AP The Journal of Chemical Physics

# Absolute intensities of infraredactive fundamentals and combination bands of gaseous PuF6 and NpF6

W. B. Person, K. C. Kim, G. M. Campbell, and H. J. Dewey

Citation: J. Chem. Phys. **85**, 5524 (1986); doi: 10.1063/1.451564 View online: http://dx.doi.org/10.1063/1.451564 View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v85/i10 Published by the American Institute of Physics.

Additional information on J. Chem. Phys.

Journal Homepage: http://jcp.aip.org/ Journal Information: http://jcp.aip.org/about/about\_the\_journal Top downloads: http://jcp.aip.org/features/most\_downloaded Information for Authors: http://jcp.aip.org/authors

### ADVERTISEMENT



## Absolute intensities of infrared-active fundamentals and combination bands of gaseous PuF<sub>6</sub> and NpF<sub>6</sub>

W. B. Person,<sup>a)</sup> K. C. Kim, G. M. Campbell, and H. J. Dewey University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 14 July 1986; accepted 14 August 1986)

Results are presented for the absolute integrated molar absorption coefficients of the infrared-active fundamental and binary combination bands of  $PuF_6$  and of  $NpF_6$  between 1400 and 450 cm<sup>-1</sup>. The low resolution band contours of the combination bands  $v_1 + v_3$ ,  $v_2 + v_3$ ,  $v_3 + v_5$ ,  $v_2 + v_6$ , and  $v_2 + v_4$  are discussed. From band center positions, the six harmonic wave numbers were obtained and Coriolis constant  $\zeta_i$  (i = 3, 4, 5, and 6) estimated. For  $PuF_6$ , the six normal mode vibrations appear to group into one "local mode" stretching at a mean value of  $589 \pm 50$  cm<sup>-1</sup> and one local mode bending at  $195 \pm 5$  cm<sup>-1</sup>. The role of the heavy central atom and the magnitudes of the vibrational force constants are discussed in comparison with UF<sub>6</sub>. The measured intensity for  $v_3$  is discussed in comparison with previously predicted values.

#### INTRODUCTION

Although the infrared spectra of a number of gaseous hexafluorides have been studied extensively, there is relatively little information available for neptunium and plutonium hexafluorides. The infrared spectra have been reported and assigned previously.<sup>1,2</sup> Here we would like to report a study of the absolute integrated molar absorption coefficients of the infrared-active fundamental and binary combination bands of NpF<sub>6</sub> and PuF<sub>6</sub> in the region from 450 to  $1400 \text{ cm}^{-1}$ . These spectra provide an interesting comparison with the corresponding spectrum for UF<sub>6</sub>, as discussed below. The results provide additional information about vibrational properties and structures of hexafluoride molecules. Finally, these data provide an extension of the tests of the intensity predictions given previously,<sup>3,4</sup> extrapolating now from CH<sub>3</sub>F all the way down the Periodic Table to PuF<sub>6</sub>.

#### **EXPERIMENTAL PART**

#### PuF<sub>6</sub> studies

The sample of  $PuF_6$  was prepared from reaction of  $PuF_4$ with fluorine. Its isotopic composition was largely <sup>239</sup>PuF<sub>6</sub>. The sample was purified by trap to trap distillation. Impurities (HF, CF<sub>4</sub>, SiF<sub>4</sub>, and probably  $F_2$ ) could be monitored by their infrared spectra; purification by trap to trap distillation was continued until no further changes occurred in the spectrum. Even so, there is some possibility of contamination of the PuF<sub>6</sub> by noninfrared active impurities such as  $F_2$  or  $N_2$ , but since HF concentrations were reduced below 0.1%, we expect very low concentrations of other impurities.

The infrared spectrum was measured with a Nicolet MX-1 Fourier transform infrared (FTIR) spectrometer. These results were analyzed using the QUANTITATION program supplied with this instrument to obtain the integrated intensities reported here. The process was calibrated by measuring the intensities for UF<sub>6</sub> and comparing with previous results<sup>5</sup> (see below). Pressure measurements were made

<sup>a)</sup> Permanent address: Department of Chemistry, University of Florida, Gainsville, FL 32611. with an MKS Baratron. The gases were handled in a nickel vacuum line that had been preconditioned by overnight exposure to  $PuF_6$  (or  $UF_6$ ) before measurements were made. The cell was 5.6 cm in length with KCl windows, which did not react with the sample. The cell was contained in a dry box and viewed by the spectrometer through a bubble in the bottom of the dry box. The space between the cell and outer walls (and KCl windows) of the bubble was flushed with dry He gas.

