Investigations on Novel Tandem Reaction of Three Components, $[\eta^5$ -RC₅H₄(CO)₂Mo]₂, Ph₂Te₂, and Cp₂TiCl₂, Cp₂ZrCl₂, or Cp₂ZrBr₂. Synthesis and Structural **Characterization of Tetrakis- and Bis-Bridged** Dimolybdenum Complexes $(\eta^5 - RC_5 H_4 M_0)_2 (\mu - PhT_e)_4$ $(\mathbf{R} = \mathbf{MeCO}, \mathbf{MeO_2C}, \mathbf{EtO_2C}), (\eta^5 \cdot \mathbf{RC_5H_4Mo})_2(\mu \cdot \mathbf{Cl})(\mu \cdot \mathbf{PhTe})_3$ $(\mathbf{R} = \mathbf{MeCO}, \mathbf{MeO}_2\mathbf{C}, \mathbf{EtO}_2\mathbf{C}), (\eta^5 - \mathbf{RC}_5\mathbf{H}_4\mathbf{Mo})_2(\mu - \mathbf{Br})(\mu - \mathbf{PhTe})_3$ $(\mathbf{R} = \mathbf{MeO}_2\mathbf{C}, \mathbf{EtO}_2\mathbf{C}), \text{ and } [\eta^5 \cdot \mathbf{RC}_5\mathbf{H}_4(\mathbf{CO})_2\mathbf{Mo}]_2(\mu \cdot \mathbf{PhTe})_2$ $(\mathbf{R} = \mathbf{MeO}_2\mathbf{C}, \mathbf{EtO}_2\mathbf{C})$

Li-Cheng Song,*,[†] Yao-Cheng Shi,[†] Wen-Feng Zhu,[†] Qing-Mei Hu,[†] Xiao-Ying Huang,[‡] Fei Du,[#] and Xi-An Mao[#]

Department of Chemistry, Nankai University, Tianjin 300071, China, State Key Laboratory of Structural Chemistry, Fuzhou 350002, China, and Wuhan Institute of Physics, Chinese Academy of Sciences, Wuhan 430071, China

Received June 8, 1999

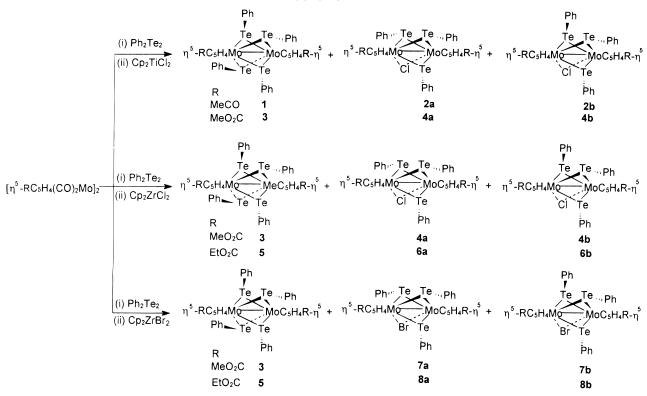
While reaction of triply bonded dimers $[\eta^5$ -RC₅H₄(CO)₂Mo]₂ (R = MeCO, MeO₂C) with Ph₂-Te₂ in xylene at 110 °C and subsequent treatment with Cp₂TiCl₂ at reflux gives novel tetrakisbridged complexes $(\eta^5 - RC_5H_4M_0)_2(\mu - PhTe)_4$ (1, R = MeCO; 3, R = MeO₂C) and $(\eta^5 - \eta^5 - \eta^5)_4$ $RC_5H_4Mo_2(\mu-Cl)(\mu-PhTe)_3$ (**2a,b**, R = MeCO; **4a,b**, $R = MeO_2C$), the dimers $[\eta^5-RC_5H_4(CO)_2Mo]_2$ $(R = MeO_2C, EtO_2C)$ reacted with Ph₂Te₂ and Cp₂ZrCl₂ or Cp₂ZrBr₂ under similar conditions to afford novel tetrakis-bridged complexes $(\eta^5 - RC_5 H_4 M_0)_2 (\mu - PhTe)_4$ (**3**, $R = MeO_2C$; **5**, R =EtO₂C), $(\eta^5 - RC_5H_4M_0)_2(\mu - Cl)(\mu - PhTe)_3$ (**4a**, **b**, $R = MeO_2C$; **6a**, **b**, $R = EtO_2C$), and $(\eta^5 - RC_5H_4 - H_4)_3$ $Mo_2(\mu$ -Br) $(\mu$ -PhTe)₃ (**7a,b**, R = MeO_2C; **8a,b**, R = EtO_2C). A possible pathway for production of such tetrakis-bridged complexes has been suggested primarily on the basis of the following facts: (i) Treatment of triply bonded dimers $[\eta^5 - RC_5H_4(CO)_2Mo]_2$ (R = MeO₂C, EtO₂C) with Ph₂Te₂ in xylene at 110 °C produces bis-bridged complexes $[\eta^5-RC_5H_4(CO)_2Mo]_2(\mu-PhTe)_2$ (9, $R = MeO_2C$; 10, $R = EtO_2C$) and (ii) reaction of 9 with Cp_2MCl_2 (M = Ti, Zr) yields tetrakis-bridged complexes 3 and 4a,b. All the new products 1-10 are fully characterized by elemental analysis and IR, ¹H, and ¹²⁵Te NMR spectroscopies, and **4b** and **9** by singlecrystal X-ray diffraction techniques.

Introduction

The group 6 metal–metal triply bonded dimers [η^{5} - $RC_5H_4(CO)_2M]_2$ (M = Cr, Mo, W; η^5 -RC₅H₄ = parent and substituted cyclopentadienyls) are of considerable interest since they are important synthons to react with organic, inorganic, and organometallic substrates, yielding a great variety of novel group 6 metal-containing complexes.¹ Some years ago, we started a project regarding such dimers, aimed to develop their new reaction modes and to prepare new types of group 6 metal-containing complexes, particularly organometallic clusters. Among our published papers related to this project² is an interesting tandem reaction of triply bonded dimers $[\eta^5 - RC_5H_4(CO)_2M]_2$ (M = Mo, W) with

 $[Et_3NH][(\mu-R'S)(\mu-CO)Fe_2(CO)_6]$ and oxygen, which affords a novel type of thiolato-bridged and oxo-capped trimetallic clusters $(\eta^5 - RC_5H_4)(CO)_2MFe_2(\mu_3 - O)(\mu - R'S)$ $(CO)_{6}$ ^{2g} As a continuation of this project, we recently carried out another tandem reaction of triply bonded dimers $[\eta^5-RC_5H_4(CO)_2Mo]_2$ with Ph₂Te₂ and subsequently with Cp₂TiCl₂, Cp₂ZrCl₂, or Cp₂ZrBr₂. Herein we report the results obtained from this study.

