TABLE VI: Fitting Parameters for Simulated Anisotropic ORDB **Fluorescence Profiles**

$$I_{\parallel,\perp} = P(t)[1 \pm 0.5r(t) \ G^{s}(t)]$$

 $G^{s}(t) = \exp[-1.354C(t/4\tau)^{1/3}]$

 CD	0.886C _D ^a	Δ, %	$\chi_{\Gamma}^{2}(\parallel), \chi_{\Gamma}^{2}(\perp)$
 0.178	0.140	-11.2	1.15, 1.06
0.316	0.236	-15.7	0.992, 0.982
0.562	0.433	-13.2	1.11, 1.01
1.00	0.755	-14.9	1.18, 1.14
1.78	1.33	-15.6	1.28, 1.21
3.16	2.41	-14.1	1.28, 1.08
5.62	4.47	-10.4	1.06, 1.18

^aStatic orientational factor for two-dimensional system with moments randomly distributed on cone with $\theta^* = 58.4^{\circ}$.

 \sim 15% in the deconvolutions. Moreover, the percent discrepancies Δ are nearly constant, and the linearity of a plot similar to that in Figure 5 is hardly affected. Hence, our conclusion that the two-dimensional two-particle theory for $G^{s}(t)$ works well for all of the densities shown in Figure 5 is not sensitive to the model assumed for the orientational distribution of transition moments.

Polarized fluorescence profiles obtained at higher chromophore densities than those shown in Table I show an interesting anomaly in that the fluorescence components I_{\parallel} , I_{\perp} do not converge together at long times. At 1511×10^{-6} chromophores/Å², the two profiles intersect after ~ 1 ns, and I_{\perp} decays more slowly than I_{\parallel} at long times. At 2932 × 10⁻⁶ chromophores/Å², I_{\perp} remains below I_{\parallel} at all times, and the phenomenological decay times are markedly reduced. These ODRB densities are extremely large (the latter density corresponds to packing and average of ~ 16 chromophores per circle of radius $R_0 = 44.7$ Å), and these polarization effects may result from excimer formation.

We showed earlier⁸ that the three-dimensional two-particle theory of Huber et al.¹ furnishes an accurate description of transport in solution for reduced concentrations up to ~ 3 in the absence of orientational correlation. Figure 5 indicates that the two-dimensional analogue (eq 3) of the Huber theory is valid for reduced ODRB densities C_D up to ~5. This result is of particular interest, because density expansions of $G^{s}(t)$ converge more slowly in systems of lower dimensionality. Hence, one may expect the demonstrated validity of the two-particle theory to be exhibited a fortieri in random three-dimensional systems; the system dimensionality does not pose fundamental problems in our understanding of singlet excitation transport.

Acknowledgment. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. W-7405-Eng-82. This work was supported by the Office of Basic Energy Sciences. We thank Professors Michael Fayer, Charles Harris, and Larry Patterson for valuable discussions.

Registry No. ODRB, 65603-19-2; DOL, 10015-85-7; H₂O, 7732-18-5.

Vibrational and Electronic Spectra of Matrix-Isolated N₃• and N₃⁻

Rujiang Tian, Julio C. Facelli,¹ and Josef Michl*

Center for Structure and Reactivity, Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1167 (Received: January 14, 1987)

 N_3 and N_3 were formed upon the bombardment of a N_2 matrix with kiloelectronvolt-energy fast atoms and/or ions. The vibrational frequencies of N₃ in the most stable site, $\nu_2 = 472.7$, $\nu_3 = 1657.5$, and $\nu_1 + \nu_3 = 2944.9$ cm⁻¹, as well as those in two other sites were obtained, and dissociation into N(²D) and N₂(¹ Σ_g^+) was observed upon ² $\Sigma_u^+ \leftarrow {}^2\Pi_g$ excitation of N₃ at 272 nm. The ν_3 vibrational frequencies of free and ion-paired N₃⁻¹ in a nitrogen matrix are 2003.5 and 2077.8 cm⁻¹, and their photodetachment thresholds in a mixed nitrogen-argon matrix ($\sim 2:1$) are 4.5 and 3.4 eV, respectively. The experimental frequencies are compared with the results of Hartree-Fock computations for N_3 and N_3 . The results of similar computations for N_3^+ agree with an extrapolation of the experimental frequencies from N_3^- and N_3^- and suggest strongly a value near 1200 cm⁻¹ for ν_3 .

Introduction

Low-temperature matrix deposition with simultaneous fast atom² and/or fast ion³ bombardment offers access to spectroscopic concentrations of highly reactive molecules by using readily available stable precursors. We have discovered that the deposition of nitrogen gas on a gold surface while bombarding with 4-6-keV Ne or Ar atoms and/or ions yields strong spectra of the N_3 radical along with weak lines due to the N3⁻ anion and have used the technique to investigate IR absorption of both species, the UVvisible absorption and emission of the former, and photodetachment of the latter, isolated in a neat nitrogen or a mixed nitrogen-argon matrix.

The N₃ radical was first observed in the gas phase and characterized by a 272-nm absorption band in the UV region.⁴

At shorter wavelengths, the spectrum was diffuse, and therefore predissociation from the upper state was suspected. An analysis of the rotational fine structure⁵ permitted a ${}^{2}\Sigma_{u}^{+} \leftarrow {}^{2}\Pi_{g}$ assignment of the observed transition and showed that in the ground ${}^{2}\Pi_{a}$ state the molecule is of $D_{\infty h}$ symmetry, with bond lengths equal to 1.181 Å. The electronic ground-state spin-orbit splitting was determined to be 81 cm⁻¹, and the Renner-Teller structure in the absorption of N₃ containing a quantum of the bending vibration was identified tentatively. In megaelectronvolt-electron or UV-photon irradiated dilute aqueous solution of sodium azide ($\sim 10^{-4}$ M), the N_3 absorption band maximum has been reported variously at 278,⁶ 277⁷ and 272⁸ nm. The photoelectron spectrum of N_3 . is compatible with the ${}^{2}\Pi_{g}$ ground state, and the first ionization potential is 11.06 eV.⁹

⁽¹⁾ Department of Chemistry, University of Utah, Salt Lake City, UT 84112.

