

Tetrahedron: Asymmetry 9 (1998) 1381-1387

TETRAHEDRON: ASYMMETRY

Enantioselectivity in the reduction of tricyclic hydroaromatic ketones by baker's yeast

Gabriele Fontana, Paolo Manitto,* Giovanna Speranza and Simona Zanzola

Dipartimento di Chimica Organica e Industriale, Università di Milano e Centro di Studio sulle Sostanze Organiche Naturali, CNR, via Venezian 21, I-20133 Milano, Italy

Received 9 February 1998; accepted 12 March 1998

Abstract

Three benzo-2-tetralones were hydrogenated to the corresponding alcohols by non-fermenting baker's yeast. Satisfactory yields but modest enantioselectivities were observed. The prevalent enantioform of the benzo-2-tetralol was found to be in agreement with the predictive abstract model previously proposed for the enzymatic hydrogenation of aromatic ring substituted 2-tetralones. © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

The possibility of obtaining optically active 2-tetralols **2** by baker's yeast reduction of the corresponding ketones has recently been explored in the case of 2-tetralones **1**, differing in their hydroxy/methoxy substitution at the aromatic ring.¹ The enantioselectivity of the reaction carried out under 'nonfermenting' conditions was found to be moderate and variable, with the exception of the conversion of 5-methoxy-2-tetralone (e.e. \geq 98%, 87% yield). We showed that enantioselectivity resulted from the action of a single enzyme rather than from the competition between two or more dehydrogenases, thus allowing a simple abstract model to be developed relating the prevalent enantioform of the product **2** and its excess to the substitution pattern of the starting 2-tetralone **1**.¹

^{*} Corresponding author. E-mail: manitto@icil64.cilea.it

Although the microbial reduction of polycyclic hydroaromatic α -oxo compounds has been examined,² to our knowledge no analogous investigations have been performed on β -oxo derivatives. This situation, together with the possibility of extending our predictive model to tricyclic hydroaromatic ketones, prompted us to test the baker's yeast reduction of compounds **4**, **6** and **9**.

2. Results and discussion

3,4-Dihydrophenanthren-2(1*H*)-one 4^{3a} and 1,2-dihydrophenanthren-3(4*H*)-one 6^{3b} were prepared by rhodium(II)-catalyzed decomposition of α -diazoketones **3** and **5**, respectively, and subsequent acidic treatment of the reaction mixture with trifluoroacetic acid (Scheme 1a,b).³ 3,4-Dihydroanthracen-2(1*H*)-one **9** was conveniently synthesized starting from 1,4-dihydroanthracene **7**, prepared in turn according to Jadot and Roussel⁴ via the sequence reported in Scheme 1c.

Scheme 1.

The conversion of ketones **4**, **6** and **9** into the corresponding alcohols **4a**, **6a** and **9a** by *Saccharomyces cerevisiae* was carried out under standard conditions (see Experimental). Benzo-2-tetralols were isolated by flash chromatography of the ether extract of the reaction medium; the purity of each compound was checked by TLC (three eluents) and the structure confirmed by NMR spectroscopy. The most abundant enantioform of each benzo-2-tetralol and its excess were determined through the ¹⁹F NMR spectra of the corresponding (*S*)-MTPA esters **4b**, **6b** and **9b**, on the assumption that the CF₃ signal at higher field was due to the (*R*)-form. Although this empirical rule has been widely tested with 2-tetralols,¹

1382

Prevalent alcohol (^a)	Isolated yield %	Enantiomeric ratio $R : S(a)$
(S)- 4a	75	14 : 86
(R)- 6a	62	65 : 35
(S)- 9a	58	44 : 56
	Prevalent alcohol (^a) (S)-4a (R)-6a (S)-9a	Prevalent alcohol (^a) Isolated yield % (S)-4a 75 (R)-6a 62 (S)-9a 58

 Table 1

 Reduction of ketones 4, 6 and 9 using baker's yeast

(^a) See text for the analytical method used.

its application to Mosher's esters of benzo-2-tetralols was confirmed via a non-empirical chiroptical method.⁵ Thus, the exciton coupled CD spectra of the benzo-2-tetralols benzoates **4c**, **6c** and **9c** were compared with those reported in the literature for the corresponding enantiopure compounds.^{6–8} The results of all biotransformation experiments are summarized in Table 1.

