Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Letter to the Editor High-temperature hardness of ReB₂ single crystals

S. Otani^{a,*}, M.M. Korsukova^b, T. Aizawa^a

^a National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan ^b A. F. Ioffe Physico-Technical Institute, Russian Academy of Science, 26 Politekhnicheskaya, St. Petersburg 194021, Russian Federation

ARTICLE INFO

ABSTRACT

exhibited deliquescence.

Article history: Received 24 September 2008 Available online 10 December 2008

Keywords: Hardness ReB₂ Single crystals Deliquescence

1. Introduction

Hardness measurement is a simple method of examining mechanical properties. We have used hardness, especially hightemperature hardness, to estimate the quality of refractory crystals prepared by the floating zone method [1-3]. ReB₂, one of refractory borides, was recently reported to have high hardness, 48 GPa under a load of 0.49 N. and to leave scratch marks on a diamond surface. as well as to have possible applications in cutting because it was synthesized under ambient pressure without using a high-pressure technique [4]. However, Dubrovinskaia et al. [5] commented that the hardness should be 30 GPa in a range of no load dependence and that it was not high enough to scratch a diamond surface. In response to the comment, AFM (Atomic Force Microscopy) data were presented to show that ReB₂ scratched diamond, making a groove 2.4 µm wide and 0.23 µm deep [6]. It is not yet clear how the diamond was scratched. The ReB₂ samples were polycrystalline and the orientation was not clearly identified. In this report, using single crystals, the hardness was examined and compared with other refractory crystals.

2. Experimental procedure

ReB₂ was synthesized from rhenium and amorphous boron powders by means of self-propagation high-temperature reaction (SHS reaction) [7]. The product was ground into powder using a silicon nitride mortar and pestle. The powder was mixed with a small amount of polyvinylbutyral ethanol solution as binder, and then isostatically pressed in a rubber bag at 200 MPa. The pressed rod was sintered in vacuum at 1800 °C. Single crystals of ReB₂ were prepared in 0.5 MPa of ambient argon gas by the floating zone method [7]. The crystal orientation was examined by X-ray using the Laue back-reflection method. The crystals were cut into rectangular blocks, $5 \text{ mm} \times 5 \text{ mm} \times 10 \text{ mm}$, so that the large planes would be the (0001) and (10-10) planes of the hexagonal lattice. The planes were mirror-like polished using 2 μ m diamond paste, after coarsely grinding the crystal planes with BaC abrasive.

© 2008 Elsevier B.V. All rights reserved.

Hardness measurement was carried out from $20 \,^{\circ}$ C, room temperature, to $1000 \,^{\circ}$ C in a vacuum $< 10^{-3}$ Pa, using a micro-hardness tester (QM-12, Nikon Ltd.) and a diamond Vickers indenter. The load was $0.98 \,\text{N}$ ($100 \,\text{g}$) and $1.96 \,\text{N}$ ($200 \,\text{g}$) for 10 s. Hardness was obtained from the average value of more than ten measurements because of experimental errors due to the small indentation.

3. Results and discussion

Vickers micro-hardness was measured on the (0001) and (10-10) planes of ReB₂ single crystals. By

increasing the temperature from 20 to 1000°C, the hardness decreased from 30.8 to 19.8 GPa and from

35.8 to 14.3 GPa, respectively. ReB₂ was found to have the highest hardness among refractory borides, but

Rhenium diboride, ReB₂, which congruently melts at 2400 °C [8], was easily synthesized as a single phase by controlling the mixing ratio of Re and B, as speculated from the ease of synthesis of borides, such as LaB₆ and YB₄, which congruently melt. Single crystals 1 cm in diameter were prepared from feed rods with a little excess boron, 67–68 at% of B, using the floating zone method [7].

The hardness of the (0001) plane of ReB₂ crystal was 29.8(±2.4) and 30.8(±1.5) GPa under a load of 0.98 and 1.96 N, respectively, at room temperature. The values are within experimental error, ±6%. Accordingly, the load was determined to be 1.96 N. The measured hardness on the (0001) and (10-10) planes was 30.8(±1.5) and 35.8(±1.0) GPa at room temperature, respectively, as shown in Fig. 1. The reported hardness at 48 GPa under a load of 0.49 N decreased to 30–34 GPa under a load higher than 1.96 N [4], which is consistent with our data reported above. Therefore, ReB₂ was found to have high hardness among the borides, as shown in Table 1, but not as high as superhard materials such as c-BN at ~72 GPa and B₆O at ~59 GPa.

