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Abstract—Dithiacyclophanes incorporating thieno[2,3-b]thiophene have been synthesized, in order to investigate the nonlinear
optical properties of donor–acceptor cyclophane 7. Cyclophane 7 displayed significantly higher first hyperpolarizability b
(21.6 · 10�30 esu) compared to model 10 (9.58 · 10�30esu). Relatively higher b in 7 presumably arises from an extra electron redis-
tribution arising from through-space charge transfer, a feature lacking in 10. Moreover, the thermal decomposition temperature of 7
(300 �C) is higher than that reported for the NLO prototype DANS (295 �C).
� 2006 Elsevier Ltd. All rights reserved.
Designing organic molecules exhibiting large molecular
nonlinearity has been a challenging subject to access
materials for application in opto-electronic fields.1,2

Besides a high molecular nonlinear optical (NLO)
response, many optical applications also require materials
to possess good thermal stability and transparency in
the fundamental region of emission.3 Traditionally, cyc-
lophanes have been extensively probed for their molecu-
lar structures and unique spectral and chemical
properties.4–6 On account of co-facially locked confor-
mations and short inter-chromophoric distances, cyclo-
phanes also serve as ideal platforms to study
transmission of the electronic effects of substituents
across p-stacked rings.7 Recently, in a series of elegant
papers, Bazan et al.8–11 have shown that octupolar cyclo-
phanes not only show higher nonlinear optical coeffi-
cients relative to open models, but they also conform
to nonlinearity/transparency trade-off. A multi-dimen-
sional tunnelling barrier provided for an increased p-
electron distribution has been invoked as one of the
important factors for the improved NLO properties in
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these cyclophanes. However, to our knowledge, NLO
properties of unsymmetrically polarized cyclophanes
have not yet been reported.

Here, we report the synthesis of dithia-bridged cyclo-
phanes 3–7 incorporating thieno[2,3-b]thiophene as
one of the rings and investigated their structures, includ-
ing the linear and nonlinear optical properties of donor–
acceptor cyclophane 7. The thienothiophene ring,
included in a cyclophane framework for the first time,
was specifically chosen to provide a handle to create
the unsymmetrically polarized cyclophane 7. The syn-
thetic route implemented towards 3–7 is depicted in
Scheme 1. The known thienothiophene diester 112 was
readily converted into dibromide 2 (79%) by radical bro-
mination using NBS/dibenzoyl peroxide. High dilution
coupling of 2 with m-xylylenedithiol in refluxing 1:1
alcohol–benzene, followed by chromatographic purifica-
tion over SiO2, afforded the desired dithia[3.3]cyclo-
phane diester 3 in 47% yield as a colourless crystalline
solid. Ester hydrolysis of 3 gave diacid 4 (95% yield),
which on decarboxylation (Cu/quinoline, 200 �C,
10 min) gave the dithiaphane 5 in 40% yield. To access
donor–acceptor cyclophane 7, formylation of 5 under
standard Vilsmeier–Hack conditions (DMF/POCl3)
provided mono-aldehyde 6 (57% yield), which was con-
densed with malononitrile (DMF/piperidine) to afford
the target molecule 7 as a deep yellow solid in 39% yield.
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Scheme 1. Synthesis of dithia-cyclophanes 3–7. Reagents and conditions: (i) NBS/CCl4 (PhCOO)2, D, 1 h. (ii) m-Xylylenedithiol/anhyd K2CO3/DMF, 80–
90 �C, 18 h. (iii) 20% KOH/ethanol, D, 4 h. (iv) Cu/quinoline, 200 �C, 10 min. (v) DMF/POCl3, 0 �C–rt, 4 h. (vi) CH2(CN)2, DMF/piperidine, 70–80 �C, 5 h.
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The 1H NMR spectral data for 3–7 are collected in
Table 1. For symmetrical cyclophanes 3–5, the bridged
CH2 protons appear as sharp singlets, whereas unsym-
metrical cyclophanes 6 and 7 displayed four well-
resolved singlets corresponding to four non-equivalent
CH2 groups. The singlets associated with the bridged
CH2’s in 3–7 are consistent with free bridge inversion
at ambient temperature on the 1H NMR time scale. Var-
iable temperature NMR spectra scanned down to
�55 �C did not reveal either signal splitting or line
broadening of CH2 singlets, implying unhindered con-
formational interconversion even at lower temperatures.
The existence of free conformational rotation in 3–7 is
consistent with low energy barriers associated with
many known [3.3]cyclophanes.13