The prevalent (*S*)-configuration of the alcohol **4a** was predictable on the basis of our model.¹ In fact, if one considers the minimal destabilizing interactions visualized when the molecule of the dihydrophenanthrenone **4**, as represented by its van der Waals surface, is lodged in the virtual boundaries of the dehydrogenase active site (Fig. 1a), the (*R*)-orientation appears to be disfavoured due to an overlap of H-10 with the Y-boundary and to counter-clockwise α to α' rotation.

Analogous considerations led to the forecast of a preference for an (R)-configuration in the case of the dehydrogenation of compound **6** (Fig. 1b). Finally, the fact that the enantioselectivity of the bioconversion of the dihydroanthracenone **9** into the alcohol **9a** was practically nil can be interpreted as the result of a very similar extent of destabilization for both (S)- and (R)-orientations of the substrate in the enzyme active site (Fig. 1c).

3. Experimental

TLC was performed on silica gel F_{254} precoated aluminum sheets (0.2 mm layer, Merck); eluent systems: A, hexane:ethyl acetate (2:1); B, hexane:ethyl acetate (3:2); C, chloroform:ether (5:1). Hexane:ethyl acetate (3:1) and hexane:ether (7:3) were used as additional eluents to check the purity of benzo-2-tetralols. Silica gel (40–63 µm) from Merck was used for flash chromatography. ¹H NMR (200.12 or 300.13 MHz), ¹³C NMR (50.32 or 75.47 MHz) and ¹⁹F NMR (282.40 MHz) spectra were recorded in CDCl₃ solution. The solvent signal was used as an internal standard for ¹H NMR and ¹³C NMR (7.25 and 77.00 ppm), while CFCl₃ was added for measuring ¹⁹F NMR chemical shifts. EIMS spectra were run on a VG 7070 EQ mass spectrometer operating at 70 eV. UV spectra were obtained in CHCl₃ on an HP 8452A spectrophotometer. Optical rotations were measured in CHCl₃ at 25°C on a Perkin–Elmer 241 polarimeter. Circular dichroism curves were recorded in MeOH:dioxane (9:1) at

Fig. 1. Schematic representation of tricyclic aromatic ketones 4 [A], 6 [B], 9 [C] (van der Waals surfaces) into the virtual active site of the baker's yeast dehydrogenase. See Manitto et al.¹ for the construction of the enzyme-pocket model and for the order of destabilizing interactions

room temperature on a Jasco J-500C spectropolarimeter. Baker's yeast was from Distillerie Italiane (S. Quirico-Trecasali, Parma, Italy).

3.1. 2,3-Epoxy-1,2,3,4-tetrahydroanthracene 8

To a solution of **7** (1.09 g, 6.05 mmol)⁴ in 10 mL of CH₂Cl₂ at -10° C was added a filtered solution of *m*-CPBA (2 g, 6.35 mmol) in CH₂Cl₂ (16 mL) dropwise, and the reaction mixture stirred for 12 h. Excess oxidant was destroyed by adding a 37% aqueous NaHSO₃ solution (10 mL). The organic layer was separated, washed with 5% aqueous NaHCO₃, and dried (Na₂SO₄). Removal of solvent under reduced pressure and purification by flash chromatography (eluent A) gave 900 mg of pure **8** (4.6 mmol, 76% yield). TLC R_f 0.1 (eluent A); ¹H NMR (200 MHz) δ 3.32–3.58 (m, 6H, H₂-1, H-3 and H₂-4), 7.39 (dd, 2H, *J*=6.2, 3.2 Hz, H-6 and H-7), 7.55 (s, 2H, H-9 and H-10), 7.73 (dd, 2H, *J*=6.2, 3.2 Hz, H-5 and H-8); ¹³C NMR (50 MHz) δ 30.21 (t), 51.58 (d), 125.22 (d), 126.96 (d), 127.42 (d), 130.47 (s).