Results and Discussion


Tandem Reaction of $[\eta^5$ -RC₅H₄(CO)₂Mo]₂, Ph₅Te₂, and Cp_2MX_2 (M = Ti, Zr; X = Cl, Br). Synthesis and Characterization of 1-8. We found that the Mo-Mo

Nankai University.

⁴ State Key Laboratory of Structural Chemistry. [#] Wuhan Institute of Physics.

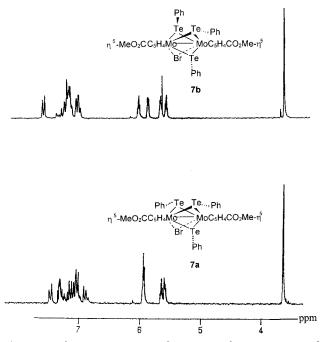
⁽¹⁾ For a general review, see for example: (a) Davis, R.; Kane-Maguire, L. A. P. In *Comprehensive Organometallic Chemistry*; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1982; Vol. 3, Chapters 26–28, and references therein. (b) Curtis, M. D. *Polyhedron* **1987**, *6*, 759, and references therein. (c) Song, L.-C.; Wang, I. O. Youit Huayue **1964**, *14*, 225, and references theorem. Wang, J. Q. Youji Huaxue 1994, 14, 225, and references therein.

⁽²⁾ For example see: (a) Song, L.-C.; Wang J.-Q.; Hu, Q.-M.; Gao, W.-Q.; Han, B.-S. *Polyhedron* **1997**, *16*, 481. (b) Song, L.-C.; Wang, J.-Q.; Hu, Q.-M.; Huang, X.-Y. *Polyhedron* **1997**, *16*, 2249. (c) Song, L.-C.; Wang, J.-Q.; Hu, Q.-M.; Wang, R.-J.; Mak, T. C. W. Inorg. Chim. Acta **1997**, *256*, 129. (d) Song, L.-C.; Wang, J.-Q.; Hu, Q.-M.; Sun, J. *J. Coord. Chem.* **1997**, *42*, 63. (e) Song, L.-C.; Shi, Y.-C.; Hu, Q.-M.; Du, F.; Mao, X.-A. *Polyhedron* **1998**, *18*, 19. (f) Song, L.-C.; Wang, J.-Q.; Hu, Q.-M.; Huang, X.-Y. *J. Coord. Chem.* **1999**, *46*, 245. (g) Song, L.-C.; Fan, H.-T.; Hu, Q.-M.; Qin, X.-D.; Zhu, W.-F.; Chen, Y.; Sun, J. *Organometallics* **1998**, *17*, 3454.

Scheme 1

triply bonded dimers $[\eta^5 \text{-RC}_5\text{H}_4(\text{CO})_2\text{Mo}]_2$ (R = MeCO, MeO₂C) reacted with Ph₂Te₂ in xylene at 110 °C followed by treatment with Cp₂TiCl₂ at this temperature and then at reflux to give tetrakis-bridged complexes $(\eta^5 \text{-RC}_5\text{H}_4\text{Mo})_2(\mu\text{-PhTe})_4$ (**1**, R = MeCO; **3**, R = MeO₂C) and $(\eta^5 \text{-RC}_5\text{H}_4\text{Mo})_2(\mu\text{-Cl})(\mu\text{-PhTe})_3$ (**2a,b**, R = MeO₂C); **4a,b**, R = MeO₂C), whereas reaction of $[\eta^5 \text{-RC}_5\text{H}_4(\text{CO})_2\text{-}$ Mo]₂ (R = MeO₂C, EtO₂C) with Ph₂Te₂ and subsequently with Cp₂ZrCl₂ or Cp₂ZrBr₂ under similar conditions afforded tetrakis-bridged complexes $(\eta^5 \text{-}$ RC₅H₄Mo)₂(μ -PhTe)₄ (**3**, R = MeO₂C; **5**, R = EtO₂C), $(\eta^5 \text{-}$ RC₅H₄Mo)₂(μ -Cl)(μ -PhTe)₃ (**4a,b**, R = MeO₂C; **6a,b**, R = EtO₂C), and $(\eta^5 \text{-RC}_5\text{H}_4\text{Mo})_2(\mu\text{-PhTe})_3$ (**7a,b**, R = MeO₂C; **8a,b**, R = EtO₂C), as shown in Scheme 1.

While products 1, 3, and 5 belong to homo-tetrakisbridged complexes which contain four identical PhTe ligands, products 2, 4, 6, 7, and 8 are mixed-tetrakisbridged complexes, which have one halogenido (Cl or Br) and three PhTe ligands. The mixed-bridged complexes each have two isomers **a** and **b**, in which isomer a has two phenyl groups attached to the planar fourmembered ring Mo₂Te₂ cis to the halogenido ligand, whereas isomer **b** has these two phenyl groups cis and trans to the halogenido ligand with respect to the planar Mo_2Te_2 ring, respectively. Although isomers **a** and **b** both contain two consecutive Mo_2Te_2 butterfly structural units, isomer a has two equatorial Ph groups in one of its butterfly units, whereas **b** has one axial Ph group and one equatorial Ph group in its corresponding one butterfly unit (for details, see crystal structure of **4b**). The homo-bridged complexes could be regarded as being generated by replacement of the halogenido ligand in isomer **a** or **b** by one PhTe ligand. Such homo-bridged complexes consist of four sequential Mo₂Te₂ butterfly structural units, each of which contains one axial Ph group and one equatorial Ph group. It is worth noting that in any two contiguous butterfly units if the Ph


group attached to the Te atom of the common wing is equatorial in the first unit, then it will be axial in the second unit, and vice versa. In fact, all the products shown in Scheme 1 are new types of tetrakis-bridged complexes, which have been characterized by elemental analysis, by IR and NMR spectroscopies, and particularly by an X-ray diffraction analysis of isomer **4b**.