^{*} Corresponding author. Tel.: +81 29 860 4320; fax: +81 29 860 4680. *E-mail address*: OTANI.shigeki@nims.go.jp (S. Otani).

^{0925-8388/\$ -} see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2008.10.094

Fig. 1. Vickers micro-hardness of ReB₂ crystal.

Table 1

Vickers micro-hardness of some refractory borides and carbides as measured on single crystals [2,9].

	m.p. (°C)	Hardness (GPa)			
		20°C		1000 °C	
		(0001)	(10-10)	(0001)	(10-10)
ReB ₂	(2400)	30.8	35.8	19.8	14.3
WB ₂	(2365)	20.4	19.4	9.3	13.3
TaB ₂	(3037)	29.2	22.2	14.2	11.9
HfB ₂	(3380)	17.8	24.5	16.4	8.8
ZrB ₂	(3220)	22.2	19.5	7.8	5.5
YB ₄	(2800)	13.2+	17.1++	9.6+	11.9++
LaB ₆	(2715)	18.9*	-	8.4^{*}	
TiC	(3067)	25.7^{*}	-	2.5^{*}	

*, **: On the (001) and (100) planes of the tetragonal lattice, respectively. *: On the (100) plane of the cubic lattice.

In the process of finishing mirror-like planes for the hardness measurement, the (0001) plane was not easily ground by the green silicon carbide, ~28 GPa, but was easily ground by the B₄C abrasive, ~33 GPa. Accordingly, the hardness of ReB₂ was between these two

values, corresponding well with the above hardness data. The finish of the mirror-like planes was achieved by polishing with a cloth using $2\,\mu$ m diamond paste.

The mirror-like (0001) and (10-10) planes of the ReB₂ crystals were easily scratched with the tip of the diamond indenter by hand, which was easily determined since the hardness was measured with a diamond indenter. However, the diamond plane, one of four side-planes of the tip of the diamond indenter, could not be scratched by the edge of the (0001) and (10-10) planes of the ReB₂ crystal. The ReB₂ crystal merely slipped on the diamond surface while being pushed. Although ReB₂ was reported to scratch the diamond plane [4], this was not reproduced in our experiments.

Fig. 1 also shows the dependence of hardness on the temperature. Relatively high hardness was maintained during the process of raising the temperature: $19.8(\pm 1.4)$ and $14.3(\pm 0.6)$ GPa on the (0001) and (10-10) planes, respectively, at 1000 °C. High-quality refractory crystals without subgrain boundaries are generally grown by the floating zone method, in cases where the hardness is higher than 5 GPa at 40% of the melting point [2], ~800 °C in the case of ReB₂. This empirical rule was found to apply to the crystal growth of ReB₂, too [7]. Table 1 shows a comparison of hardness with other refractory materials at 1000 °C [2,9]. ReB₂ was found to have the highest hardness even at 1000 °C, although the 2400 °C melting point of ReB₂ is not high among refractory borides.

In summary, ReB_2 was found to be one of the hardest borides, but not as hard as superhard materials such as c-BN and B_6 O. A severe problem exhibited by ReB_2 is deliquescence, that is, it absorbs water in the air and becomes covered with a viscous solution within a few months. In addition, rhenium is an expensive element. Therefore, it is not easy to use ReB_2 as a material for cutting tools.

References

- [1] S. Otani, T. Tanaka, Y. Ishizawa, J. Alloys Compd. 202 (1993) L25-L28.
- [2] S. Otani, T. Ohsawa, J. Crystal Growth 200 (1999) 472-475.
- [3] S. Otani, H. Nakagawa, Y. Nishi, N. Kieda, J. Solid State Chem. 154 (2000) 238-241.
- [4] H.-Y. Chung, M.B. Weinberger, J.B. Levine, A. Kavner, J.-M. Yang, S.H. Tolbert, R.B. Kaner, Science 316 (2007) 436–439.
- 5] N. Dubrovinskaia, L. Dubrovinsky, V.L. Solozhenko, Science 318 (2007) 1550c.
- [6] H.-Y. Chung, M.B. Weinberger, J.B. Levine, R.W. Cumberland, A. Kavner, J.-M. Yang, S.H. Tolbert, R.B. Kaner, Science 318 (2007) 1550d.
- [7] S. Otani, T. Aizawa, Y. Ishizawa, J. Alloys Compd. 252 (1997) L19-L21.
- [8] T.B. Massalski (Ed.), Binary Alloy Phase Diagram, second edition, ASM, OH, 1990.
- [9] S. Otani, M.M. Korsukova, T. Mitsuhashi, J. Crystal Growth 194 (1998) 430-433.