With the evacuated cell in place, the background spectrum was obtained at  $1 \text{ cm}^{-1}$  resolution by scanning from 4000 to 450 cm<sup>-1</sup>, where the KCl windows begin to absorb. The cell was then filled with PuF<sub>6</sub> to the desired pressures (from 1 to 3 Torr for the strong  $v_3$  fundamental up to about 80 Torr for the combination bands) and scanned at  $1 \text{ cm}^{-1}$  resolution. For use with the QUANTITATION program, another PuF<sub>6</sub> sample at different pressure could be scanned and data stored as the reference spectrum. The QUANTITATION program then integrated the area under a plot of absorbance  $[\log_{10}(I_0/I)]$  vs wave number (cm<sup>-1</sup>) to obtain the integrated area, which could then be compared with the reference spectrum.

The absolute integrated molar absorption coefficient A (or "integrated intensity") of each band was then obtained by

$$A = (2.303/100 \ Cl) \int \log_{10}(I_0/I) dv.$$
(1)

Here A is in units of km mol<sup>-1</sup>; 2.303 converts from the common to natural logarithm; C is concentration in mol/ $\ell$  [C = p(atm)/RT(K)], where the gas constant,  $R = 0.082 \ 06 \ l atm \ K^{-1} \ mol^{-1})$ ; l is the path length in cm; and 100 converts A to km mol<sup>-1</sup>. The temperature T is the temperature of the gas in the cell when the pressure is measured; for these measurements,  $T = 296 \ K$ . The absorption for these bands is broad and nearly continuous due to numerous overlapping hot bands, so it is not necessary to pressurize the sample to pressure-broaden rotational fine structure. No inert gas was added to our samples.

In plotting out the resulting spectra, the wave number

scale and the absorbance scales can be expanded as desired for optimum integration. In our case, we expanded until the noise, or steps in data, limited the result. The intensity of the  $v_3$  fundamental is so large compared to that of the combination bands that a survey spectrum (Fig. 1) shows only the fundamental absorption with very weak bands elsewhere. Hence in Fig. 2 we show expanded-scale plots of each individual band or region where absorption is observed at pressures of PuF<sub>6</sub> up to 80 Torr in the 5.6 cm cell.

#### NpF<sub>6</sub> studies

After completion of the  $PuF_6$  work, it became possible also to repeat these same measurements for NpF<sub>6</sub>. The experimental procedure was the same as described above for  $PuF_6$ , except that the measurements were made using a Nicolet SX-20 spectrometer and analyzed with the appropriate software for that spectrometer. A survey spectrum of the overtone region of the spectrum (600–1500 cm<sup>-1</sup>) for NpF<sub>6</sub> is nearly identical with that for PuF<sub>6</sub>. The similarity is striking, indeed.

#### RESULTS

Because of the similarity in the spectra for NpF<sub>6</sub> and PuF<sub>6</sub> shown in Fig. 2, we shall discuss first the detailed comparison between PuF<sub>6</sub> and UF<sub>6</sub>, and then consider the results for NpF<sub>6</sub>. In all cases, we find that the latter are intermediate between the results for UF<sub>6</sub> and those for PuF<sub>6</sub>, as might perhaps have been expected.

The frequencies and band shapes of the infrared bands of  $PuF_6$  in Fig. 2 are very similar to the corresponding band shapes in UF<sub>6</sub>, as can be seen by comparison with McDowell, Asprey, and Paine (Fig. 1 in Ref. 6). The corresponding spectrum for NpF<sub>6</sub> is nearly identical to that for PuF<sub>6</sub> except for small changes in wave number and intensity. The assignment of these absorption bands by comparison with UF<sub>6</sub> is straightforward, and the previous assignments<sup>1,2</sup> are confirmed here. The assignments, wave numbers, and band shapes are summarized in Table I. This table also summarizes the corresponding wave numbers for UF<sub>6</sub> for comparison. It should be noted that the  $v_1 + v_3$  and  $v_2 + v_3$  combination bands at 1250 and 1140 cm<sup>-1</sup> for PuF<sub>6</sub> (and 1274 and 1154 cm<sup>-1</sup> for NpF<sub>6</sub>) have the shape characteristic for "normal" hexafluorides, with no indication of Jahn-Teller distortion<sup>2</sup> for all three molecules.