The IR spectra of 1 and 2a,b showed one absorption band at about 1657 cm⁻¹ for their acetyl groups, and those of 3, 4a,b, 5, 6a,b, 7a,b, and 8a,b exhibited one absorption band at around 1703 cm⁻¹ for their ester groups. The ¹H NMR spectra of **1** and **2a**,**b** showed a singlet at ca. 2.1 ppm for their methyl groups of acetyls, whereas those of 3, 4a,b, and 7a,b displayed a singlet at ca. 3.5 ppm for their methyl groups of methoxycarbonyls and those of 5, 6a,b, and 8a,b exhibited a triplet at ca. 1.2 ppm and a quartet at ca. 4.1 ppm for their ethoxycarbonyls. In addition, all the complexes 1-8 showed one multiplet at between 6.80 and 7.76 ppm for their phenyl groups and two multiplets for their monosubstituted Cp rings, one between 5.56 and 6.20 ppm assigned to H² and H⁵ protons close to the substituents and the other between 5.40 and 5.86 ppm attributed to H³ and H⁴ protons remote from the substituents since the substituents are electron-withdrawing.3-6 It is noteworthy that the two isomers for the Mo_2Te_3X (X = Cl, Br) complexes have similar but slightly different physical and spectroscopic properties. For example, the melting points and R_f values of isomer type **a** are greater than those of type **b**. In addition, as can be seen from the ¹H NMR spactra of one representative pair of

⁽³⁾ Macomber, D. W.; Rausch, M. D. J. Organomet. Chem. **1983**, 258, 331.

⁽⁴⁾ Hart, W. P.; Rausch, M. D. *J. Organomet. Chem.* **1988**, *355*, 455. (5) Song, L.-C.; Shen, J.-Y.; Hu, Q.-M.; Wang, R.-J.; Wang, H.-G. *Organometallics* **1993**, *12*, 408.

⁽⁶⁾ Song, L.-C.; Shen, J.-Y.; Hu, Q.-M.; Huang, X.-Y. Organometallics 1995, 14, 98.

Figure 1. ¹H NMR spectra of one pair of isomers **7a** and **7b**.

isomers **7a** and **7b** (Figure 1), the ¹H NMR spectral patterns, particularly the shapes of the substituted Cp rings for isomers of type \mathbf{a} , are somewhat different from those for isomers of type \mathbf{b} .

During recent years, ¹²⁵Te NMR spectroscopy has been developed as an important tool for characterizing Te-containing organometallic compounds.^{7–10} To further characterize our homo- and mixed-tetrakis-bridged complexes, the ¹²⁵Te NMR spectra of representatives **3** and **4b** (Figure 2) were determined with reference to external Ph₂Te₂. As seen from Figure 2, while **3** showed one singlet at –139 ppm, **4b** displayed three singlets at 113, –9, and –249 ppm. Apparently, this is consistent with the homo-bridged complexes having four environmentally identical Te atoms and the mixed-bridged complexes containing three environmentally different bridging Te atoms, respectively.

Crystal Structure of 4b. To unequivocally confirm the structures of isomer type **a** and type **b** for the mixedtetrakis-bridged complexes and to provide more structural evidence for the homo-tetrakis-bridged complexes, we carried out the single-crystal diffraction analysis for isomer **4b**. The ORTEP drawing and unit cell plot of **4b** are shown in Figures 3 and 4. Table 1 lists its selected bond lengths and angles. As seen from Figure 4, in the unit cell each molecule of **4b** carries two solvent molecules of CH₂Cl₂. Figure 3 shows that **4b** consists of two substituted cyclopentadienyl ligands η^{5} -MeO₂-CC₅H₄, three PhTe ligands, one Cl ligand, and two Mo atoms. The two η^{5} -MeO₂ CC₅H₄ ligands are trans to each other with respect to the Mo(1)-Mo(2) bond, and the

three PhTe and one Cl are bridged to the Mo(1)-Mo(2)bond. The dihedral angle between the two cyclopentadienyl planes C(11) through C(15) and C(21) through C(25) is calculated as 9.69°. In addition, Mo(1), Mo(2), Te(1), and Te(2) atoms, as well as Mo(1), Mo(2), Te(3), and Cl(1) atoms, are calculated to be coplanar, and the two planes are actually perpendicular, with a dihedral angle of 89.14°. It is noteworthy that the two phenyl groups attached to Te(1) and Te(2) are trans to each other with respect to the plane Mo(1)Mo(2)Te(1)Te(2), whereas the phenyl group bonded to Te(3) is cis to the phenyl group attached to Te(2). Interestingly, Te(1), Te(2), Te(3), and Cl(1) atoms are also coplanar. This plane is perpendicular to both Mo(1)Mo(2)Te(1)Te(2) and Mo(1)Mo(2)Te(3)Cl(1) planes, which is passed through the midpoint of the Mo(1)-Mo(2) bond. The bond angles Mo(1) - Te(1) - Mo(2), Mo(1) - Te(2) - Mo(2), and Mo(1)-Te(3)-Mo(2) are virtually the same (59.2- $(2)^{\circ}$, 59.1(2)°, and 59.4(1)°, respectively), which are smaller than that of Mo(1)-Cl(1)-Mo(2) (66.2(1)°). While the bond lengths of Mo-Cl equal 2.486(2) and 2.487(2) Å, those of Mo–Te are between 2.735(1) and 2.756(3)Å, which are very close to those in Cp_2Mo_2 (CO)₄-(µ-TePh)₂ (2.785(4)-2.865(4)Å).¹¹ The bond length of Mo(1)-Mo(2) is 2.714(6) Å, which is slightly longer than that of $Cp_2Mo_2(\mu$ -SMe)₄ (2.603(2) Å)¹² and very close to that in $Cp_2Mo_2(CO)_2(\mu$ -SMe)₃Br (2.785(2) Å).¹³ Since the oxidation state of Mo(1) and Mo(2) is +III, 4b belongs to a d^3-d^3 type of complex, and the electronic configuration of the Mo(1)-Mo(2) single bond would be best described as $\sigma^2 \delta^2 \delta^{*2.14}$ In view of the determined structure of isomer 4b, we might suggest that isomer 4a would have the phenyl group attached to Te(2) in the cis position to both the Cl ligand and the phenyl group attached to Te(1). This is because it is impossible for all three phenyl groups to be in cis positions with respect to Mo(1)Mo(2)Te(1)Te(2) plane, due to very strong steric repulsion between the two phenyl groups axially bonded to Te(1) and Te(3) in the butterfly-shaped skeleton Mo(1)Mo(2)Te(1)Te(3).¹⁵

Reaction of $[\eta^5$ -RC₅H₄(CO)₂Mo]₂ with Ph₂Te₂. Synthesis and Characterization of 9 and 10. To know the pathway for production of the tetrakis-bridged dimolybdenum complexes 1-8 from the novel tandem reaction, we carried out the reaction of an equimolar amount of $[\eta^5$ -RC₅H₄(CO)₂Mo]₂ (R = MeO₂C, EtO₂C) with Ph₂Te₂ in xylene at 110 °C. As a result, two homobis-bridged dimolybdenum complexes 9 and 10 were obtained in high yields without tetrakis-bridged dimolybdenum complexes 3 and 5 produced, as shown in Scheme 2.

