated. 
A cellular automaton model is used to describe the DLA cluster formation of the precipitate as well as the 

geometrical shape of the Liesegang patterns. 

Introduction 

R.E. Liesegang published his first papers on pattern 
formation in gelatine in 1896 [l-31. In general, the ex- 
perimental preparation runs as follows: a gel is prepared 
which contains an ionic species that can later be precipi- 
tated by a suitable counterion. 

The experiment is usually carried out in a one- or two- 
dimensional arrangement, e.g. in a test tube or in a Petri 
dish; the precipitation reagent is then placed as a solid or 
in concentrated solution onto the gel column or in the 
middle of the gel layer respectively. 

During the diffusion of the counterion into the gel, the 
precipitation reaction occumng sometimes produces con- 
centric rings or sharp disks of precipitate. These structures 
are commonly referred to in the literature as Liesegang 
rings. 

The classification of the experimental arrangement in 
terms of integer dimensions is meant to emphasize the 
main direction of the diffusion. It does not imply that the 
process can be explained by solving a system of reaction- 
diffusion equations for one or two dimensions, since acci- 
dentally macroscopic screw dislocations of precipitated 
material appear (Fig. I). Liesegang was one of the first to 
notice this, without giving an explanation [4]. 

Liesegang’s discovery induced much experimental and 
theoretical work, including many papers and monographs 
by himself [ I d ] .  The attempt at a theoretical interpreta- 
tion followed as early as 1897 by Wi. Ostwald and his 
supersaturation theory [7]. 

Much of Liesegang’s early work is restricted somewhat 
to gelatine jehes, while A.C Chatteji and N.R. Dhar [8] 
used other types of gel-fonning materials such as Agar, 
starch and silicia gel. The authors claimed any reaction 
giving an insoluble product to be capable of Liesegang 
structure formation under certain conditions. K. Kant [9] 

and J.M. Garcii-Ruiz [lo] reported some experimental 
work concerning the formation of lead iodide in Agar. 
Garcii-Ruiz investigated in particular the role of gravity 
in the formation of Liesegang patterns.‘ A tracer study 
which gives the density profile of the precipitation prod- 
uct is reported by H.J. Arnikar and D. Meenamani [ l l ] .  
An extensive bibliography concerning crystal growth in 
gels was published by H.K. Henisch 1988 [12]. 

It should be noted that macroscopic structure formation 
can occur in the absence of a gel whose primary function 
is to surpress convection and sedimentation. Precipitation 
patterns are reported to occur both in gas phase reactions 
(interdiffusion of HCI and NH3) [13, 141 and in pure 
water under carefully controlled conditions in capillary 
tubes [15]. 

A modem approach is provided by J. Ross and other 
groups, in various theoretical and experimental articles 
commencing in the 1970s [16-231. The attempt at a theo- 
retical description of the Liesegang phenomenon is based 
on nonlinear reaction diffusion equations and on nuclea- 
tion kinetics leading to chemical instabilities. Nucleation 
kinetics, especially, are discussed at length in this litera- 
ture. A very instructive computer simulation of simple 
Liesegang patterns has been carried out by B. Chopard et 
al. [24]. 

What all these articles have in common is that no spe- 
cial consideration is given to the role of the gel media 
with the precipitate as the diffusion space. Nevertheless, 
Fick’s second law is usually used for the description of 
the diffusion process. This is the starting point of our in- 
vestigation. Following some earlier ideas one of us had 
[25], it is doubtful that the diffusion of ionic species in 
gels can be explained by Fick’s second law, which is 
derived by Einstein in a theoretical way by considering 
non-interacting particles in homogeneous Euclidian space. 
Einstein found that the average displacement of a random 
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Fig. 1 
Formation of Liesegang double and single screw surfaces and discs 
during the precipitation of lead chromate in Agar gel. This experi- 
ment was carried out by W. Jacobi in a ”one”-dimensional arrangc- 
ment in a test tube of normal size 

walker relative to the x-direction is proportional to the 
square root of the time [26], where dtop is the topological 
dimension of the space in which the diffusion takes place. 

X’ = 2dt,, Dt 

Rewriting this equation in logarithmic form gives 

log r = 2 log ,T - log (2 dtop D) . 

The validity of the logarithmic equation can be examined 
by experimental determination of x and t .  

Experimental Set-up 

All experiments were performed in a constant tem- 
perature water bath. The temperature was controlled to 

kO.1 “C precision. (Ultra-Kryostat Type UK 40 D, 
Fa. Lauda). The influence of light was excluded to a large 
extent. 

A highly concentrated solution of the outer electrolyte 
was used to minimise the loss of concentration in this so- 
lution during the experiment. In the case of the test tube 
experiments, this solution was put on the upper surface of 
the gel, whereas it was placed in the centre of the gel by 
a capillary in the 3D-experiments. In the latter case, we 
took care that no convection flow of the outer electrolyte 
into the gel took place. For the formation of the aqueous 
gel we used a 0.75% by weight concentration of Agar 
(Agar in filaments, DAB 6 and 7, Riedel de Haen). 