The internal proton Hi of the meta-bridged ring for
5–7, as expected of a cyclophane framework,14 appears
Table 1. 1H NMR spectra (400 MHz; CDCl3) of cyclophanes 3–7

3 d 1.39 (6H, t, J = 7 Hz), 3.91 (4H, s), 3.98 (4H, s), 4.37 (4H,
q, J = 7 Hz), 7.12 (2H, d, J = 7 Hz), 7.26 (1H, t, J = 7 Hz),
7.76 (1H, s)

4 d 3.86 (4H, s), 3.92 (4H, s), 7.17 (2H, d, J = 7 Hz), 7.26 (1H,
t, J = 7 Hz), 7.77 (1H, s), 13.46 (2H, s)

5 d 3.53 (4H, s), 3.62 (4H, s), 6.30 (1H, s), 7.28 (2H, d,
J = 7 Hz), 7.42 (1H, t, J = 7 Hz), 7.66 (2H, s)

6 d 3.49 (2H, s), 3.62 (2H, s), 3.68 (2H, s), 4.0 (2H, s), 6.60

(1H, s), 7.25 (1H, d, J = 8 Hz), 7.29 (1H, J = 8 Hz), 7.43
(1H, t, J = 8 Hz), 7.74 (1H, s), 10.69 (1H, s)

7 d 3.48 (2H, s), 3.61 (2H, s), 3.73 (2H, s), 3.93 (2H, s), 6.68

(1H, s), 7.23 (1H, d, J = 8 Hz), 7.26 (1H, d, J = 7 Hz), 7.31
(1H, s), 7.45 (1H, dd, J = 7 and 8 Hz), 7.75 (1H, s)

The internal proton Hi is italicized.
markedly upfield (d 6.30–6.68) relative to the chemical
shift position of the corresponding proton in m-xylene
at d 7.00. However, in contrast, Hi of 3 and 4 resonates
at significantly lower field at d 7.76 and d 7.77. Rather
than being subjected to upfield shielding effects, the
Hi in 3 and 4 seems to be experiencing some degree of
deshielding from the facing thienothiophene ring.

The unprecedented downfield shift of Hi in cyclophane 3
necessitated an examination of its molecular structure,
together with that of 5 for comparison, by X-ray crystal-
lographic analysis.15 The ORTEP plots of 3 and 5 are
depicted in Figures 1 and 2, respectively. The angles of
inclination between the mean plane of the phenyl ring
in relation to that of the thienothiophene plane in 3
and 5 were found to be 74.29(4)� and 27.50(5)�, respec-
tively. Thus, while 3, with C2 and C5 ester substituents,
Figure 1. ORTEP plot of cyclophane 3.