It is worth noting that when the triply bonded dimer $[\eta^5-MeO_2CC_5H_4(CO)_2Mo]_2$ reacted with Ph₂Te₂ in 1:2 molar ratio at higher temperature (in refluxing xylene, about 145 °C), only 14% of **9** was obtained (primarily due to serious thermal decomposition of the triply bonded dimer) and no tetrakis-bridged dimolybdenum

⁽⁷⁾ Herrmann, W. A.; Rohrmann, J.; Hecht, C. J. Organomet. Chem. 1985, 290, 53.

⁽⁸⁾ Bogan, L. E.; Clark, G. R.; Rauchfuss, T. B. *Inorg. Chem.* **1986**, *25*, 4050.

⁽⁹⁾ Mathur, P.; Dash, A. K.; Hossain, Md, M.; Umbarkar, S. B.; Satyanarayana, C. V. V.; Chen, Y.-S.; Holt, E. M.; Rao, S. N.; Soriano, M. Organometallics **1996**, *15*, 1356.

⁽¹⁰⁾ Bachman, R. E.; Whitmire, K. H. Organometallics **1993**, *12*, 1988.

⁽¹¹⁾ Jaitner, P.; Wohlgenannt, W.; Gieren, A.; Betz, H.; Hübner, T. J. Organomet. Chem. **1985**, 297, 281.

⁽¹²⁾ Connelly, N. G.; Dahl, L. F. J. Am. Chem. Soc. 1970, 92, 7470.
(13) de Lima, M. B. G.; Guerchais, J. E.; Mercier, R.; Pétillon, F. Y. Organometallics 1986, 5, 1952.

⁽¹⁴⁾ Tremel, W.; Hoffmann, R.; Jemmis, E. D. *Inorg. Chem.* **1989**, *28*, 1213.

⁽¹⁵⁾ Shaver, A.; Fitzpatrick, P. J.; Steliou, K.; Butler, I. S. J. Am. Chem. Soc. **1979**, 101, 1313.

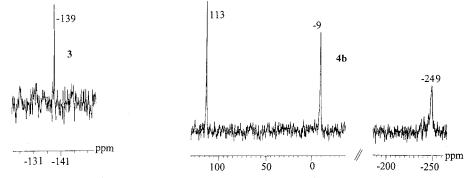


Figure 2. ¹²⁵Te NMR spectra of $(\eta^{5}-MeO_{2}CC_{5}H_{4}Mo)_{2}(\mu-PhTe)_{4}$ (3) and $(\eta^{5}-MeO_{2}CC_{5}H_{4}Mo)_{2}(\mu-Cl)(\mu-PhTe)_{3}$ (4b).

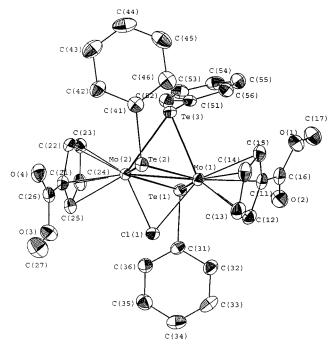


Figure 3. ORTEP drawing of 4b with atom-labeling scheme.

complex **3** was isolated. These experiments imply that the homo-tetrakis-bridged complexes **1**, **3**, and **5** could not be produced directly from reaction of triply bonded dimers $[\eta^5-\text{RC}_5\text{H}_4(\text{CO})_2\text{Mo}]_2$ with Ph_2Te_2 in the absence of Cp_2MX_2 (M = Ti, Zr; X = Cl, Br). In addition, TLC showed that the reaction of **9** with Ph_2Te_2 in 1:1 molar ratio in xylene at lower temperatures than that of refluxing xylene such as 105, 115, 125, or 135 °C for 2 h also gave no homo-tetrakis-bridged complex **3**, both starting materials **9** and Ph_2Te_2 being basically unchanged with trace amounts of immobile residue (CH₂-Cl₂ as eluent) left on the original spot.

9 and **10** are new and have been fully characterized by combustion analysis and IR and NMR spectroscopy, as well as by an X-ray diffraction analysis for **9**. The IR spectra of **9** and **10** each showed one absorption band at 1720 or 1716 cm⁻¹ for their ester functionalities and four to five absorption bands in the range 1954–1846 cm⁻¹ for their terminal carbonyls. The ¹H NMR spectra showed the signals assignable to all the hydrogencontaining groups, whereas the ¹²⁵Te NMR spectra each displayed one broad peak at -1160 or -1164 ppm with reference to external Ph₂Te₂ (Figure 5). It is interesting to note that such high-field ¹²⁵Te NMR values, compared to those of **3** and **4b**, imply that the Te atoms in bis-

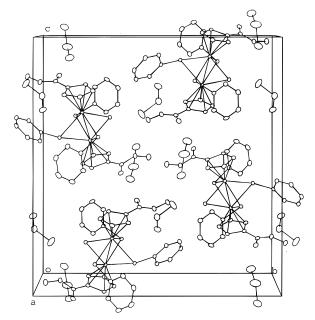
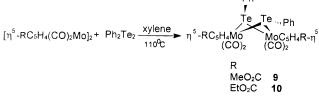
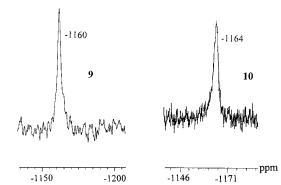



Figure 4. Unit cell plot of 4b.


 Table 1. Selected Bond Lengths (Å) and Bonds

 Angles (deg) for 4b

	0 、	0,			
Mo(1)-Mo(2)	2.714(6)	Te(1)-Mo(2)	2.747(4)		
Te(1)-Mo(1)	2.752(2)	Te(2)-Mo(1)	2.748(4)		
Te(2)-Mo(2)	2.756(3)	Te(3)-Mo(2)	2.735(1)		
Te(3)-Mo(1)	2.741(1)	Mo(1)-Cl(1)	2.487(2)		
Mo(2)-Cl(1)	2.486(2)	Te(1)-C(31)	2.140(6)		
Mo(1)-C(12)	2.242(6)	Mo(2)-C(22)	2.237(5)		
Mo(2) - Te(1) - Mo(1)	59.2(2)	Mo(1) - Te(2) - Mo(2)	59.1(2)		
Mo(2)-Te(3)-Mo(1)	59.4(1)	Mo(2)-Mo(1)-Te(3)	60.18(6)		
Mo(2)-Mo(1)-Te(2)	60.60(4)	Mo(2)-Mo(1)-Te(1)	60.3(2)		
Te(3)-Mo(1)-Te(2)	76.93(8)	Mo(1)-Mo(2)-Te(3)	60.40(8)		
Mo(1)-Mo(2)-Te(1)	60.53(4)	Mo(1)-Mo(2)-Te(2)	60.3(2)		
Te(3)-Mo(2)-Te(1)	76.2(1)	Te(3)-Mo(2)-Te(2)	76.90(5)		
Te(1)-Mo(2)-Te(2)	120.8(2)	Mo(2)-Cl(1)-Mo(1)	66.2(1)		
Scheme 2					
		Ph			

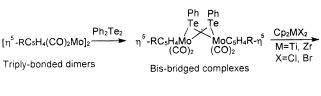
bridged complexes **9** and **10** are much more shielded than those in the tetrakis-bridged complexes by corresponding structural units around Te atoms. In addition, such high-field ¹²⁵Te NMR values were also observed in other tellurium-containing organometallic com-

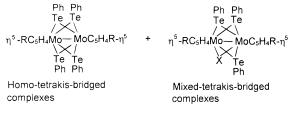
Figure 5. ¹²⁵Te NMR spectra of $[\eta^5-MeO_2CC_5H_4Mo]_2(\mu-PhTe)_2$ (9) and $[\eta^5-EtO_2CC_5H_4(CO)_2Mo]_2(\mu-PhTe)_2$ (10).