One of the reasons for using the KJ/Pb(N03)2 in Agar 
system as an object to study was the fact that the bright 
yellow PbJz is easily detected visually. This system is 
also known to form sharp distinct bands, and experimen- 
tal work on it is available in the literature [9, 18, 201. 

Results 

1. Double Screw Surfaces 

Screw surfaces have already been observed in test tube 
experiments [4, 18, 231. In older literature they are named 
“spiral bands”, although this term does not reflect exactly 
the mathematical function which describes this Liesegang 
pattern. Fig. 1 shows a double screw surface occumng 
during the precipitation of lead chromate in Agar gel. 
At higher concentration gradients of the chromate in the 
upper regions of the test tube, one can observe double 
screw surfaces which change into single screw surfaces 
for lower concentration gradients. Furthermore, if the con- 
centration gradient is decreased, the winding of the single 
screw enlarges and suddenly the screw surface falls apart 
into a sequence of single slices. 

We would point out that the screw surface is fixed by a 
helix to the test tube. This enables a second screw surface 
to be anchored at the same helix. These double screw sur- 
faces represent a new type of Liesegang pattern (Fig. 1) 
that has not been reported before. 

2. Fractal Precipitation Discs 

As mentioned above, the screw surface falls apart to 
form single discs with decreasing concentration gradient. 
Surprisingly, however. these discs possess holes of differ- 
ent sizes. Cutting out slices of the gel, one can easily re- 
cognise the fractal character of the precipitation pattern 
(see Fig. 2). This may provide a hint with regard to the 
selection of a proper model. This type of pattern forrna- 
tion should be described by means of a diffusion-limited 
aggregation process. The pure geometrical macroscopic 
patterns should be the outcome of such a DLA process, 
which usually creates a fractal object. So we need to look 
for a model that creates classical geometrical objects such 
as screw surfaces and discs with an internal fractal sub- 
structure. 
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/pica1 fractal DLA-structure of the PbJz precipitate obtained from 

cutting the Agar gel column into narrow slices (approx. 1 mm thick 
and 14 mm in diameter) Fig. 4 

A gel slice containing the centre of the Liesegang ball. This pattern 
greatly resembles the typical “two”-dimensional Liesegang structures. 
This experiment was carried out by S .  Hollatz and T. Plikat using a 
small soluble capsule filled with solid KJ 

i 

3. Liesegang Balls 

Executing the Liesegang experiment in a sufficiently 
large test tube with a point source of the outer electrolyte, 
as first performed by S .  Hollatz and T. Plikat, one can ob- 
serve 3D-Liesegang ball structured patterns (Fig. 3). This 
Liesegang ball is strongly suggestive of an onion-type 
structure. 

Cutting out slices of the gel containing the centre of 
the ball (Fig. 4), one obtains Liesegang patterns that are 
well known from the 2D-experiments in Petri dishes. One 
can observe parts of circles of the precipitate, which are 
connected by zigzag lines or some undefined distortions 
starting from the centre. 

However, cutting out gel slices containing ball sockets 
of the outer parts of the Liesegang ball (Fig. 5), one im- 
mediately recognizes the fractal structure of this onion 
skin, which is known to us from the gel slices in the test 
tube experiments (Fig. 2). 

We can now combine both types of intersections to 
construct a 3D representation of the Liesegang ball. The 
precipitation forms fractal segments of ball sockets, which 
surround the centre like onion skins. They are intercon- 
nected with screw surfaces which emerge radially from 
the centre. The screw surfaces are strongly suggestive of 
winding stairs, since they possess the possibility to step 
out after n x  turns onto another fractal onion skin of the 

Fig. 3 
The Liesegang ball formed by PbJz in a “three”-dimensional arrange- 
ment using a capillary as a point source for the outer electrolyte. 
T h ~ s  experiment was carried out by S .  Hollatz and T. PMat 

precipitation pattern. 
zigzag lines as well as the undefined radial distor- 

tions in the 2D experiments are nothing other than arbi- 
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Fig. 5 
A gel slice containing ball sockets of the outer part of the Liesegang 
ball, showing the typical fractal structure of the spheres of the preci- 
pitate surrounding the centre of the ball like onion skins. This experi- 
ment was carried out by S .  Hollatz and T. Plikat 

A B C 

Fig. 7 
Simulation of diffusion, reaction and aggregation in the Liesegang 
experiment by means of a cellular vector automaton; A) the distribu- 
tion of the diffusing lead ions in the test tube; the lower part of the 
test tube is not coloured; B) the distribution of the iodide starting 
from the upper level of the gel in the test tube; C )  the pattern forma- 
tion of the PbJ2 nuclei as a consequence of a DLA process 

long as the concentration of the outer electrolyte, which 
penetrates into the gel, is large compared to the concentra- 
tion of the electrolyte present in the gel, an experimental 
set-up may be used in which the concentration of the out- 
er electrolyte can be taken as constant at x=O for suffi- 
ciently long times. Thus, a plot of log r versus log x 
should give a straight line with slope 2. This is not found 
to be the case. Instead, lines with slopes usually larger 
than 2 are found (Fig. 6). 