^{(2) (}a) Knight, L. B., Jr.; Steadman, J. J. Am. Chem. Soc. 1984, 106, 3700. (b) Liang, J.; Michl, J. J. Am. Chem. Soc. 1984, 106, 5039.

⁽³⁾ Andrews, L.; Allen, R. O.; Grzybowski, J. M. J. Chem. Phys. 1974, 61. 2156.

⁽⁴⁾ Thrush, B. A. Proc. R. Soc. London, A 1956, 235, 143.

⁽⁵⁾ Douglas, A. E.; Jones, W. J. Can. J. Phys. 1965, 43, 2216.

 ⁽⁶⁾ Hayon, E.; Simic, M. J. Am. Chem. Soc. 1970, 92, 7486.
 (7) Treinin, A.; Hayon, E. J. Chem. Phys. 1969, 50, 538.

⁽⁸⁾ Barat, F.; Hickel, B.; Sutton, J. J. Chem. Soc., Chem. Commun. 1969, 125

⁽⁹⁾ Dyke, J. M.; Jonathan, N. B. H.; Lewis, A. E.; Morris, A. Mol. Phys. 1982, 47, 1231.

Little is known about the vibrations of N_3 . The antisymmetric stretch v_3 has been assigned at 1700 cm⁻¹ in the ${}^{2}\Sigma_{u}^{+}$ excited state⁴ and at 2150 cm⁻¹ in the ${}^{2}\Pi_{g}$ ground state.¹⁰ As we will show, the latter assignment needs to be revised.

Very recently, a gas-phase study of laser-induced fluorescence of N₃ appeared.¹¹ It confirmed the Renner-Teller structure, established the ${}^{2}\Sigma_{\mu}^{+}$ lifetime as less than 20 ns, and reported weak vibrational structure from which $\omega_1 = 1320 \pm 50 \text{ cm}^{-1}$ and $\omega_2 =$ $457 \pm 25 \text{ cm}^{-1}$ were deduced. As we shall see, these results are in excellent agreement with our matrix-isolation results.

The N_3^- anion has been the subject of much more attention by spectroscopists. A tremendous amount of work has been done in the solid phase: in single crystals, in polycrystalline materials, and in KBr pellets. Most of this work was done by physicists interested in matters such as the dynamics of the phonon vibrations, the crystal field, or the electronic band structure. The vibrational frequencies of N₃⁻ vary slightly from one metal azide to another. In solid KN₃, they are 1344 (v_1) , 642.2 (v_2) , and 2036.4 cm⁻¹ (ν_3).¹² The ν_1 frequency of N₃⁻ in infinitely dilute aqueous solution was obtained by Raman spectroscopy at 1342.7 cm⁻¹ by extrapolation from solutions of different concentrations of alkali-metal azides.¹³ The vibrational frequencies for the isotopomers, $^{14}N_3^{-}$, $^{14}N^{14}N^{15}N^{-}$, $^{14}N^{15}N^{14}N^{-}$, and $^{15}N_3^{-}$ in KBr lattice are ν_3 2037.1, 2025.0, 1991.0, and 1968.3 cm⁻¹, respectively, and ν_2 640.1, 636.5, 625.7, and 618.3 cm⁻¹, respectively.¹⁴ The UV spectrum measured on solid films of alkali azides showed an absorption band attributable to N_3^- at 222.5 nm.¹⁵ Several additional spectroscopic studies of the N_3^- anion in solutions have appeared. Two UV absorptions at 230 and 180 nm were assigned to ${}^{1}\Delta_{u} \leftarrow {}^{1}\Sigma_{g}^{+}$ and ${}^{1}\Sigma_{u}^{+} \leftarrow {}^{1}\Sigma_{g}^{+}$ transitions, respectively.¹⁶ The reversed assignment has been proposed as well, based on the comparison with UV spectra of HN₃ and solid films of alkali azides,¹⁷ and is supported by quantum chemical computations.¹⁸ The photoelectron spectrum of N_3^- in solution was also reported.¹⁹ In the gas phase, N_3 has bond lengths of 1.1884 Å, and the antisymmetric stretch lies at $\nu_3 = 1986.4672$ cm^{-1.20} Its photodetachment threshold lies at 449 nm and corresponds to an N₃ electron affinity of 2.76 eV.21

Experimental Section

The apparatus²² consisted of a miniature fast atom capillaritron source (FACS) (Phrasor Scientific Inc.), directed at a CsI window cooled to about 20 K by a closed-cycle cryostat (Air Products Displex), and of an inlet for nitrogen (Airco, 99.999% purity). The fast atom gun chamber and the top of the cryostat shroud were pumped by two 2-in. diffusion pumps. The bombarding gas was neon (Airco, 99.999% purity) or argon (Airco, 99.999% purity). While there was no evidence that neon condenses in the matrix, argon codeposits with N_2 readily so that a mixed matrix results.

Typical experimental conditions involved a mixture of fast Ne and Ne⁺ produced by the FACS as the bombarding particles at

- (10) Milligan, D. E.; Brown, H. W.; Pimentel, G. C. J. Chem. Phys. 1956, 25, 1080.
- (11) Beaman, R. A.; Nelson, T.; Richards, D. S.; Setser, D. W. J. Phys. Chem. 1987, 91, 6090.
- (12) Lamoureux, R. T.; Dows, D. A. Spectrochim. Acta, Part A 1975, 31, 1945
- (13) Dean, K. J.; Wilkinson, G. R. J. Raman Spectrosc. 1985, 16, 22. (14) Theophanides, T.; Turrell, G. C. Spectrochim. Acta, Part A 1967, 23, 1927
 - (15) Deb, S. K. J. Chem. Phys. 1961, 35, 2122.
 (16) Burak, I.; Treinin, A. J. Chem. Phys. 1963, 39, 189.
- (17) McDonald, J. R.; Rabalais, J. W.; McGlynn, S. P. J. Chem. Phys. 1970, 52, 1332.
- (18) Rossi, A. R.; Bartram, R. H. J. Chem. Phys. 1979, 70, 532. (19) Ballard, R. E.; Jones, J.; Sutherland, E.; Lee, C. B. Chem. Phys. Lett.
- 1983, 97, 413 (20) Polak, M.; Gruebele, M.; Saykally, R. J. J. Am. Chem. Soc. 1987,
- 109 2884

4 keV and ion current reading of 80 μ A, 6 mmol/h N₂ deposition for optimal IR results, and 3 mM/h for optimal UV-visible results. The deposition time was 0.5-6 h, with chamber pressure of the order of 10^{-3} Torr. Before a N₂ deposition was started, the gun was run at a beam current of 300 μ A at 5 keV for 5 h to remove CO₂ adsorbed on the surface of the chamber. When this precaution was not taken, peaks due to CO₂ and CO as well as other contaminants produced therefrom appeared in the IR spectra. Each time before bombardment, a protective layer of N_2 was deposited onto the window. Painstaking attention was paid to the exclusion of water.