Figure 6. ORTEP drawing of 9 with atom-labeling scheme.

pounds, such as $(\mu$ -Te₂)[Cp*Re(CO)₂]₂,¹⁶ $(\mu$ -Te₂)Fe₂-(CO)₆,¹⁷ [η ⁵-MeC₅H₄MoFeTe₂(CO)₅]SbF₆,¹⁸ and [(CO)₃-Fe(μ -CH₂)Te]₂.¹⁹

Theoretically, the bridged complexes of type $[\eta^{5}-\text{RC}_{5}\text{H}_{4}(\text{CO})_{2}\text{Mo}](\mu\text{-}\text{ER})_{2} (\eta^{5}\text{-}\text{RC}_{5}\text{H}_{4} = \text{parent and substituted Cp; M = Cr, Mo, W; E = S, Se, Te) may have six isomers (namely, trans/ae, trans/ee, trans/aa, cis/ae, cis/ee, and cis/aa; a = axial, e = equatorial), in terms of the trans or cis arrangement of either <math>\eta^{5}\text{-}\text{RC}_{5}\text{H}_{4}$ or carbonyl ligands with respect to the M···M vector and the ae, ee, or aa orientations of two R groups bonded to the bridged E atoms in the butterfly skeleton M₂E₂.²⁰ So, to further establish the structures of **9** and **10**, we carried out the crystallographic study of **9** by X-ray diffraction techniques.


The ORTEP plot of **9** is presented in Figure 6, and its selected bond lengths and angles are listed in Table 2. As seen in Figure 6, this molecule contains a butterfly Mo(1)Mo(2)Te(1)Te(2) skeleton; the Mo(1) and Mo(2)atoms each carry one substituted Cp ring and two


 Table 2. Selected Bond Lengths (Å) and Bond

 Angles (deg) for 9

Mo(1)-Mo(2)	4.259(3)	Te(1)-Mo(1)	2.825(2)
Te(1)-Mo(2)	2.829(2)	Te(2)-Mo(2)	2.811(2)
Te(2)-Mo(1)	2.824(2)	Te(1) - C(11)	2.13(1)
Te(2)-C(21)	2.15(2)	Mo(1)-C(1)	1.95(2)
Te(2)-Mo(1)-Te(1)	70.81(6)	Te(2)-Mo(2)-Te(1)	70.94(6)
1e(z) - Mo(1) - 1e(1)	70.81(0)	1e(2) - Mo(2) - 1e(1)	70.94(6)
Mo(1)-Te(1)-Mo(2)	97.76(6)	Mo(2)-Te(2)-Mo(1)	98.19(6)
C(11)-Te(1)-Mo(1)	106.3(4)	C(11)-Te(1)-Mo(2)	105.8(4)
C(21)-Te(2)-Mo(2)	106.9(4)	C(21)-Te(2)-Mo(1)	108.3(4)
C(1)-Mo(1)-C(3)	78.8(8)	C(2)-Mo(2)-C(4)	76.5(7)

Scheme 3

terminal carbonyls trans to each other, whereas the Te-(1) and Te(2) atoms are attached to two phenyl groups by an axial and an equatorial bond, respectively. So, **9** belongs to the trans/ae isomer.²⁰ While the dihedral angle between the two cyclopentadienyl planes C(31) through C(35) and C(41) through C(45) is 44.27°, that between the two benzene ring planes C(11) through C(16) and C(21) through C(26) equals 72.41°. It is worth noting that the distance between Mo(1) and Mo(2) is 4.259(3) Å, which is even longer than those in its analogues [CpMo(CO)₂]₂(μ -EPh)₂ (E = S,²¹ 3.940 Å; E = Se,¹¹ 4.054 Å, E = Te,²² 4.23 Å). This implies that there is no bonding interactions between the two Mo atoms in **9**.

Mechanistic Considerations for the Tandem Reaction. To further reveal the pathway for the tandem reaction, we carried out the reaction of an equimolar amount of **9** with Cp₂TiCl₂ or Cp₂ZrCl₂ in xylene at reflux. As a result, 34% of **4a** and a much less amount of **4b** and **3** (for Cp₂TiCl₂) and 9% of **4a** and trace of amounts of **4b** and **3** (for Cp₂ZrCl₂) were produced, respectively. So, based on these results and the above facts indicated by reaction of [η^5 -RC₅H₄(CO)₂-Mo]₂ with equimolar or excess Ph₂Te₂, a plausible pathway for the tandem reaction might be proposed as shown in Scheme 3.

In the first step of the tandem reaction, the Mo–Mo triply bonded dimers react with Ph₂Te₂ to give intermediate bis-bridged complexes $[\eta^5-\text{RC}_5\text{H}_4(\text{CO})_2\text{Mo}]_2(\mu-\text{PhTe})_2$, and in the second step the bis-bridged complexes will further react with Cp₂MX₂ to give homo- and mixed-tetrakis-bridged complexes $(\eta^5-\text{RC}_5\text{H}_4\text{Mo})_2(\mu-\text{PhTe})_4$ and $(\eta^5-\text{RC}_5\text{H}_4\text{Mo})_2(\mu-\text{X})(\mu-\text{PhTe})_3$. Apparently, in the second step Cp₂MX₂ played an important role both as a Cl or

⁽¹⁶⁾ Herrmann, W. A.; Kneuper, H.-J. J. Organomet. Chem. 1998, 348, 193.

⁽¹⁷⁾ Lesch, D. A.; Rauchfuss, T. B. *Inorg. Chem.* **1981**, *20*, 3583.
(18) Bogan, L. E.; Rauchfuss, T. B. *Inorg. Chem.* **1985**, *24*, 3720.