3.2. 3,4-Dihydroanthracen-2(1H)-one 9

Compound **8** (886 mg, 4.52 mmol) was transferred to a suspension of LiAlH₄ (0.342 g, 9 mmol) in 200 mL of dry ether by means of continuous extraction with ether using a Soxhlet apparatus. After refluxing for 5 h under N₂, the reaction mixture was quenched by adding in sequence 0.5 mL of water, 1 mL of 5 N NaOH, and 0.5 mL of water. The white slurry was filtered and the residue washed with ether. The combined ether extracts were dried (Na₂SO₄) and evaporated under reduced pressure to give 790 mg of 1,2,3,4-tetrahydroanthracen-2-ol **9a** (3.99 mmol, 88% yield) which was homogeneus by TLC analysis. TLC R_f 0.27 (eluent C); ¹H NMR (300 MHz) δ 1.75 (br s, 1H, OH), 1.82–1.98 (m, 1H, H-3*a*), 2.10–2.19 (m, 1H, H-3*b*), 2.91–3.05 (m, 2H, H-1*a* and H-4*a*), 3.12 (app dt, 1H, *J*=16.8, 5.8 Hz, H-4*b*), 3.29 (dd, 1H, *J*=16.1, 4.7 Hz, H-1*b*), 4.20–4.29 (m, 1H, H-2), 7.36–7.42 (m, 2H, H-6 and H-7), 7.57 (s, 2H, H-9 and H-10), 7.69–7.77 (m, 2H, H-5 and H-8); ¹³C NMR (75 MHz) δ 27.10 (t), 31.83 (t), 38.74 (t), 67.34 (d), 125.13 (d), 125.21 (d), 126.29 (d), 126.98 (d), 127.42 (d), 132.20 (s), 132.27 (s), 133.26 (s), 134.47 (s); UV λ_{max} (log ϵ): 242 (3.61), 278 (3.48), 288 (3.49).

The above 1,2,3,4-tetrahydroanthracen-2-ol was oxidized by the Swern procedure⁹ giving rise to a brown oil, which was flash chromatographed (eluent hexane with increasing portions of ethyl acetate) to obtain **9** as a white solid (30% overall yield). TLC R_f 0.56 (eluent C); ¹H NMR (300 MHz) δ 2.58 (app t, *J*=7.0 Hz, 2H, H₂-3), 3.21 (app t, *J*=7.0 Hz, 2H, H₂-4), 3.76 (s, 2H, H₂-1), 7.41–7.48 (m, 2H, H-6 and H-7), 7.58 and 7.69 (2×s, 2×1H, H-9 and H-10), 7.73–7.80 (m, 2H, H-5 and H-8); ¹³C NMR (75 MHz) δ 28.43 (t), 38.29 (t), 45.92 (t), 125.53 (d), 125.70 (d), 125.82 (d), 126.47 (d), 127.23 (d), 131.36 (s), 132.55 (s), 135.12 (s), 210.22 (s).

3.3. General procedure for biotransformations

A suspension of baker's yeast (100 g) in preboiled distilled water (1 L) was kept at 37°C for 30 min. Then the substrate (1 g), dissolved in the smallest amount of 1,4-dioxane, was gradually added and the mixture vigorously stirred for 3–5 days at 37°C. Progress of the reduction was monitored by TLC analysis. When the reaction was complete, the product was continously extracted with ethyl ether. The ether extract was dried (Na₂SO₄), evaporated under reduced pressure and purified by flash chromatography using the same eluent as for TLC (see Table 1 for yields and enantiomeric ratios). For the preparation and analysis of MTPA esters, see Manitto et al.¹

3.4. General procedure for the preparation of benzoyl derivatives

To a solution of alcohol (0.2 mmol) in 0.6 mL of dry CH_2Cl_2 and 0.6 mL of dry pyridine, was added 50 μ L of freshly distilled benzoyl chloride and the reaction mixture was refluxed until completion. After the usual workup the crude product was purified by flash chromatography using the same eluent as for TLC.

3.5. (S)-1,2,3,4-Tetrahydrophenanthren-2-ol 4a

TLC R_f 0.29 (eluent A); $[\alpha]_D^{25}$ –51.0 (*c* 0.42, 72% e.e.) (*cf.* Koreeda et al.⁷); ¹H NMR (300 MHz) δ 1.91–2.06 (m, 2H, H-3*a* and OH), 2.17–2.34 (m, 1H, H-3*b*), 2.92 (dd, 1H, *J*=15.6 and 7.8 Hz, H-1*a*), 3.12 (app dd, 1H, *J*=17.1, 6.8 Hz, H-4*a*), 3.21 (dd, 1H, *J*=15.6, 4.9 Hz, H-1*b*), 3.35 (app dt, 1H, *J*=17.1, 5.9 Hz, H-4*b*), 4.18–4.26 (m, 1H, H-2), 7.18 (d, 1H, *J*=8.5 Hz, H-10), 7.42–7.53 (m, 2H, H-6 and H-7), 7.64 (d, 1H, *J*=8.5 Hz, H-9), 7.79 (d, 1H, *J*=6.8 Hz, H-8), 7.95 (d, 1H, *J*=8.8 Hz, H-5); ¹³C NMR (50 MHz) δ 23.68 (t), 31.24 (t), 39.17 (t), 66.89 (d), 122.90 (d), 124.94 (d), 125.98 (d), 126.32 (d), 128.10 (d), 128.35 (d), 130.25 (s), 131.24 (s), 132.00 (s), 132.26 (s); UV λ_{max} (log ε) 288 (3.57), 278 (3.56), 244 (3.65), 324 (2.62); **4a** (*S*)-MTPA ester **4b**, TLC R_f 0.48 (eluent B); ¹⁹F NMR δ –71.99 (14%), -71.78 (86%).