Spectra were measured on a Nicolet 6000 FT-IR spectrometer, a Cary 17D UV-visible spectrometer, an IBM-Brucker ER 200 ESR spectrometer, and a home-built spectrofluorimeter with a Spex 0.5-m double and a Spex 0.75-m single monochromator for excitation and emission, respectively, with a 1-kW xenon arc lamp and a Centronix Series 4283 Model S-20 response cooled photomultiplier running at 1 keV with a Spex PC photon counter. When needed, Glan polarizers were placed immediately before and after the matrix along the paths of emission and excitation light. An IBM IR 98 FT-IR spectrometer with a $3-\mu m$ Mylar beam splitter and a deuteriated triglycine sulfate detector was also used for some of the IR measurements.

In some experiments, a filament of a 12-V light bulb was mounted in front of the cold window on the matrix side and about an inch away from it. The positive side of the power supply was connected to the instrument ground so that the negative potential on the filament repels the hot electrons toward the matrix. The temperature of the filament was variable from hot to glowing white by changing the voltage of the power supply.

The irradiations were done through a quartz window with a low-pressure Hg lamp whose 254-nm output is in the milliwatt region, a portable ellipsoidal xenon arc lamp (Cermax 300W) with a water filter in front to eliminate IR light, and a dye laser (Lumonics, HyperDye-300) pumped by an excimer laser (Lumonics, HyperEx-400) and doubled with a frequency-doubling crystal. The doubled-frequency laser light was linearly polarized, and the fundamental line was blocked out by a UV-transmitting visible-cutoff filter. UV and visible cutoff filters were used in conjunction with the portable xenon arc lamp to obtain light with a known short-wavelength cutoff in determining the photodetachment threshold.

Restricted (N_3^{-}) and unrestricted (N_3, N_3^{+}) self-consistent field (SCF) computations were done with the GAUSSIAN-80 UCSF program²³ with standard 4-31G* and 6-311G* basis sets.

Results

General. The observed spectra were independent of the precise experimental conditions such as the fast particle energy. They were the same whether only fast atoms or a fast atom-fast ion mixture was used for the bombardment. The presence of $N(^{4}S)$ atoms in the neon-bombarded nitrogen matrix was obvious from their sharp ESR signals, and the presence of N₃, was indicated by the appearance of a sharp absorption peak at 272 nm $[^{2}\Sigma_{u}]$ $- {}^{2}\Pi_{g}$). Excitation at 272 nm produced a strong phosphorescence peak at 524 nm with a lifetime of 31 ± 1.4 s (N, $^{2}D \rightarrow ^{4}S$), and a weak one at 595 nm with a lifetime of 29 \pm 1.7 s [N + N₂, ²D + ${}^{1}\Sigma_{g}^{+}(v=0) \rightarrow {}^{4}S + {}^{1}\Sigma_{g}^{+}(v=1)].{}^{24,25}$ If N₃ fluorescence peaks near 279 and 282 nm (gas-phase values¹¹) were present, they were orders of magnitude weaker than the phosphorescence and were not observed. The phosphorescence at 524 nm was completely depolarized even when the 272-nm exciting light was linearly polarized. The 595-nm emission line was too weak for a reliable measurement of polarization ratio. The excitation spectra monitored at either wavelength were identical with each other and with the observed UV absorption spectrum (a peak at 272 nm). The lifetimes obtained in our experiments at 20 K were somewhat

(25) Oehler, O.; Smith, D. A.; Dressler, K. J. Chem. Phys. 1977, 66, 2097.

⁽²¹⁾ Illenberger, E.; Comita, P. B.; Brauman, J. I.; Fenzlaff, H. P.; Heni, M.; Heinrich, N.; Koch, W.; Frenking, G. Ber. Bunsen-Ges. Phys. Chem. 1985, 89, 1026.

⁽²²⁾ David, D. E.; Magnera, T. F.; Tian, R.; Michl, J. Radiat. Eff. 1986, 99, 247.

⁽²³⁾ Singh, U. C.; Kollman, P. GAUSSIAN-80 UCSF Program, QCPE 446. (24) Peyron, M.; Horl, E. M.; Brown, H. W.; Broida, H. P. J. Chem. Phys. 1959. 30. 1304

Figure 1. Base-line-corrected FT-IR spectrum of ${}^{14}N_2$ bombarded with 4-keV Ne and Ne⁺ (80 μ A). Details of parts A-D are shown in Figure 2. Deposition rate: 6 mmol/h at 20 K. The crossed peaks are not reproducible and are due to noise or impurities. CO₂, 2349.3 cm⁻¹; ${}^{14}N_2$, 2328.2 cm⁻¹; N₂O, 2236.9 cm⁻¹; CO, 2139.2 cm⁻¹; NO, 1874.9 cm⁻¹; H₂O, 1597.0 cm⁻¹.

shorter than those reported for these two emissions at 4 K [for both lines, 42 s in one case (condensation of products from electrical discharge of N₂ gas, electron bombardment of solid N₂, and warmup of these matrices, as well as warmup of a γ -rayirradiated matrix)²⁴ and 37 s in another (pulsed keV electron bombardment of solid N₂)²⁵].