For the bands with PQR structure, the band origins of the fundamental  $v = 0 \rightarrow 1$  transition are estimated by comparison with UF<sub>6</sub>. Because of the similarity in band shapes for PuF<sub>6</sub> and NpF<sub>6</sub> with UF<sub>6</sub>, we can expect similar values for the Coriolis constants for the three molecules. Estimating these from the *PR* separation (maxima) using the approximate equation

$$\Delta v_{PR} \simeq -4B(1-\zeta) \left(\frac{kT}{Bhc}\right)^{1/2},\tag{2}$$

we find for the  $v_3$  fundamental transition of PuF<sub>6</sub> with  $\Delta v_{PR} = 11.25 \text{ cm}^{-1}$  that  $\zeta_3 = 0.18$ , in very good agreement with the value for UF<sub>6</sub>. We may assume that the Coriolis constants for PuF<sub>6</sub> and NpF<sub>6</sub> are the same (within our rather large error) as those for UF<sub>6</sub>. The estimated *PR* separations are listed in Table I, compared with the observed values. For bands with only doublet structure we have assumed the interpretation indicated in Table I; i.e., the doublet is observed because one of the branches is missing, as indicated. Of course the precise interpretation of the band shape requires more detailed knowledge of the Coriolis constants than is presently known.

The vibrational constants for  $PuF_6$  are summarized in Table II. Obviously this table cannot be as complete as was the corresponding table given for UF<sub>6</sub> by McDowell, Asprey, and Paine<sup>6</sup>; no Raman study has been made for gaseous NpF<sub>6</sub> or PuF<sub>6</sub>. (According to Malm, Weinstock, and Claas-

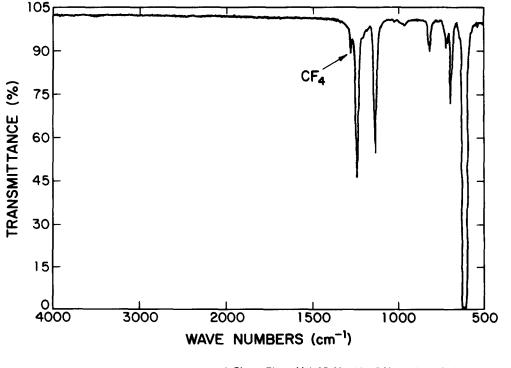



FIG. 1. Survey spectrum of a sample of  $PuF_6$  (78 Torr in 5.6 cm cell), taken at 1 cm<sup>-1</sup> resolution with Nicolet MX-1 FTIR spectrometer showing about 1% CF<sub>4</sub> impurity.

Downloaded 09 Apr 2013 to 198.91.37.2. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights\_and\_permissions

J. Chem. Phys., Vol. 85, No. 10, 15 November 1986



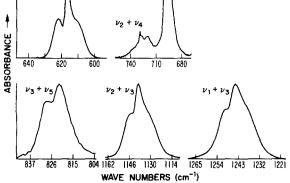



FIG. 2. The stronger infrared bands of  $PuF_6$  at 296 K, as recorded at 1 cm<sup>-1</sup> resolution with the Nicolet MX-1 FTIR spectrometer, 5.6 cm cell. All are measured with 7.8 Torr, except for  $v_3$ , which was with 3.07 Torr.

sen,<sup>1(b)</sup> the colored  $PuF_6$  suffered photochemical decomposition when the Raman study was attempted.) Hence, we have not attempted to include anharmonic constants in this table. The similarity between  $PuF_6$  and  $UF_6$  in Table I, however, suggests that the anharmonic constants are probably not drastically different for these two compounds, so that the harmonic frequencies for  $PuF_6$  have been estimated accordingly.

In comparing the observed wave numbers for  $PuF_6$  with those for  $UF_6$ , we are struck by the similarity. For  $PuF_6$ , the vibrations appear to be slightly more decoupled, with a local mode PuF stretch at a mean value of  $589 \pm 50 \text{ cm}^{-1}$  and a local mode FPuF bend at  $195 \pm 15 \text{ cm}^{-1}$ . (These values compare with  $602 \pm 55$  and  $176 \pm 30 \text{ cm}^{-1}$  for the corresponding  $UF_6$  modes and with  $597 \pm 50$  and  $188 \pm 18 \text{ cm}^{-1}$ for NpF<sub>6</sub>.) The PuF<sub>6</sub> stretching vibration is thus about 2% lower than for the UF stretch, indicating a slightly weaker PuF bond, and the bending mode is about 11% higher. Such decoupling can be expected to some extent for molecules