⁽¹⁹⁾ Mathur, P.; Manimaran, B.; Hossain, Md. M.; Satyanarayana,

C. V. V.; Puranik, V. G.; Tavale, S. S. J. Organomet. Chem. **1995**, 493, 251.

⁽²⁰⁾ Shaver, A.; Lum, B. S.; Bird, P.; Livingstone, E.; Schweitzer, M. *Inorg. Chem.* **1990**, *29*, 1832.

⁽²¹⁾ Benson, I. B.; Killops, S. D.; Knox, S. A. R.; Welch, A. J. J. Chem. Soc., Chem. Commun. **1980**, 1137.

⁽²²⁾ Rakoczy, H.; Schollenberger, M.; Nuber, B.; Ziegler, M. L. J. Organomet. Chem. 1994, 467, 217.

Br source and causing the transformation of the bisbridged complexes $[\eta^5 - \text{RC}_5 H_4(\text{CO})_2 \text{Mo}]_2 (\mu - \text{PhTe})_2$ into homo- and mixed-tetrakis-bridged products. It should be further pointed out that (i) the homo- and mixedtetrakis-bridged complexes are most likely produced independently from the intermediate bis-bridged complexes under the action of Cp₂MX₂, since reaction of **3** with Cp₂TiCl₂ or 4b with Ph₂Te₂ under those conditions gave no corresponding RTe/Cl ligand exchange products and about 90% of starting material 3 or 4b was recovered. (ii) While n-Bu₄NBr can replace Cp₂ZrBr₂ as a bromide source in reaction of $[\eta^5-MeO_2CC_5H_4(CO)_2 Mo_{2}$ with $Ph_{2}Te_{2}$ to give **7a** and **7b**, $Me_{4}NCl$ cannot replace Cp_2MCl_2 (M = Ti, Zr) as a chloride source to give the expected **4a** and **4b**, possibly due to its very low solubility in xylene. (iii) We have never found any TLC isolated products that contain a Cp₂M unit, which should remain in the insoluble residues. It is believed that Cp₂MX₂ are not simply halide sources but are responsible for production of homo-tetrakis-bridged complexes 1, 3, and 5. The metallocenes in this tandem reaction should be involved in the redox process, through which each Mo atom with an oxidation state of +I in triply bonded dimers is oxidized to the Mo atom with an oxidation state of +III in products 1-8. However, at present the detailed pathway regarding this tandem reaction is still unclear, and more work remains to be studied in the future.

Experimental Section

General Procedures. All reactions were carried out under an atmosphere of purified nitrogen using standard Schlenk and vacuum-line techniques. Xylene was distilled from sodiumbenzophenone ketyl under nitrogen. Me₄NCl and n-Bu₄NBr were commercially available. Ph_2Te_2 ,²³ [η^5 -RC₅H₄(CO)₂Mo]₂,²⁴ Cp₂TiCl₂,²⁵ Cp₂ZrCl₂,²⁵ and Cp₂Zr Br₂²⁶ were prepared according to the literature. The products were separated by TLC (20 imes 25 imes 0.25 cm, silica gel G) and further purified by recrystallization from CH₂Cl₂/hexane. The yields of the products were calculated based on Mo-Mo triply bonded dimers $[\eta^5$ -RC₅H₄(CO)₂Mo]₂. IR spectra were recorded on a Nicolet FT-IR 170 SX spectrophotometer; ¹H and ¹²⁵Te NMR spectra were recorded on Brucker AC-P 200 and Bruker ARX-500 NMR spectrometers. ¹²⁵Te NMR spectra were referenced to Ph₂Te₂ (δ 0). Combustion analyses were performed on a Yanaco CHN corder MT-3 analyzer, and melting points were determined on Yanaco Mp-500 apparatus.

Preparation of (η^{5} -MeCOC₅H₄Mo)₂(μ -PhTe)₄ (1) and (η^{5} -MeCOC₅H₄Mo)₂(μ -Cl)(μ -PhTe)₃ (2a,b). A 100 mL threenecked flask fitted with a magnetic stir-bar, a rubber septum, and a reflux condenser topped with a nitrogen inlet tube was charged with 0.518 g (1.00 mmol) of [η^{5} -MeCOC₅H₄(CO)₂Mo]₂, 0.470 g (1.15 mmol) of Ph₂Te₂, and 40 mL of xylene. The mixture was stirred at 110 °C for 1 h, and then 0.249 g (1.00 mmol) of Cp₂TiCl₂ was added. The mixture was stirred at 110 °C for 2 h and then at reflux (ca. 140 °C) for an additional 4 h. Solvent was removed under reduced pressure. The residue was subjected to TLC separation using CH₂Cl₂ as eluent. The first main band afforded 0.138 g (11%) of **1** as a brown solid, mp 212–213 °C. Anal. Calcd for C₃₈H₃₄Mo₂Te₄: C, 37.26; H, 2.80. Found: C, 37.47; H, 2.85. IR (KBr disk): $\nu_{C=0}$ 1654(vs) cm⁻¹. ¹H NMR (CDCl₃): 2.14(s, 6H, 2CH₃), 5.48–5.78(m, 4H, 2H³, 2H⁴), 5.84–6.12(m, 4H, 2H², 2H⁵), 6.80–7.60(m, 20H, 4C₆H₅) ppm. The second main band afforded 0.196 g (19%) of **2a** as a brown solid, mp 222 °C dec. Anal. Calcd for C₃₂H₂₉ClMo₂O₂-Te₃: C, 36.41; H, 2.77. Found: C, 36.50; H, 2.71. IR (KBr disk): $\nu_{C=0}$ 1654(vs) cm⁻¹. ¹H NMR (CDCl₃): 2.12(s, 6H, 2CH₃), 5.48–5.62(m, 4H, 2H³, 2H⁴), 5.63–5.86(m, 4H, 2H², 2H⁵), 6.88–7.39(m, 15H, 3C₆H₅) ppm. The third main band afforded 0.379 g (37%) of **2b** as a black-brown solid, mp 210 °C dec. Anal. Calcd for C₃₂H₂₉ClMo₂O₂Te₃: C, 36.41; H, 2.77. Found: C, 36.25; H, 2.63. IR (KBr disk): $\nu_{C=0}$ 1660(vs) cm⁻¹. ¹H NMR (CDCl₃): 2.00(s, 6H, 2CH₃), 5.40–5.72(m, 4H, 2H³, 2H⁴), 5.80–6.12(m, 4H, 2H², 2H⁵), 6.92–7.56(m, 15H, 3C₆H₅) ppm.