After an extended period of irradiation at 272 nm, a decrease in the N₃ absorption and emission intensities was noticeable. After the total disappearance of the absorption peak, the ESR intensity of N(⁴S) signals exceeded by about 6% the level present after the initial bombardment. These observations are compatible with photoinduced dissociation of excited N₃ (${}^{2}\Sigma_{u}^{+}$) into N(²D) and N₂(${}^{1}\Sigma_{g}^{+}$). An observable ESR signal is not expected for the orbitally degenerate N₃ radical.

When ${}^{15}N_2$ was used in place of ${}^{14}N_2$, the 272- and 524-nm peaks did not change their position, but the 595-nm phosphorescence peak shifted to 592.5 \pm 0.25 nm, in good agreement with the value of 292.25 nm expected from the difference in ground-state vibrational frequencies of solid ${}^{15}N_2$ (2250.2 cm⁻¹) and ${}^{14}N_2$ (2328.2 cm⁻¹) observed in our IR measurements.

The IR spectrum (Figures 1 and 2) of the same bombarded matrices contained intense peaks at 1657.5 and 1652.6 cm⁻¹ and weak peaks at 2944.9, 2939.2, 2935.6, 2077.8, 2003.5, 1654.5, 474.9, and 472.7 cm⁻¹. The 474.9-cm⁻¹ peak is hard to distinguish from noise but is reproducible. In the spectrum shown on the right-hand side of Figure 2A, this peak is not present because a higher deposition temperature was used to get a matrix of better quality. Weak peaks attributable to the matrix itself and to CO₂, CO, and H₂O contaminants were usually also present to a variable degree as were other contaminants attributable to products originating in the fragmentation of CO₂. When Ar was used as bombarding gas, i.e., in a mixed nitrogen-argon matrix, the frequencies shifted slightly, the peaks were somewhat broader, and the relative intensity of 2003.5-cm⁻¹ peak increased strikingly relative to the rest of the peaks.

Bleaching experiments showed that all these IR peaks belong to two different species. Those at 2944.9, 2939.2, 2935.6, 1657.5, 1654.5, 1652.6, 474.9, and 472.7 cm⁻¹ (group I) gradually disappeared over about a 5-h period of irradiation with a low-pressure Hg lamp, whose main output line is at 254 nm, while those at 2077.8 and 2003.5 cm⁻¹ (group II) disappeared much faster, in about 4 min. On the other hand, irradiation with a beam of 272-nm laser light caused the peaks of group I to disappear faster than those of group II. Within each group, all IR peaks retained their relative intensities during the bleaching process, suggesting that only two distinct chemical species were being observed in the IR spectra. The dependence on the wavelength of the bleaching light suggests that the IR peaks of group I are due to the carrier of the 272-nm absorption in the UV, i.e., to N₃, whereas those of group II must be due to a species without a structured UVvisible absorption band, unnoticed in our UV-visible spectra. Combined IR-UV measurements on the same matrix during a bleaching with the low-pressure Hg lamp indeed showed that the UV-visible absorption spectrum was not affected detectably upon a total disappearance of the IR peaks of group II, and that the intensity of the 272-nm absorption in the UV was proportional to those of the IR peaks of group I.

The Azide Radical, N_3 . The identity of the carrier of group I peaks with the carrier of the 272-nm peak and, thus, with N_{3} , was confirmed by a photoselection experiment in which a beam of 272-nm laser light linearly polarized along the laboratory Zaxis was used for partial bleaching. This induced linear dichroism $(d = E_Z/E_Y)$ in the remaining group I IR peaks $(d_{2944.9} = d_{1657.5})$ = 1.10 ± 0.03 , $d_{472.7} = 0.911 \pm 0.04$) but not in group II IR peaks. Converted to the orientation factors K_i for the transition moment direction $[K_i = \langle \cos^2 \tilde{j} \rangle = d_i / (d_i + 2)$, where \tilde{j} is the angle between the *j*th transition moment and Z, and the angular brackets indicate averaging over the sample],²⁶ this yields $K_{2944.9} = K_{1657.5} = 0.355 \pm 0.013$ and $K_{472.7} = 0.313 \pm 0.018$. The 272-nm electronic transition moment of N_{3} , is perpendicular to the molecular axis z.⁵ The sign of the observed dichroism thus shows that the transition moments of the IR transitions at 2944.9 and 1657.5 cm⁻¹ lie along the molecular axis, as expected for the $v_1 + v_3$ and v_3 stretching vibrations, and that the moment of the 472.7-cm⁻¹ transition is perpendicular to the molecular axis, as expected for the ν_2 bend. From the symmetry of the molecule, $K_x = K_y = K_{472.7}$ = 0.313 ± 0.018 and $K_z = K_{2944.9} = K_{1657.5} = 0.355 \pm 0.013$. K_x $+ K_v + K_z = 0.98 \pm 0.05$, within our experimental error of the theoretical value of unity. The peak at 1652.6 cm⁻¹ showed the same dichroic ratio as the peak at 1657.5 cm⁻¹ in a separate measurement, but the other peaks of group I were too weak for

⁽²⁶⁾ Michl, J.; Thulstrup, E. W. Spectroscopy with Polarized Light; VCH: New York, 1986.

TABLE I:	Vibrational	Frequencies	(cm ⁻¹)	and Intensity	y Ratios of N	3 Isotopome
----------	-------------	-------------	---------------------	---------------	---------------	-------------