TABLE I. Infrared spectrum of  $PuF_6$  from 450 to 1300 cm<sup>-1</sup>.

| Assignment <sup>a</sup> | $\frac{PuF_6}{\nu(cm^{-1})}$ | $\frac{NpF_6}{\nu(cm^{-1})}$ | Structure              | Calculated <sup>c</sup><br>$\Delta v_{PR}$ (cm <sup>-1</sup> ) | Observed $\Delta v_{PR}$ (cm <sup>-1</sup> ) | $\nu(cm^{-1})UF_6$ |
|-------------------------|------------------------------|------------------------------|------------------------|----------------------------------------------------------------|----------------------------------------------|--------------------|
| $v_1 + v_3$             | 1248                         | 1274                         | PQR                    | 11.2                                                           | 11.0                                         | 1294               |
| $v_2 + v_3$             | 1143                         | 1154                         | PQR                    | 11.2                                                           | 13.7                                         | 1160               |
| $v_1 + v_4$             | (830?) <sup>b</sup>          | (845) <sup>b</sup>           | (?)                    | 9.5                                                            | •••                                          | 853                |
| $v_3 + v_5$             | 825                          | 829                          | Doublet<br>(P missing) | 11.5                                                           | 6.2 ( <i>RQ</i> )                            | 823                |
| $v_2 + v_4$             | 725                          | 725                          | Doublet<br>(Q missing) | 9.5                                                            | 9.0                                          | 715                |
| $v_2 + v_6$             | 702                          | 699                          | Doublet<br>(R missing) | 20.5                                                           | 7 ( <i>PQ</i> )                              | 677                |
| <i>v</i> <sub>3</sub>   | 619                          | 624                          | PQR                    | 11.2                                                           | 11.2                                         | 628                |

<sup>a</sup> This list includes all possible allowed binary combinations or difference bands in this region. A number of bands are expected from 300 to 425 cm<sup>-1</sup>, plus the  $v_4$  fundamental at 201 cm<sup>-1</sup>. A number of weaker ternary combinations and difference bands were observed in UF<sub>6</sub> at long path lengths (Ref. 6) and corresponding bands can be expected in PuF<sub>6</sub>. However, this list includes *all* absorption bands observed for PuF<sub>6</sub> at 80 Torr in 5.6 cm cell.

<sup>b</sup> This band is not observed in  $PuF_6$  or in  $NpF_6$  and is presumably very weak or else overlapped by the stronger  $v_3 + v_5$  absorption at 825 cm<sup>-1</sup> (829 cm<sup>-1</sup> for NpF<sub>6</sub>).

° Calculated using Eq. (2), with  $\zeta_1 = \zeta_2 = 0$ ,  $\zeta_3 = 0.18$ ,  $\zeta_4 = 0.30$ ,  $\zeta_5 = 0.50$ , and  $\zeta_6 = -0.50$ , as for UF<sub>6</sub>.

with heavy central atoms, particularly between  $\nu_3$  and  $\nu_4$ , but the near degeneracy of all three stretching and of all three bending modes implies also interesting relations between the force constants, as well.

Using the observed frequencies, we have calculated the symmetry force constants for  $PuF_6$  by comparison with the treatment for  $UF_6$ . We have assumed that the very small interaction  $F_{34}$  is the same ( $F_{34} = -0.05 \text{ mdyn } \text{Å}^{-1}$ ) for both molecules. The results are summarized in Table III, which also lists for comparison the values for the valence force constants derived with a slightly different assumption by Weinstock and Goodman.<sup>2</sup> The changes in force constants when harmonic frequencies are used for  $PuF_6$  are expected to be similar to those found for  $UF_6$ .<sup>6</sup> Clearly the force constants for NpF<sub>6</sub> will be intermediate between those for  $PuF_6$  and  $UF_6$ .

The comparison of symmetry force constants in Table III is not very informative, except that those involving the PuF stretching modes are all somewhat lower, and those involving the FPuF bend all somewhat higher, than the corresponding UF<sub>6</sub> constants, as expected from the frequencies. On examining the valence force constants, we see that these changes appear as small changes in most of the force constants, but the significant changes appear to be the decrease in the stretching constants  $f_r$  and  $f_{rr}$  and the increase in the bending constant ( $f_{\alpha} - f_{\alpha\alpha}$ ). In general, though, the bonding in PuF<sub>6</sub> and NpF<sub>6</sub>, as measured by the vibrational properties, appears remarkably similar to that in UF<sub>6</sub>.