3.6. (S)-1,2,3,4-Tetrahydrophenanthren-2-ol benzoate 4c

TLC R_f 0.52 (eluent A); UV λ_{max} (log ε) 228 (4.94), 280 (3.85); $[\alpha]_D^{25}$ –74.8 (*c* 0.72, 72% e.e.); CD λ_{max} (Δε) 219 (+13.6), 229 (–25.2) (*cf.* Koreeda et al.⁷); ¹H NMR (200 MHz) δ 2.24–2.37 (m, 2H, H-3), 3.14–3.49 (m, 4H, H-1 and H-4), 5.54–5.65 (m, 1H, H-2), 7.21 (d, 1H, *J*=8.5 Hz), 7.38–7.56 (m, 6H) 7.67 (d, 1H, *J*=8.5 Hz), 7.83 (d, 1H, *J*=7.5 Hz) and 8.01 (app t, 2H, *J*=8.1 Hz) (aromatic H); ¹³C NMR (75 MHz) δ 23.16 (t), 27.63 (t), 35.39 (t), 70.01 (d), 122.93 (d), 125.07 (d), 126.10 (d), 126.45 (d), 127.95 (d), 128.29 (d), 128.47 (d), 129.57 (d), 130.23 (s), 130.56 (s), 130.72 (s), 132.10 (s), 132.35 (s), 132.80 (d), 166.20 (s).

3.7. (R)-1,2,3,4-Tetrahydrophenanthren-3-ol 6a

TLC R_f 0.25 (eluent B); $[\alpha]_D^{25}$ +13.8 (*c* 0.40, 30% e.e.) [lit.⁶ -49, for optically pure (*S*)-**6a**]; ¹H NMR (300 MHz) δ 1.83–1.97 (m, 2H, H-2*a* and OH), 2.11–2.16 (m, 1H, H-2*b*), 2.93–3.14 (m, 3H, H₂-1 and H-4*a*), 3.51 (dd, 1H, *J*=16.7, 2.0 Hz, H-4*b*), 4.26–4.34 (m, 1H, H-3), 7.21 (d, 1H, *J*=8.4 Hz, H-10), 7.42–7.53 (m, H-6 and H-7), 7.63 (d, 1H, *J*=8.4 Hz, H-9), 7.79 (d, 1H, *J*=9.1 Hz, H-8), 7.93 (d, 1H, *J*=8.3 Hz, H-5); ¹³C NMR (75 MHz) δ 28.02 (t), 31.32 (t), 35.02 (t), 67.67 (d), 122.73 (d), 125.00 (d), 126.12 (d), 126.29 (d), 127.48 (d), 128.49 (d), 128.5 (s), 132.28 (s), 132.31 (s), 133.03 (s); UV λ_{max} (log ε) 244 (3.63), 282 (3.69), 276 (3.66); **6a** (*S*)-MTPA ester **6b**, TLC R_f 0.70 (eluent B); ¹⁹F NMR δ –71.32 (65%), -71.14 (35%).

3.8. (R)-1,2,3,4-Tetrahydrophenanthren-3-ol benzoate 6c

TLC R_f 0.67 (eluent A); UV λ_{max} (log ϵ) 228 (5.00), 280 (3.93); $[\alpha]_D^{25}$ -8.54 (*c* 0.57, 30% e.e.); CD λ_{max} ($\Delta\epsilon$) 222 (+21), 229 (-30) (*cf.* Boyd et al.⁶); ¹H NMR (200 MHz) δ 2.17–2.33 (m, 2H, H₂-2), 3.00–3.41 (m, 3H, H₂-1 and H-4*a*), 3.65 (dd, 1H, *J*=17.1, 5.3 Hz, H-4*b*), 5.68 (app quint., 1H, *J*=5.7 Hz, H-3), 7.27 (d, 1H, *J*=8.4 Hz, H-10), 7.40–7.61 (m, 4H, H-6, H-7, H-2', H-3', H-5' and H-6'), 7.69

1386

(d, 1H, J=8.4 Hz, H-9), 7.84 (dd, 1H, J=8.3, 1.9 Hz, H-8), 7.94 (d, 1H, J=7.8 Hz, H-4'), 8.07 (dd, 1H, J=7.9, 1.0 Hz, H-5); ¹³C NMR (50 MHz) δ 27.21 (t), 27.53 (t), 31.35 (t), 70.45 (d), 122.61 (d), 124.99 (d), 126.09 (d), 126.32 (d), 127.42 (d), 128.24 (d), 129.56 (d), 130.59 (s), 132.17 (s), 132.31 (s), 132.82 (s), 166.18 (s).