		exptl	calcd ^a	compd ^b	$I(\nu_1 + \nu_3)/I(\nu_3)^c$
14N14N14N	$\nu_1 + \nu_3$	2944.9		3170.1 (2944.9)	$4.7 \times 10^{-2} \ (\pm 2\%)$
	ν_2	472.7		600.9 (472.7)	
	<i>v</i> ₃	1657.5		1674.9 (1657.5)	
$^{14}N^{14}N^{15$	$\nu_1 + \nu_3$	2917.1	2914.1	3134.8 (2912.1)	$3.4 \times 10^{-2} \ (\pm 10\%)$
	ν_2		470.1	597.5 (470.0)	
	ν_3	1649.3	1648.3	1665.6 (1648.3)	
¹⁵ N ¹⁴ N ¹⁵ N [.]	$v_1 + v_3$	2890 ^d	2882.9	3100.9 (2880.6)	$1.7 \times 10^{-2} \ (\pm 100\%)$
	ν_2		467.4	594.2 (467.4)	
	ν_3	1639.7	1639.0	1656.2 (1639.0)	
$^{14}N^{15}N^{14}N^{.}$	$v_1 + v_3$	2907.2	2907.8	3132.6 (2910.1)	$6.5 \times 10^{-2} \ (\pm 10\%)$
	ν_2		462.1	587.4 (462.1)	
	ν_3	1621.4	1620.4	1637.5 (1620.5)	
¹⁴ N ¹⁵ N ¹⁵ N [.]	$\nu_1 + \nu_3$	2878.4	2876.7	3098.6 (2878.5)	$5.8 \times 10^{-2} \ (\pm 10\%)$
	ν_2		459.4	584.0 (459.4)	
	<i>v</i> ₃	1612.7	1610.9	1630.8 (1613.9)	
¹⁵ N ¹⁵ N ¹⁵ N [.]	$\nu_1 + \nu_3$	2848.5	2845.4	3062.9 (2845.3)	$4.2 \times 10^{-2} \ (\pm 50\%)$
	ν_2	457.1	456.7	580.5 (456.7)	
	ν_3	1603.2	1601.5	1618.3 (1601.5)	

^aCalculated from the frequencies of ¹⁴N₃ by using the formulas given by Herzberg.²⁷ ^bUHF computation using the 6-311G* basis set combined with the FG matrix method. The numbers in parentheses are obtained by multiplication with common factors 0.928 84 for $\nu_1 + \nu_3$, 0.78665 for ν_2 , and 0.989 49 for ν_3 , chosen so that the frequencies for ¹⁴N₃ agree with the experimental values. For the bending vibration, the average of the two computed frequencies was used, and spin-orbit coupling and Renner-Teller effects were not considered. ^cObserved integrated intensity ratio. The value for ¹⁴N₃ was obtained with ¹⁴N₂, and that for ¹⁵N₃ was obtained with ¹⁵N₂. The others were obtained with ¹⁴N¹⁵N. ^d The peak is weak, and its frequency deviates significantly from the calculations. See Figure 5.

Figure 2. Details of parts A-D in Figure 1. The spectrum shown on the right side of A was obtained in a separate experiment at 30 K with an IBM FT-IR spectrometer.

the determination of their dichroic ratio.

The appearance of three closely spaced IR peaks near 2940 cm^{-1} , of three near 1655 cm^{-1} , and of two near 472 cm^{-1} , in place of the expected single peaks, is due to site effects: (1) When the deposition rate was reduced a few times below that normally used

or when the temperature of the cold window during the deposition was about 10 K higher, only the peaks at 2944.9 and 1657.5 cm⁻¹ appeared, and an increase in the deposition rate enhanced the intensity of the other four IR peaks relative to the 2944.9- and 1657.5-cm⁻¹ peaks. (2) When a matrix exhibiting three IR peaks near 2940 cm⁻¹ and three near 1655 cm⁻¹ was repeatedly annealed by warming up a few degrees and then recooling, the peaks at 2944.9 and 1657.5 cm^{-1} gradually increased while those at 2939.2, 2935.6, 1654.5, and 1652.6 cm^{-1} decreased and eventually disappeared altogether. In this process, the sum of the integrated intensities of the three peaks at 1657.5, 1654.5, and 1652.6 cm⁻¹ decreased by about 7%, while the IR peak due to a small amount of CO used as internal standard did not change, suggesting that either some of the N₃, is destroyed in the annealing process or that the N_3 species at three different sites have slightly different transition moments, with the most stable site showing the weakest absorption. Further, (3) all three IR peaks near 1655 cm⁻¹ showed identical isotopic shifts for all isotopomers. Vibrations of the isotopomers in the unstable sites were not observable near 2940 cm⁻¹ because of their low IR intensities. Finally, (4) at these temperatures, the ${}^{2}\Pi_{1/2}$ state of N₃ is not expected to have an observable population, since it lies $\sim 71~\text{cm}^{-1}$ above the $^2\Pi_{3/2}$ ground state.5

We conclude that the ground-state N₃· radical contained in the most stable site in solid N₂ has a strong IR peak at 1657.5 cm⁻¹ (ν_3) and weak IR peaks at 2944.9 ($\nu_1 + \nu_3$) and 472.7 cm⁻¹ (ν_2).

Similar IR measurements in which ${}^{14}N_2$ was replaced by ${}^{15}N_2$ (Figures 3 and 4), ${}^{14}N^{15}N$ (Figure 5), or mixtures of ${}^{14}N_2$ and ${}^{15}N_2$ permitted the assignment of isotopic shifts²⁷ (Table I). The results from the mixtures of ${}^{14}N_2$ and ${}^{15}N_2$ experiments are consistent with those in other isotopic experiments.

The relative integrated intensities of isotopically shifted 2944.9and 1657.5-cm⁻¹ peaks vary as a function of the isotopic substitutions (Table I). The data on ${}^{14}N^{15}N$ ·, ${}^{15}N^{14}N^{15}N$ ·, ${}^{14}N^{15}N^{14}N$ ·, and ${}^{14}N^{15}N$ · were obtained in a single experiment. The information on ${}^{14}N_3$ · was obtained in a separate experiment, and so was that on ${}^{15}N_3$ ·.

Much effort was put into searching for the other three vibrational transitions expected in principle from the spin-orbit coupling and Renner-Teller effects, but no other peaks were observed above the noise level at frequencies higher than 430 cm^{-1} .

The Azide Anion, N_3^- . The identity of the group II IR peaks at 2077.8 and 2003.5 cm⁻¹ was more difficult to establish since

⁽²⁷⁾ Herzberg, G. Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules; Van Nostrand: New York, 1945; pp 172-173 and p 187.

Figure 3. Base-line-corrected FT-IR spectrum of ${}^{15}N_2$ bombarded with 4-keV Ne and Ne⁺ (80 μ A). Details of parts A–D are shown in Figure 4. Deposition rate: 6 mmol/h at 20 K. The spectrum was obtained by subtracting the single-beam spectra before irradiation and after irradiation with a lamp. The negative peaks are due to this operation. The crossed peaks are not reproducible and are due to noise or impurities. ${}^{15}N_2$, 2250.2 cm⁻¹; CO, 2139.5 cm⁻¹; ${}^{15}N_2$, 1581.4 cm⁻¹.