#### VIBRATIONAL INTENSITIES IN PuF6

We are particularly interested in measuring the absolute intensities of the PuF<sub>6</sub> and NpF<sub>6</sub> bands for comparison with UF<sub>6</sub>. The values we have measured are presented in Table IV, where they are compared with the corresponding values we have measured in this experiment for UF<sub>6</sub>. First of all, we note that the intensity measured here for  $v_3$  of UF<sub>6</sub> is in excellent agreement with the value previously reported.<sup>5</sup>

#### TABLE II. Vibrational parameters for PuF<sub>6</sub>.<sup>a</sup>

| PuF <sub>6</sub> | <i>i</i> = 1    | 2           | 3               | 4               | 5           | 6                             |
|------------------|-----------------|-------------|-----------------|-----------------|-------------|-------------------------------|
| i                | A <sub>1g</sub> | Eg          | F <sub>iu</sub> | F <sub>iu</sub> | F_2g        | <i>F</i> <sub>2<i>u</i></sub> |
| v <sub>i</sub>   | 627             | 524         | 619             | 201             | 206         | 178                           |
| ω <sub>i</sub>   | 632 <u>±</u> 6  | 530 ± 6     | 627 <u>+</u> 6  | 201 ± 6         | $206 \pm 6$ | 178 ± 6                       |
| e<br>Si          | 0               | 0           | 0.18            | 0.30            | - 0.50      | - 0.50                        |
| NpF <sub>6</sub> |                 |             |                 |                 |             |                               |
| v <sub>i</sub>   | 650             | 530         | 624             | 195             | 205         | 165                           |
| w <sub>i</sub>   | 655 <u>+</u> 6  | $536 \pm 6$ | $632\pm 6$      | 195 <u>+</u> 6  | $205 \pm 6$ | 178 ± 6                       |
| Si               | 0               | 0           | 0.18            | 0.30            | - 0.50      | - 0.50                        |
| $v_i(UF_6^b)$    | 667             | 534         | 626             | 186             | 200         | 143                           |

<sup>a</sup> Units are cm<sup>-1</sup>, except for the dimensionless  $\zeta_i$  values. Uncertainties in  $v_i$  estimated to be about  $\pm 1$  cm<sup>-1</sup> and about  $\pm 10\%$  in  $\zeta_3$  and  $\zeta_4$ . The harmonic wave numbers  $\omega_i$  are estimated by comparing the observed

values  $(v_i)$  with the values for UF<sub>6</sub> given in Ref. 6.

<sup>b</sup>For comparison, values for UF<sub>6</sub> from Ref. 6 are listed here.

Hence, we believe our experimental procedure is correctly calibrated.

Next, we note that the absolute intensities measured for the combination bands in  $UF_6$  are not always the same as might be estimated using the relative peak height intensities given by McDowell, Asprey, and Paine.<sup>6</sup> We believe this result is to be expected, since the band widths for different bands are not necessarily the same.

We note that the integrated intensity of  $v_3$  in PuF<sub>6</sub> is about 0.70 that of  $v_3$  of UF<sub>6</sub>. The intensities of combination bands in PuF<sub>6</sub> are comparable to those for the corresponding bands in UF<sub>6</sub> except for  $v_1 + v_3$ , which is almost twice as intense for PuF<sub>6</sub> as for UF<sub>6</sub>, and for  $v_2 + v_6$ , which is more than twice as intense for UF<sub>6</sub> as for PuF<sub>6</sub>. The latter result is almost certainly due to some Fermi resonance with  $v_3$ , which will be much stronger in UF<sub>6</sub> than in PuF<sub>6</sub> because of the proximity of  $v_2 + v_6$  (677 cm<sup>-1</sup>) to  $v_3$  (628 cm<sup>-1</sup>) in UF<sub>6</sub> compared to PuF<sub>6</sub> (702 to 619 cm<sup>-1</sup>).

The most likely cause of the greater intensity of  $v_1 + v_3$ in PuF<sub>6</sub> compared to that for UF<sub>6</sub> may be a larger value for the principal mechanical anharmonicity constant  $k_{133}$  contributing to the intensity [see Eq. (15) of Ref. 3]. This constant does not contribute to the intensities of other combination bands in Table IV, so they may not be expected to differ so much from the UF<sub>6</sub> values. This constant will affect the anharmonicity constant (particularly  $X_{13}$ ), but probably would not change it much.