3.9. (S)-1,2,3,4-Tetrahydroanthracen-2-ol 9a

 $[\alpha]_{D}^{25}$ -7.1 (*c* 0.42, 12% e.e.) [lit.¹⁰ -47, for 90% optically pure (*S*)-**9a**]; spectral data matched those reported above for the racemic compound; **9a** (*S*)-MTPA ester **9b**, TLC R_f 0.69 (eluent B); ¹⁹F NMR δ -71.40 (44%), -71.23 (56%).

3.10. (S)-1,2,3,4-Tetrahydroanthracen-2-ol benzoate 9c

TLC R_{*f*} 0.66 (eluent A); UV λ_{max} (log ε) 228 (5.00), 280 (3.82), 276 (3.85); $[\alpha]_D^{25}$ +1.95 (*c* 0.2); CD λ_{max} ($\Delta \varepsilon$) 222 (-4.8), 229 (+5.6) (*cf*. Akhtar et al.⁸); ¹H NMR (300 MHz) δ 2.15–2.28 (m, 2H, H₂-3), 3.03–3.13 (app dt, 1H, *J*=16.6, 6.8 Hz, H-4*a*), 3.18–3.27 (m, 2H, H-1*a* and H-4*b*), 3.42 (dd, 1H, *J*=16.6, 4.9 Hz, H-1*b*), 5.52–5.6 (m, 1H, H-2), 7.37–7.74 (m, 8H), 7.99 (dd, 1H, *J*=6.8, 2.0 Hz) and 8.15 (d, 2H, *J*=6.8 Hz) (aromatic H); ¹³C NMR (50 MHz) δ 26.50, 28.22, 34.93, 70.29, 125.19, 125.29, 126.35, 127.02, 127.37, 128.27, 128.82, 129.52, 130.51, 132.15, 132.5, 132.81, 134.47, 162.5.

Acknowledgements

We thank Dr. Diego Monti (CNR, Milan) for running NMR spectra and MURST (Italy) for financial support.

References

- 1. Manitto, P.; Speranza, G.; Monti, D.; Fontana, G.; Panosetti, E. Tetrahedron 1995, 51, 11531-11546.
- 2. Kabuto, K.; Imuta, M.; Kempner, E. S.; Ziffer, H. J. Org. Chem. 1978, 43, 2357-2361.
- 3. (a) Manitto, P.; Monti, D.; Zanzola, S.; Speranza, G. J. Org. Chem. 1997, 62, 6658–6665; (b) Manitto, P.; Monti, D.; Speranza, G. J. Org. Chem. 1995, 60, 484–485.
- 4. Jadot, J.; Roussel, J. Bull. Soc. Roy. Sci. Liège 1954, 23, 69-78 (Chem. Ab. 1955, 49, 10909i).
- Harada, N.; Nakanishi, K. Circular Dichroic Spectroscopy—Exciton Coupling in Organic Stereochemistry; University Science Books: Mill Valley, CA, 1983; 350 pp.
- Boyd, D. R.; Greene, R. M. E.; Neill, J. D.; Stubbs, M. E.; Yagi, H.; Jerina, D. M. J. Chem. Soc., Perkin Trans. 1 1981, 1477–1482.
- 7. Koreeda, M.; Akhtar, M. N.; Boyd, D. R.; Neill, J. D.; Gibson, D. T.; Jerina, D. M. J. Org. Chem. 1978, 43, 1023–1027.
- Akhtar, M. N.; Boyd, D. R.; Thompson, N. J.; Koreeda, M.; Gibson, D. T.; Mahadevan, V.; Jerina, D. M. J. Chem. Soc., Perkin Trans. 1 1975, 2506–2511.
- 9. Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480-2482.
- 10. Akhtar, N. M.; Boyd, D. R. J. Chem. Soc., Chem. Commun. 1975, 916-917.