Figure 4. Details of parts A-D in Figure 3.

they were not associated with any obvious features in the UV absorption spectrum and since they were so weak.

Figure 5. ν_3 and $\nu_1 + \nu_3$ vibrational frequencies of four of the six isotopomers of azido radical N₃ obtained by the bombardment of ¹⁴N¹⁵N with 4 keV Ne and Ne⁺ (80 μ A). Deposition rate: 3 mmol/h at 20 K. The spectrum was obtained by subtracting the single-beam spectra before irradiation and after irradiation with a lamp. The negative peaks are due to this operation. The crossed peaks are not reproducible and are due to impurities.

The diffuse nature of the UV-visible absorption spectrum of this species, its high sensitivity to bleaching with UV light, and the absence of detectable emission are all compatible with its assignment as an anion. We believe that the two IR peaks are both due to N_3^- but in different environments, on the basis of the following evidence: (1) The intensity of the 2077.8-cm⁻¹ peak relative to that of the 2003.5-cm⁻¹ peak was small at lower N_2

TABLE II: Antisymmetric Vibrational Frequencies ν_3 of Isotopomers of Free N₃⁻ (cm⁻¹)

	¹⁴ N ¹⁴ N ¹⁴ N ⁻	¹⁴ N ¹⁴ N ¹⁵ N ⁻	¹⁵ N ¹⁴ N ¹⁵ N ⁻	¹⁴ N ¹⁵ N ¹⁴ N ⁻	¹⁴ N ¹⁵ N ¹⁵ N ⁻	¹⁵ N ¹⁵ N ¹⁵ N ⁻
exptl	2003.5	1993.0	1982.1	1959.9	1949.0	1937.7
calcd ^a		1992.4	1981.2	1958.6	1947.2	1935.8
compd ^b	2266.3	2253.6	2241.0	2215.5	2203.5	2189.6
corr ^c	2003.5	1992.3	1981.1	1958.6	1948.0	1935.7

^aCalculated from the frequencies of ¹⁴N₃⁻ by using the formulas given by Herzberg.²⁷ ^bRHF computation using the 6-311G* basis set combined with the FG matrix method. ^cObtained by multiplication of the computed values with a common factor 0.88404 chosen so that the ν_3 frequency for ¹⁴N₃⁻ agrees with the experimental value.

deposition rate, reached a maximum at a deposition rate equal to about half of that normally used, and then decreased as the deposition rate was increased further. (2) Dilution of nitrogen by argon enhanced the intensity of the lower frequency peak significantly. (3) When the matrix was annealed, the 2003.5-cm⁻¹ peak decreased, the 2077.8-cm⁻¹ peak increased, and the sum of their integrated intensities decreased by about 7%, judging by a CO internal standard. These changes occurred at annealing temperatures about 10 K higher than the analogous site annealing observed for the IR peaks of the N₃ radical. Indeed, before the 2003.5-cm⁻¹ peak disappeared altogether, the matrix invariably evaporated. In keeping with the requirement for a relatively high annealing temperature, the 2077.8/2003.5 intensity ratio remained unaffected by a 10 K increase in the temperature of the deposition window during matrix deposition.

The relative difficulty with which the 2003.5-cm⁻¹ peak converts into the 2077.8-cm⁻¹ peak suggests that the process may involve more than a mere rearrangement of the N₂ molecules in the environment, as is presumably the case in the annealing of the sites of the neutral N₃ species. Instead, we suspect that actual diffusion of a counterion to the proximity of the anion is responsible. The 2003.5-cm⁻¹ peak might be due to a free anion and the 2077.8-cm⁻¹ peak due to an "ion pair". This assignment is compatible with the gas-phase frequency of 1986.5 cm⁻¹,²⁰ the 2037-cm⁻¹ frequency in a KBr lattice,¹⁴ and the known differences in the frequencies of free and ion-paired anions.²⁸ The decrease of the total IR intensity may be due to partial destruction during annealing or to a smaller transition moment of the higher frequency peak.

Support for this notion was obtained from the following observations: (1) The vibrational frequency of the ion pair peak was not influenced by the presence of a variable amount of Ar in the matrix while the vibrational frequency of the free peak showed appreciable shifts. (2) A peak 2 cm⁻¹ below that of free N_3^- was observed on four of the six isotopomers when the nitrogen deposition rate was very high (Figure 6). This peak also showed up when Ar was codeposited with ${}^{14}N_2$. It is assigned to free $N_3^$ at another site. This demonstrates that the difference caused by site effects can be as small as only a few wavenumbers even for an anion. (3) The photobleaching thresholds of the two peaks differ considerably. This could only be investigated in a qualitative fashion at relatively low resolution, by using optical filters and a xenon arc lamp. In an nitrogen-argon (\sim 2:1) matrix, the maximum wavelength at which the free peak was bleached detectably was 275 ± 15 nm, while for ion pair it was 360 ± 15 nm. Thus, it takes about 1.1 eV less energy to remove an electron from the ion-paired N_3^- than from the free matrix-isolated N_3^- , presumably since in the ion pair, the electron transfer is to a counterion and not to the matrix conduction band.

The nature of the counterion is not known, and it is probably derived from a trace impurity species such as H_2O , H_3O^+ being a reasonable candidate. The concentration of the counterion centers probably limits the concentration of the anions that can be achieved. When an electron flood-gun was placed in front of the cold window during bombardment, no increase in the intensity of the peaks of group II was noted.