Figure 2. ORTEP plot of cyclophane 5.
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Figure 3. UV–vis molar absorbance spectra of cyclophane 7 and
model 10 (CHCl3).
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adopts an edge to face conformation, molecule 5 lacking
ester substituents possesses a partially stacked geometry.
The thia-bridges in molecules 3 and 5 are anti oriented
and the bridge S. . .S distances are 5.1502(11) Å and
6.3236 (8) Å, respectively. The bridging angles, S3,
C11, C9 and S3, C12, C13 for 3 are 112.07� and
110.95�, respectively; however, for 5 the corresponding
angles (S2, C6, C7 and S2, C5, C4) are appreciably lar-
ger, being 115.01� and 114.79�, respectively. Shorter
S. . . .S distance and smaller bridging angles for 3 relative
to those noted for 5 indicate the presence of a signifi-
cantly constricted cavity in 3 in comparison to that of
5. This is most likely the consequence of the steric com-
pression of C2 and C5 ester substituents on the bridge
methylenes in 3. Thus, while the phane cavity 5 is large
enough to accommodate the facing phenyl ring, in the
case of 3, relatively constricted cavity forces the phenyl
ring to move out of the phane cavity. The Hi in 3 is con-
sequently facing the edge of thienothiophene ring, a fea-
ture which could conceivably induce some degree of
deshielding effect on this proton (downfield location at
d 7.76). As far as we are aware, cyclophane 3 constitutes
the first example of a phane structure wherein the inter-
nal proton of the facing ring is subjected to a deshielding
effect.

For comparison of linear and nonlinear optical proper-
ties of 7, a reference model, 2-dicyanovinyl-3,4-dimeth-
ylthienothiophene 10, was also synthesized starting
S S S S
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Scheme 2. Synthesis of reference model 10. Reagents and conditions: (i) DM
from the known 816 by following the sequence shown
in Scheme 2. The UV–visible spectra of 7 and the refer-
ence model, 2-dicyanovinyl-3,4-dimethylthienothio-
phene 10, recorded in CHCl3 are depicted in Figure 3.
The absorption maximum for 7 appeared at 390 nm
with molar absorption coefficient emax of 3.90 · 104

M�1. The corresponding values of kmax and emax for
the model 10 are 380.5 nm and 2.0 · 104 M�1, respec-
tively. In comparison to 10, a red shift in the absorbance
maxima together with significantly higher emax observed
for the case of 7 is presumably a consequence of intra-
molecular charge transfer (ICT) across the donor phenyl
ring to the acceptor dicyanovinyl-substituted thienothio-
phene chromophore in the former system.17,18 The pres-
ence of ICT also finds support in the downfield shift of
Hi in 7 (Dd 0.30) compared to the chemical shift position
of this proton in cyclophane 5, which is devoid of the
acceptor chromophore.19

The first hyperpolarizability b for 7 and 10, measured by
hyper-Rayleigh scattering technique20 in CHCl3 solvent,
was found to be 21.6 and 9.58 · 10�30 esu, respectively,
with respect to p-nitroaniline as the reference standard
(b = 16 · 10�30 esu). Although the increment in kmax in
going from model 10 to cyclophane 7 is only 10 nm, it
is noteworthy that the increase in nonlinearity for 7
amounts to nearly twice that observed for 10. For model
10, which lacks a through-space charge transfer compo-
nent, the only contributing factor to b stems from essen-
tially one dimensional charge delocalization. However,
in the case of 7, in addition to direct through-bond delo-
calization, larger b relative to 10 can be understood in
NC
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F/POCl3, 0 �C–rt, 4 h. (ii) CH2(CN)2, DMF/piperidine, 70–80 �C, 5 h.
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terms of an extra contribution to the nonlinearity co-
efficient arising from the through-space charge redistri-
bution.21 Furthermore, a small bathochromic shift in 7
relative to 10 means that transparency/nonlinearity
trade-off is not seriously compromised. The thermal
stability of 7 and model 10 measured by differential
scanning calorimetry indicated thermal decomposition
temperatures (Tg) of 300 and 325 �C, respectively. For
the NLO prototype DANS,22 the Tg is 295 �C. Thus,
the thermal stability of cyclophane 7 is quite appre-
ciable, which is a useful parameter for device appli-
cations.

To our knowledge, cyclophane 7 represents the first
example of an unsymmetrically polarized phane exhibit-
ing enhanced b on account of through-space charge trans-
fer contribution. Although, the b value of 7 is moderate
by current standards, nevertheless, the present results
demonstrate that unsymmetrically polarized cyclophanes
could offer a useful design strategy to access higher non-
linearity and thermally robust NLO systems.
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