It is useful to express the intensity results in other units. For example, the intensity for  $v_3$  of PuF<sub>6</sub>, 524 km mol<sup>-1</sup>  $(RT \times 10^{-5}) = 127 \text{ cm}^{-2} \text{ atm}^{-1} \text{ at } 296 \text{ K} = 524 (10^5/N_A)$  $= 8.70 \times 10^{-17} \text{ cm} \text{ mol}^{-1}$ . Or we can calculate the Einstein *A* coefficient:

$$A_E = [A(\text{km mol}^{-1})] [\nu_0(\text{cm}^{-1})]^2 \times (g_0/g_1) (8000 \ \pi c/N_0) 100$$
  
= 8.38 s<sup>-1</sup>, (3)

or the transition moment<sup>4</sup>

$$\mu_{01} = 0.3646 [A (\text{km mol}^{-1}) / \nu_0 (\text{cm}^{-1})]^{1/2}$$
  
= 0.335 D = 0.0699 eA. (4)

Finally, it is useful to give the apparent peak optical

cross section. The apparent optical cross section  $\sigma_A$  for the *Q*-branch peak of  $v_3$  of PuF<sub>6</sub> at 616 cm<sup>-1</sup> is

$$\sigma_A = (1/Cl) \ln (I_0/I)_{\text{max}} = 0.107 \text{ Torr}^{-1} \text{ cm}^{-1}$$

at 296 K =  $3.27 \times 10^{-18}$  cm<sup>2</sup> molecule<sup>-1</sup>.

The intensities of NpF<sub>6</sub> in Table IV are either the same as or they fall in between the values for PuF<sub>6</sub> and UF<sub>6</sub>. The value for the integrated intensity of  $v_3$  appears to vary smoothly from PuF<sub>6</sub> to NpF<sub>6</sub> to UF<sub>6</sub>, with the value for NpF<sub>6</sub> closer to that for UF<sub>6</sub>, just as was found for the wave number of  $v_3$ . The interpretation of the change in intensity for  $v_3 + v_6$  as due to Fermi resonance with  $v_3$  appears to be supported by the result for NpF<sub>6</sub>.

#### DISCUSSION

The infrared spectra of gaseous  $PuF_6$  and  $NpF_6$  are remarkably similar to that for  $UF_6$ . Nevertheless, there are some differences. The frequencies are slightly different, indi-

TABLE III. Force constants (in mdyn Å<sup>-1</sup>) for PuF<sub>6</sub>, compared to those for UF<sub>6</sub> (using observed frequencies,  $v_i$ ).

| Symmetry force constants <sup>a</sup>                                                 | PuF <sub>6</sub> |                  | UF <sub>6</sub> * |
|---------------------------------------------------------------------------------------|------------------|------------------|-------------------|
| $\overline{F_{11}} = f_r + 4f_{rr} + f'_{rr}$                                         | 4.41             |                  | 4.98              |
| $F_{22} = f_r - 2f_{rr} + f'_{rr}$                                                    | 3.08             |                  | 3.19              |
| $F_{33} = f_r - f'_{rr}$                                                              | 3.62             |                  | 3.74              |
| $F_{34} = 2(f_{r\alpha} - f_{r\alpha}'')$                                             | (-0.05)          |                  | - 0.05            |
| $F_{44} = f_{\alpha} + 2f_{\alpha\alpha} - 2f_{\alpha\alpha}'' - f_{\alpha\alpha}'''$ | 0.182            |                  | 0.154             |
| $F_{55} = f_a - 2f_{aa} + f_{aa}'''$                                                  | 0.119            |                  | 0.112             |
| $F_{66} = f_{\alpha} - 2f_{\alpha\alpha} + 2f_{\alpha\alpha}'' - f_{\alpha\alpha}'''$ | 0.174            |                  | 0.114             |
|                                                                                       |                  | PuF <sub>6</sub> |                   |
| Valence force constants <sup>a</sup>                                                  | This work        | ₩G <sup>b</sup>  | UF <sub>6</sub>   |
| f <sub>r</sub>                                                                        | 3.57             | 3.62             | 3.76              |
| $f_{rr}$                                                                              | 0.22             | 0.22             | 0.30              |
| $f'_{rr}$                                                                             | - 0.50           | - 0.80           | 0.02              |
| $f_{r\alpha} - f_{r\alpha}''$                                                         | - 0.02           | + 0.02           | 0.02              |
| $f_{\alpha} - f'_{\alpha\alpha}$                                                      | 0.15             | 0.17             | 0.12              |
| $f'_{aa} - f'''_{aa}$                                                                 | 0.03             | 0.02             | 0.01              |
| $f_{aa} - f''_{aa}$                                                                   | 0.002            | 0.003            | 0.01              |

<sup>a</sup> From McDowell, Asprey, and Paine, Ref. 6; see this reference for definitions.