The assignment of the anionic species as N_3^- was confirmed in a definitive fashion by the observation of isotopically shifted

Figure 6. ν_3 vibrational frequencies of all six isotopomers of the azide anion N₃⁻ obtained by the bombardment of ${}^{14}N_2 + {}^{15}N_2$ (1:1) with 4-keV Ne and Ne⁺ (80 μ A). Deposition rate: 10 mmol/h at 20 K. Weak peaks at 2001.0, 1990.9, 1946.9, and 1935.0 cm⁻¹ are due to ${}^{14}N^{14}N^{14}N^{-}$, ${}^{14}N^{14}N^{15}N^{-}$, ${}^{14}N^{15}N^{-5}N^{-}$, and ${}^{15}N^{15}N^{-}$ at a different site.

peaks (Figure 6). Table II lists the experimental, calculated,²⁷ and computed vibrational frequencies v_3 of the six isotopomers corresponding to free N₃⁻. For ion-paired N₃⁻, the vibrational frequency for ¹⁵N₃⁻ is 2009.6 cm⁻¹ (Figures 3 and 4; to be compared with 2007.3 cm⁻¹ from calculation with Herzberg's formulas²⁷), but the intensities of the other corresponding isotopically shifted peaks in the experiments with ¹⁴N¹⁵N and with mixtures of ¹⁴N₂ and ¹⁵N₂ were too low to allow reliable detection.

The isotopic shifts leave no doubt that this species is a triatomic molecule with $D_{\infty h}$ symmetry. Since it is distinct from the N₃⁺ cation, whose vibrational frequencies are^{9.29} $v_1 = 1170$ and $v_1 + v_3 = 2565$ cm⁻¹, the only reasonable possibility is the N₃⁻ anion. The other IR peaks of N₃⁻ expected on the basis of solid-state studies are much weaker than the antisymmetric stretch and should not be observable under our conditions, given the relatively weak intensity of the 2003.5- and 2077.8-cm⁻¹ peaks.

SCF Computations on N_3^- , N_{3^*} , and N_3^+ . The computed equilibrium geometries and vibrational frequencies as well as total energies of the N_3^- singlet, N_3^+ doublet, and N_3^+ triplet ground states are listed in Table III. In all three cases, the symmetry of the molecule was found to be $D_{\infty h}$, in agreement with experimental evidence.^{5,20} This differs from the results of previous computations,³⁰ which predicted a $C_{\infty h}$ equilibrium geometry for the ground states of N_{3^*} and N_{3^+} , with higher total energies.

Computations were also performed on a system in which a unit positive charge was placed at the molecular axis 2 Å from the terminal nitrogen atom of N_3^- to simulate an ion pair. The calculated antisymmetric stretching frequency ν_3 was 2352.9 cm⁻¹, a 38.3-cm⁻¹ increase relative to the 2314.6-cm⁻¹ value computed for ν_3 of free N_3^- . The computed direction of the shift supports

⁽²⁹⁾ Jacox, M. E. J. Phys. Chem. Ref. Data 1984, 13, 967.

⁽³⁰⁾ Archibald, T. W.; Sabin, J. R. J. Chem. Phys. 1971, 55, 1821.

TABLE III: Computed^a Vibrational Frequencies, Bond Lengths, and Total Energies of ¹⁴N₃⁻, ¹⁴N₃⁻, and ¹⁴N₃⁺

		4-31G*	6-311G*	exptl
N3-	<i>v</i> ₁	1575.1	1539.2	1344 ^b
•	v2	789.32	773.92	642.4 ^b
	ν_3	2314.6	2266.3	2036.4 ^b
	-			2003.5°
		$(2352.9)^d$		$(2077.8)^d$
	r	1.1537	1.1504	1.1884 ^e
	Ε	-163.098 00	-163.303 19	
N_3	ν_1	1508.2	1495.2	~1287 ^f
-	V2	615.45 ^g	600.92 ^g	472.7 ^f
	ν_3	1713.1	1674.9	1657.5
	r	1.1570	1.1538	1.1815 ^h
	Ε	-163.088 09	-163.28468	
N_3^+	ν_1	954.72	907.77	$\sim 1170^{i}$
-	ν_2	385.76	368.34	
	ν_3	1260.5	1248.3	~1395'
	ř	1.1850	1.1828	
	Ε	-162.756 53	-162.95461	

^aRHF for ¹⁴N₃⁻, UHF for ¹⁴N₃⁺ and ¹⁴N₃⁺. Vibrational frequencies $\overline{\nu}$ in cm⁻¹, bond lengths r in angstroms, and total energies E in atomic units. In all cases, the calculated ground-state equilibrium geometry is $D_{\infty h}$. ^bKN₃ crystal.¹² ^cFree matrix-isolated N₃⁻. See text. ^dIon-paired matrix-isolated N₃⁻. See text. ^cGas phase.²⁰ ^fMatrix-isolated N₃. See text. ^gThe average of the two zero-order Renner-Teller frequencies. No effort was made to compute the spin-orbit and Renner-Teller splitting. ^hGas phase.⁵ ⁱ From the photoelectron spectrum^{9,29} of N₃. The value of ν_3 is derived from $\nu_1 + \nu_3$ and ν_1 .

our assignment of the species responsible for the 2077.8-cm⁻¹ peak to an ion-paired N_3^- anion.

Discussion

The Azido Radical, N_3 . 1. The previously suggested pre-dissociative nature of the ${}^{2}\Sigma_{u}^{+}$ upper state of the 272-nm transition and its dissociation channel to $N(^2D)$ and $N_2(^1\Sigma_g^{+})^4$ have now been proven by the observation of emission from the ²D state of the N atom upon ${}^{2}\Sigma_{u}^{+} \leftarrow {}^{2}\Pi_{g}$ excitation of N₃. It accounts in a natural fashion for the short observed fluorescence lifetime.¹¹ The 1700-cm⁻¹ vibrational component reported⁴ for the upper state has not been found in our work. Its absence has also been noted by other workers.⁵

2. The vibrational frequencies of 2944.9, 1657.5, and 472.7 cm⁻¹ of N₃, at the most stable site can be associated with the ν_1 $+ v_3$, v_3 , and v_2 vibrations, respectively, on the basis of comparison with the computations, the IR transition moment directions, and the isotopic shifts. The symmetric stretch v_1 is inactive in IR, but a value of about 1287 cm⁻¹ can be obtained from the values obtained for $v_1 + v_3$ and for v_3 . This compares well with the recent gas-phase value of $1320 \pm 50 \text{ cm}^{-1.11}$ The assignment of vibrational frequencies to different isotopomers was made by comparison with results of quantum chemical computations and of calculations using formulas given by Herzberg.²⁷ The experimental isotopic shifts are within 5 cm⁻¹ of those obtained by quantum chemical computations and within about 3 cm⁻¹ of those obtained from Herzberg's formulas,²⁷ except for the peak at 2890 cm⁻¹, which is 10 cm⁻¹ above the value expected from quantum chemical computation and 7 cm^{-1} higher than that obtained from calculation with Herzberg's formulas,²⁷ presumably due to a perturbation. The overall agreement leaves no doubt of the correctness of the assignment. The previous assignment¹⁰ of the ground-state antisymmetric stretching vibrational frequency ν_3 as 2150 cm⁻¹ clearly must be revised.