Preparation of $(\eta^5$ -MeO₂CC₅H₄Mo)₂(μ -PhTe)₄ (3) and $(\eta^5-MeO_2CC_5H_4Mo)_2(\mu-Cl)(\mu-PhTe)_3$ (4a,b). The same procedure as that for 1 and 2a,b was followed, but 0.550 g (1.00 mmol) of $[\eta^5-MeO_2CC_5H_4(CO)_2Mo]_2$ was used instead of $[\eta^5-MeO_2CC_5H_4(CO)_2Mo]_2$ MeCOC₅H₄(CO)₂Mo]₂. Using 4:1 (v/v) CH₂Cl₂/petroleum ether as eluent, the first main band afforded 0.159 g (13%) of 3 as a brown solid, mp 208-210 °C. Anal. Calcd for C₃₈H₃₄Mo₂O₄-Te4: C, 36.31; H, 2.73. Found: C, 36.25; H, 2.56. IR (KBr disk): $\nu_{C=0}$ 1707(vs) cm⁻¹. ¹H NMR (acetone- d_6): 3.62(s, 6H, $2CH_3$), $5.60-5.76(m, 4H, 2H^3, 2H^4)$, $5.92-6.02(m, 4H, 2H^2, 2H^2)$ 2H⁵), 6.88–7.56(m, 20H, 4C₆H₅) ppm. ^{125}Te NMR (CDCl₃, Ph₂-Te₂): -139(s) ppm. The second main band afforded 0.114 g (10%) of 4a as a dark green solid, mp 216-218 °C. Anal. Calcd for C₃₂H₂₉ClMo₂O₄Te₃: C, 35.32; H, 2.71. Found: C, 35.60; H, 3.13. IR (KBr disk): $\nu_{C=0}$ 1706(vs) cm⁻¹. ¹H NMR (CDCl₃): $3.63(s,\,6H,\,2CH_3),\,5.56-5.76(m,\,4H,\,2H^3,\,2H^4),\,5.92-6.04(m,$ 4H, $2H^2$, $2H^5$), $6.88-7.56(m, 15H, 3C_6H_5)$ ppm. The third main band afforded 0.421 g (39%) of 4b as a dark green solid, mp 198–202 °C. Anal. Calcd for C₃₂H₂₉ClMo₂O₄Te₃: C, 35.32; H, 2.71. Found: C, 35.46; H, 2.50. IR (KBr disk): v_{C=0} 1707(vs) cm⁻¹. ¹H NMR (CDCl₃): 3.56(s, 6H, 2CH₃), 5.52-5.68(m, 4H, $2H^3$, $2H^4$), $5.84-6.04(m, 4H, 2H^2, 2H^5)$, 6.88-7.76(m, 15H, 15H)3C₆H₅) ppm. ¹²⁵Te NMR (CDCl₃, Ph₂Te₂): 113, -9, -249(s, s, s) ppm. In addition, while 0.096 g (8%) of 3, 0.078 g (7%) of 4a, and 0.189 g (17%) of 4b could be also prepared from 0.550 g (1.00 mmol) of $[\eta^5$ -MeO₂CC₅H₄(CO)₂ Mo $]_2$, 0.615 g (1.50 mmol) of Ph₂Te₂, and 0.292 g (1.00 mmol) of Cp₂ZrCl₂, the reaction of 0.712 g (1.3 mmol) of $[\eta^5-MeO_2CC_5H_4(CO)_2Mo]_2$, 0.532 g (1.3 mmol) of Ph2Te2, and 0.142 g (1.3 mmol) of Me4-NCl under similar conditions did not give any amount of 3 and 4a,b.

Preparation of $(\eta^5$ -EtO₂CC₅H₄Mo)₂(μ -PhTe)₄ (5) and (η⁵-EtO₂CC₅H₄Mo)₂(μ-Cl) (μ-PhTe)₃ (6a,b). Similarly, 0.578 g (1.00 mmol) of $[\eta^5$ -EtO₂CC₅H₄(CO)₂Mo]₂ reacted with 0.615 g (1.50 mmol) of Ph₂Te₂ and 0.292 g (1.00 mmol) of Cp₂ZrCl₂ to give three main bands. The first main band afforded 0.153 g (12%) of 5 as a green solid, mp 202-204 °C. Anal. Calcd for C₄₀H₃₈Mo₂O₄Te₄: C, 37.38; H, 2.98. Found: C, 37.29; H, 3.11. IR (KBr disk): $v_{C=0}$ 1702(vs) cm⁻¹. ¹H NMR (acetone- d_6): 1.19-(t, J = 7.2 Hz, 6H, 2CH₃), 4.11(q, J = 7.2 Hz, 4H, 2CH₂), 5.56-5.68(m, 4H, 2H³, 2H⁴), 5.94-6.00(m, 4H, 2H², 2H⁵), 6.80-7.52(m, 20H, 4C₆H₅) ppm. The second main band afforded 0.196 g (18%) of **6a** as a yellow-green solid, mp 209-211 °C. Anal. Calcd for C₃₄H₃₃ClMo₂O₄Te₃: C, 36.59; H, 3.01. Found: C, 36.51; H, 3.07. IR (KBr disk): $\nu_{C=0}$ 1702(vs) cm⁻¹. ¹H NMR (CDCl₃): 1.21(t, J = 7.2 Hz, 6H, 2CH₃), 4.15(q, J = 7.2 Hz, 4H, 2CH₂), 5.54(br.s, 4H, 2H³, 2H⁴), 5.56-5.92(m, 4H, 2H², 2H⁵), 6.88–7.24(m, 15H, 3C₆H₅) ppm. The third main band afforded 0.374 g (34%) of 6b as a dark green solid, mp 176-178 °C. Anal. Calcd for C₃₄H₃₃ClMo₂ O₄Te₃: C, 36.59; H, 3.01. Found: C, 36.60; H, 3.37. IR (KBr disk): $\nu_{C=0}$ 1703(vs) cm⁻¹. ¹H NMR (acetone- d_6): 1.10(t, J = 7.2 Hz, 6H, 2CH₃), 4.14(q, J = 7.2 Hz, 4H, 2CH₂), 5.60-5.80(m, 4H, 2H³, 2H⁴), 5.98-6.20-(m, 4H, 2H², 2H⁵), 7.00-7.76(m, 15H, 3C₆H₅) ppm.

Preparation of (η⁵-MeO₂CC₅H₄Mo)₂(μ-PhTe)₄ (3) and (η⁵-MeO₂CC₅H₄Mo)₂(μ-Br)(μ-PhTe)₃ (7a,b). Similarly, 0.550 g (1.00 mmol) of [η⁵-MeO₂CC₅H₄(CO)₂Mo]₂ reacted with 0.615

 ⁽²³⁾ Haller, W. S.; Irgolic, K. J. J. Organomet. Chem. 1972, 38, 97.
 (24) Song, L.-C.; Shen, J.-Y.; Wang, J.-Q.; Hu, Q.-M.; Wang, R.-J.;
 Wang, H.-G. Polyhedron 1994, 13, 3235.