<sup>b</sup>From Weinstock and Goodman, Ref. 2.

J. Chem. Phys., Vol. 85, No. 10, 15 November 1986

Downloaded 09 Apr 2013 to 198.91.37.2. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights\_and\_permissions

TABLE IV. Absolute integrated molar absorption coefficients A (in km mol<sup>-1</sup>) for bands in  $PuF_6$  compared with those in  $UF_6$ .

| Band $(cm^{-1} in PuF_6)^a$ | A <sup>▶</sup> PuF <sub>6</sub> | A (NpF <sub>6</sub> ) | A (UF <sub>6</sub> )                          | (UF <sub>6</sub> ) relative <sup>6</sup><br>peak intensity |  |
|-----------------------------|---------------------------------|-----------------------|-----------------------------------------------|------------------------------------------------------------|--|
| Fundamentals                |                                 |                       | ···· <u>··</u> ······························ |                                                            |  |
| v3, 619                     | $524 \pm 0.3$                   | 674 <u>+</u> 10       | $750 \pm 15 \ (710)^{d}$                      | 2000                                                       |  |
| v <sub>4</sub> , 201        |                                 | •••                   | •••                                           | 100                                                        |  |
| Combinations                |                                 |                       |                                               |                                                            |  |
| $v_1 + v_3$ , 1248          | $4.1 \pm 0.2$                   | $3.3 \pm 0.1$         | $2.8 \pm 0.04$                                | 4.1                                                        |  |
| $v_2 + v_3$ , 1143          | $4.5 \pm 0.3$                   | $4.1 \pm 0.1$         | 4.1 ± 0.03                                    | 4.7                                                        |  |
| $v_1 + v_4$ (830?)          | (e)                             | (e)                   | 0.2                                           | 0.7                                                        |  |
| $v_3 + v_5 825$             | 0.75 <u>+</u> 0.06              | 1.1 ± 0.1             | $1.1 \pm 0.3$                                 | 1.9                                                        |  |
| $v_{2} + v_{4} 725$         | $0.6 \pm 0.05$                  | $0.5 \pm 0.05$        | 0.4                                           | 0.7                                                        |  |
| $v_2 + v_6 702$             | 1.7 + 0.05                      | 2.6 + 0.1             | $5.0 \pm 0.5$                                 | 8.9                                                        |  |

<sup>a</sup> The wave number of the corresponding band in  $NpF_6$  is given in Table I.

<sup>b</sup> The uncertainties listed are three times the standard deviation of the measurements.

<sup>e</sup> From McDowell, Asprey, and Paine, Ref. 6.

<sup>d</sup> From Kim and Person, Ref. 5.

<sup>e</sup>Overlapped by 825 cm<sup>-1</sup> band.

cating that the force constants are somewhat different. The XF stretching constant  $f_r$  is about 5% smaller for the PuF bond than for the UF bond, and the FXF bending constant is about 25% larger for the FPuF bend than for the FUF bend with intermediate changes for NpF<sub>6</sub>. Band shapes in PuF<sub>6</sub> are quite similar to those in UF<sub>6</sub> (at this relatively low resolution, at least), indicating that the Coriolis constants in PuF<sub>6</sub> are similar to those in UF<sub>6</sub>. There is some indication from the relative intensities that at least one of the cubic anharmonicity constants ( $k_{133}$ ) may increase regularly from UF<sub>6</sub> to PuF<sub>6</sub>.

In fact the largest difference in the vibrational properties of  $PuF_6$  compared to  $UF_6$  and  $NpF_6$  appears to be in the intensity of the  $v_3$  fundamental. This value definitely decreases from  $UF_6$  to  $NpF_6$  to  $PuF_6$  (where it falls to 0.70 of the value for  $UF_6$ ). It is of some interest, then, to reexamine the predictions for this intensity that were made for  $UF_6^{3,4}$ and to extend them to  $PuF_6$ .