3. The spin-orbit coupling and Renner-Teller effects produce a ${}^{2}\Sigma_{1/2}^{+}$, a ${}^{2}\Delta_{5/2}$, a ${}^{2}\Delta_{3/2}$, and a ${}^{2}\Sigma_{1/2}^{-}$ level for the ground electronic state of N₃, with 1 quantum of the bending vibration ν_2 . Since under our conditions only the ${}^{2}\Pi_{3/2}$ ground vibrational level is populated and since spin-orbit coupling is weak, only the transition to the ${}^{2}\Delta_{3/2}$ level would be expected to be intense in the IR spectrum on qualitative grounds. This accounts for the absence of other Renner-Teller peaks in our spectra. The observed frequency of the ${}^{2}\Delta_{3/2} \leftarrow {}^{2}\Pi_{3/2}$ transition, 472.7 cm⁻¹, is compatible with the gas-phase value of $\omega_{2} = 457 \pm 25$ cm⁻¹.¹¹

TABLE IV: Ground-State Vibrational Frequencies of Isoelectronic Species (cm⁻¹)

	ν_1	v2	v ₃	ref
N ₃	1287	472.7	1657.5	
CŌ,†	1280	623	1469	а
BO ₂	1070	464	1322	Ь
N ₃ -	1344	642.2	2036.4	12
CO_2	1388.4	667.3	2349.4	с
BO ₂		588	1959	d

^a (a) Johns, J. W. C. Can. J. Phys. 1964, 42, 1004. (b) Mrozowski, S. Phys. Rev. 1947, 72, 691. ^b Johns, J. W. C. Can. J. Phys. 1961, 39, 1738. ^cDennison, D. M. Rev. Mod. Phys. 1940, 12, 175. ^d Hisatsune, I. C.; Suarez, N. H. Inorg. Chem. 1964, 3, 168.

4. A new IR peak at 1638 cm⁻¹ obtained after the irradiation of solid KN₃ with UV light at 77 K was reported some time ago.³¹ The corresponding IR spectra obtained with K¹⁵N¹⁴N¹⁴N and K¹⁴N¹⁵N¹⁴N under similar conditions were identical and contained a strong peak at 1623 cm⁻¹ and two weak peaks at 1635 and 1611 cm⁻¹. The proposed assignment was to cyclic N_3 of D_{3h} symmetry, but this geometry is Jahn-Teller unstable in the ground state. It is not clear whether there are any relations between these observations and ours. The reported³¹ IR frequency is very close to the vibration we find for ν_3 of matrix-isolated N₃, but the isotopic shift pattern is different.

The Azide Anion, N_3^- . The experimental and the theoretical evidence suggest strongly that 2003.5- and 2077.8-cm⁻¹ IR peaks are due to free and ion-paired N₃⁻, respectively. Their photodetachment thresholds in nitrogen-argon matrix (\sim 2:1), 4.5 and 3.4 eV, respectively, can be compared with the gas-phase value²¹ of 2.76 eV.

Comparison of N_3^- , N_3^+ , and N_3^+ . The computed vibrational frequencies of N_3^- and N_3 are higher than the experimental values, by about 11-23% for N_3^- and by about 1-17% for N_3^- (Table III). Such errors are common for SCF computations. The vibrational frequencies⁹ of N_3^+ have been reported as 1170 and 2565 cm⁻¹ as deduced from the photoelectron spectra of N_3 . The former was assigned to v_1 and the latter to either v_3 or $v_1 + v_3$.^{9,29} Our computations suggest strongly that the $v_1 + v_3$ assignment of the 2565-cm⁻¹ peak is right. Note that even assuming this assignment, the computed frequencies are lower than the reported values by about 11-29%. This is an unusual sign for an error in an SCF computation, and we suspect that the accuracy of the frequencies derived from the photoelectron spectrum is low.

 N_3 is just one "nonbonding" electron short of N_3^- , and N_3^+ is just one "nonbonding" electron short of N_3 . It was believed at one time that the vibrational frequencies of N₃ should be essentially the same as those of N₃, because of the "nonbonding" nature of the electron.^{32,33} Our results certainly show that this is not so. Indeed, although the "nonbonding" electrons do not affect the bond lengths much, they contribute significantly to the force constants of these three species. Similar behavior has been noted for the isoelectronic species CO_2 and BO_2^- compared with CO_2^+ and BO_2 (Table IV).

Linear extrapolation of the square of the experimental vibrational frequency v_3 from N_3^- (2003.5 cm⁻¹) to N_3 · (1657.5 cm⁻¹) and beyond to N_3^+ predicts a vibrational frequency ν_3 of 1217 cm^{-1} for N_3^+ and supports the assignment of the 2565- cm^{-1} vibration to $v_1 + v_3$ of N_3^+ .

Note Added in Proof. The v_3 fundamental of N₃ has recently been observed in gas-phase absorption at 1644.6784 cm⁻¹, in excellent agreement with our results: C, Brazier, P. Bernath, J. Burkholder, and C. Howard, submitted for publication. We are grateful to Prof. Bernath for sharing this information with us.

Acknowledgment. This work was supported by the National Science Foundation, CHE-87-96257. We thank Professor David M. Grant, University of Utah, for the use of his computer.

⁽³¹⁾ Bryant, J. I. Spectrochim. Acta 1966, 22, 1475.

 ⁽³²⁾ Gray, P. Chem. Soc., Q. Rev. 1963, 17, 441.
 (33) Becker, E. D.; Pimentel, G. C.; Thiel, M. V. J. Chem. Phys. 1957, 26, 145.