10 1 I 

1 10 
x/cm 

Fig. 6 
Logarithmic plot of the progression of the lead iodide formation 
front in the Agar gel at 20°C. Lead nitrate concentration in the gel: 
A) to D): 5 mM, 6 mM, 8 mM, and 9 mM. From the slopes of these 
lines, the dynamic dimension d, is estimated 

trary intersections of the gel slices with the radial screw 
surfaces discussed above. 

4. Measurement of the Fractal Dimension 

The position of the visible boundary of precipitate 
moving downward in the test tube is measured. It is as- 
sumed that this boundary occurs at a specific point in the 
concentration profile along the x-axis of the test tube. As 

5. Simulation - A Cellular Vector Automaton Model 

By means of a cellular vector automaton [27, 281 with 
three vector components, it is possible to describe the re- 
action diffusion nucleation process underlying the ob- 
served pattern formation in the Liesegang systems. In a 
two dimensional model with cylindncal boundaries, the 
state of a cell at time t in position i, j is given by the vec- 
tor Zij =(z (J), z (Pb), z (PBJz)), where z (J), z (Pb) and 
z (PbJ2) are integer numbers representing the concentra- 
tions of J-, Pb2+ and PbJa in the elementary space de- 
scribed by the mathematical cell. All three components 
undergo dffusion. rnin {z(J), z(Pb)} is the number of 
z(PbJ2) which is created in the cell at time r.  If z(PbJ2) is 
smaller than a given threshold, there is a probability that 
the nuclei will decay. If z(PbJ2) oversteps this threshold, 
the state of the components becomes stable, which means 
that the nuclei cannot be dissolved again. Moreover, this 
state becomes fixed in the lattice. The stable nucleus can- 
not diffuse any more and becomes an obstacle for all the 
diffusing states. In this way, it becomes a core of a DLA- 
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cluster created by diffusing unstable nuclei. Fig. 7 shows 
the distributions of the states z(Pb), z(J) and z(PbJ2) after 
several time steps. One may recognise that there is a band 
structure in the accumulation of DLA clusters, which 
tends to develop into a spiral form. New nuclei are only 
formed in the small area where we have low numbers of 
z(J) as well as z(Pb) states. These nuclei in the nascent 
state can diffuse, and are thus responsible for the structure 
formation. 

Discussion 

The analysis of the measurements clearly shows that 
the time r for the displacement of the diffusing particles 
scales as 

As is well known, the Einstein-Smoluchowski relation for 
the diffusive Brownian motion can be interpreted in terms 
of a random walk in a homogeneous space or on a Eucli- 
dian lattice [29]. The fractal dimension d, of the random 
walk 

d, = 2 

is independent of the dimension d=  1,2,3, . . . of the 
homogeneous or discrete Euclidian space [30]. 

Assuming that the random walk takes place on a ran- 
dom fractal of dimension df like a DLA cluster or a per- 
colation cluster, then d, should be considerably larger 
than two: 

In the case of a percolation cluster at the percolation 
threshold, d, depends on the dimension dtop of the space 
in which this cluster is embedded [30]. 

Assuming the Agar gel forms a network which is pene- 
trated by a percolation cluster of water beyond its percola- 
tion threshold, then the mean square displacement for a 
random walk of the nuclei of the precipitate in the water 
cluster should scale with time as [31]: 

For x<(, the percolation cluster possesses a fractal char- 
acter, where ( is the mean linear size of two sites belong- 
ing to the same cluster. A random walk on such a cluster 
is characterised by the dimension d,>2. 

tends to infinity (+a 
and x2a?dw holds for all length scales. 

At the percolation threshold, 

This relation can be rewritten in the form: 

Xd” x t 

In most cases we estimate d,,,z2.27 for the lead iodide 
experiments on average to be independent of the prepara- 

tion of the Agar gel. For the dimensions 1<d,,,<6 the 
Alexander-Orbach conjecture [32] states that ds=4/3, 
while the spectral dimension is ds=2 dfld, for fully de- 
veloped percolation clusters. 

The fractal dimension for the assumed water percola- 
tion cluster is thus found to be about d, z 1.5 which is 
far too small with respect to d f=  1.896 if dtop=2. or 
df=2.5 if dtOp=3, which are the fractal dimensions for in- 
finite percolation clusters [31, 331 in one or two dimen- 
sions respectively. The dimension df=2.5 is just in the or- 
der of the magnitude of the dimension of the backbone of 
a three dimensional (dtop = 3) percolation cluster [34]. 

We can now conclude that the Liesegang patterns are 
created by the nuclei of the precipitate forming DLA clus- 
ters. The diffusion of the ions of the electrolytes is not at 
all responsible in the first place for the pattern formation. 
However, the restricted diffusion of the very small nuclei, 
which happens on the water percolation cluster partially 
clogged with the DLA clusters, is most important. This 
diffusion takes place almost without any exception in the 
narrow area where the nuclei are formed between the 
moving diffusion fronts of the electrolytes. 

We are greatly obliged to W. Jacobi for making his experiments 
on screw surfaces available to us. Furthermore, we are indebted to 
S. Hollatz and T. Plikat for placing their three-dimensional experi- 
ments at our disposal. 
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