Two different procedures were followed to estimate intensities for  $UF_6$ , both based on empirical observations indicating transferable intensity parameters. In the first, Fox and Person<sup>4</sup> had noted that the vibrational transition moments ( $\mu_{01}$ ) for  $\nu_3$  transitions in XY<sub>4</sub> and XY<sub>6</sub> compounds appeared to be transferable from molecule to molecule for constant Y types. Thus, the transition moment for  $v_3$  of the known XF<sub>4</sub> and XF<sub>6</sub> molecules appeared to be  $0.33 \pm 0.06$ D. Later measurements suggest that  $0.37 \pm 0.04$  D might be better, and subsequent measurements on  $UF_6$  indicated that it was 0.385 D for that molecule (hence, on the high side). We see here that the values in  $PuF_6$  (0.335 D) and  $NpF_6$ (0.379 D) are also in this range, but that for  $PuF_6$  is slightly on the low side while that for  $NpF_6$  is very slightly on the high side. The indication is that this procedure for predicting intensities works very well even for PuF<sub>6</sub>, and that the difference between  $v_3$  intensities for PuF<sub>6</sub>, NpF<sub>6</sub>, and UF<sub>6</sub> is just a normal sort of variation that might be expected.

The other procedure for predicting the intensities of  $v_3$ in XF<sub>6</sub> molecules is to use the idea of invariance of the effective charge  $\zeta_F$  on the F atom. This concept was introduced by King, Mast, and Blanchette<sup>7</sup> for H atoms in predicting hydrocarbon intensities, and has been examined extensively by King.<sup>8</sup> It was introduced for XF<sub>6</sub> molecules by Person and Overend,<sup>3</sup> who predicted an intensity for  $v_3$  of UF<sub>6</sub> of about 400 km mol<sup>-1</sup>. This value is obviously too low for UF<sub>6</sub>, but the prediction applies also to  $v_3$  for PuF<sub>6</sub> as well as for NpF<sub>6</sub>. The predicted value (400 km mol<sup>-1</sup>) is in better agreement with the experimental intensity of  $v_3$  of PuF<sub>6</sub>  $(524 \text{ km mol}^{-1})$ , but also does not agree for  $v_3$  of NpF<sub>6</sub> (674 km mol $^{-1}$ ). From this viewpoint, we conclude that intensity parameters for the F atoms do finally change as we go down the Periodic Table from C to S to U, Np, and Pu. Some of the possible reasons for these kinds of variations have been discussed by Person,<sup>9</sup> but it is still early in the theory of infrared intensities to be able to discuss variations of intensity of this magnitude (A in  $PuF_6 = 0.7$  Å in UF<sub>6</sub>) any more quantitatively.

#### ACKNOWLEDGMENTS

We are grateful to Louie Rivera and Dave Sanchez for help with some of the measurements. WBP would like to acknowledge the hospitality and support from the Los Alamos National Laboratory.

- <sup>1</sup>(a) N. J. Hawkins, H. C. Mattraw, and W. W. Sabol, J. Chem. Phys. 23, 2191 (1955); (b) J. G. Malm, B. Weinstock, and H. H. Claassen, *ibid*. 23,
- 2192 (1955); (c) L. Jones (private communication).
- <sup>2</sup>B. Weinstock and G. L. Goodman, Adv. Chem. Phys. 9, 169 (1965).
- <sup>3</sup>W. B. Person and J. Overend, J. Chem. Phys. 66, 1442 (1977).
- <sup>4</sup>K. Fox and W. B. Person, J. Chem. Phys. 64, 5218 (1976).
- <sup>5</sup>K. C. Kim and W. B. Person, J. Chem. Phys. 74, 171 (1981).
- <sup>6</sup>R. S. McDowell, L. B. Asprey, and R. T. Paine, J. Chem. Phys. **61**, 3571 (1974).
- <sup>7</sup>W. T. King, G. B. Mast, and P. P. Blanchette, J. Chem. Phys. 56, 4440 (1972).

<sup>&</sup>lt;sup>8</sup>W. T. King, in *Vibrational Intensities in Infrared and Raman Spectroscopy*, edited by W. B. Person and G. Zerbi (Elsevier, Amsterdam, 1982), Chap. 6.

<sup>&</sup>lt;sup>9</sup>W. B. Person, in *Vibrational Intensities in Infrared and Raman Spectroscopy*, edited by W. B. Person and G. Zerbi (Elsevier, Amsterdam, 1982), Chap. 14.