⁽²⁵⁾ King, R. B. Organometallic Syntheses: Transition-Metal Compounds; Academic Press: New York, 1965; Vol. 1, p 75.

⁽²⁶⁾ Wilkinson, G.; Birmingham, J. M. J. Am. Chem. Soc. 1954, 76, 4281.

g (1.50 mmol) of Ph₂Te₂ and 0.379 g (1.00 mmol) of Cp₂ZrBr₂ to give three main bands. The first main band afforded 0.049 g (4%) of 3. The second main band afforded 0.096 g (9%) of 7a as black-green solid, mp 214-216 °C. Anal. Calcd for C₃₂H₂₉-BrMo₂O₄Te₃: C, 33.95; H, 2.58. Found: C, 33.85; H, 2.51. IR (KBr disk): $\nu_{C=0}$ 1705(vs) cm⁻¹. ¹H NMR (acetone- d_6): 3.63(s, 6H, 2CH₃), 5.56-5.68(m, 4H, 2H³, 2H⁴), 5.88-6.00(m, 4H, 2H², 2H⁵), 6.84–7.52(m, 15H, 3C₆H₅) ppm. The second main band afforded 0.218 g (19%) of 7b as a yellow-green solid, mp 192-194 °C. Anal. Cacld for C₃₂H₂₉BrMo₂O₄Te₃: C, 33.95; H, 2.58. Found: C, 34.12; H, 2.60. IR (KBr disk): $v_{C=0}$ 1707(vs) cm⁻¹. ¹H NMR (acetone-*d*₆): 3.58(s, 6H, 2CH₃), 5.48-5.68(m, 4H, $2H^3$, $2H^4$), $5.76-6.00(m, 4H, 2H^2, 2H^5)$, 6.97-7.56(m, 15H, 15H) $3C_6H_5$) ppm. However, when 0.550 g (1 mmol) of [η^5 -MeO₂-CC₅H₄(CO)₂Mo]₂ and 0.409 g (1 mmol) of Ph₂Te₂ reacted with 0.322 g (1 mmol) of n-Bu₄NBr under conditions similar to those in the case of Cp₂ZrBr₂, 0.042 g (4%) of **7a** and 0.285 g (26%) of **7b** were obtained without any amount of **3** isolated.

Preparation of $(\eta^5$ -EtO₂CC₅H₄Mo)₂(μ -PhTe)₄ (5) and (η⁵-EtO₂CC₅H₄Mo)₂(μ-Br)(μ-PhTe)₃ (8a,b). Similarly, 0.578 g (1.00 mmol) of $[\eta^5$ -EtO₂CC₅H₄(CO)₂Mo]₂ reacted with 0.615 g (1.50 mmol) of Ph₂Te₂ and 0.379 g (1.00 mmol) of Cp₂ZrBr₂ to give three main bands. The first main band afforded 0.046 g (4%) of 5. The second main band afforded 0.112 g (10%) of 8a as a black-green solid, mp 206-208 °C. Anal. Calcd for C₃₄H₃₃BrMo₂O₄Te₃: C, 35.20; H, 2.87. Found: C, 35.49; H, 2.92. IR (KBr disk): $v_{C=0}$ 1700(vs) cm⁻¹. ¹H NMR (acetone d_6): 1.18(t, J = 7.2 Hz, 6H, 2CH₃), 4.11(q, J = 7.2 Hz, 4H, 2CH₂), 5.56-5.68(m, 4H, 2H³, 2H⁴), 5.88-6.00(m, 4H, 2H², 2H⁵), 6.84-7.56(m, 15H, 3C₆H₅) ppm. The second main band afforded 0.236 g (20%) of 8b as a yellow-green solid, mp 188-192 °C. Anal. Calcd for C₃₄H₃₃BrMo₂O₄Te₃: C, 35.20; H, 2.87. Found: C, 34.83; H, 3.02. IR (KBr disk): $\nu_{C=0}$ 1707(vs) cm⁻¹. ¹H NMR (acetone- d_6): 1.10(t, J = 7.2 Hz, 6H, 2CH₃), 4.08(q, J = 7.2 Hz, 4H, 2CH₂), 5.48-5.68(m, 4H, 2H³, 2H⁴), 5.76-6.04-(m, 4H, 2H², 2H⁵), 6.88-7.60(m, 15H, 3C₆H₅) ppm.

Preparation of $[\eta^5$ -MeO₂CC₅H₄(CO)₂Mo]₂(μ -PhTe)₂ (9). To the same equipped flask described above were added 0.550 g (1.00 mmol) of $[\eta^5$ -MeO₂CC₅H₄(CO)₂Mo]₂ 0.409 g (1.00 mmol) of Ph₂Te₂, and 40 mL of xylene. The mixture was stirred at 110 °C for 6 h. Solvent was removed under reduced pressure. The residue was subjected to column chromatography using CH₂Cl₂ as eluent. From the main brown band was obtained 0.850 g (89%) of 9 as a brown solid, mp 149-150 °C. Anal. Calcd for C₃₀H₂₄Mo₂O₈Te₂: C, 37.55; H, 2.52. Found: C, 37.51; H, 2.40. IR (KBr disk): $v_{C=0}$ 1954(s), 1936(vs), 1898(m), 1875-(vs), 1863(s); $\nu_{C=0}$ 1720(vs) cm⁻¹. ¹H NMR (CDCl₃): 3.72(s, 6H, 2CH₃), 5.28-5.58(m, 4H, 2H³, 2H⁴), 5.58-5.86(m, 4H, 2H², 2H⁵), 7.00-7.64(m, 10H, 2C₆H₅) ppm. ¹²⁵Te NMR (CDCl₃, Ph₂-Te₂): -1160(s) ppm. However, when 0.275 g (0.50 mmol) of $[\eta^5$ -MeO₂C C₅H₄(CO)₂Mo]₂ reacted with 0.409 g (1 mmol) of Ph2Te2 in 40 mL of xylene at reflux for 4 h, a much less amount of 9 (0.067 g, 14%) was obtained.

Preparation of [η⁵-EtO₂CC₅H₄(CO)₂Mo]₂(μ-PhTe)₂ (10). The same procedure as that for **9** was followed, but 0.578 g (1.00 mmol) of [η⁵-EtO₂CC₅H₄(CO)₂Mo]₂ was used instead of [η⁵-MeO₂CC₅H₄(CO)₂Mo]₂. The main brown band afforded 0.857 g (87%) of **10** as a brown solid, mp 124–125 °C. Anal. Calcd for C₃₂H₂₈Mo₂O₈Te₂: C, 38.92; H, 2.86. Found: C, 39.00; H, 3.01. IR (KBr disk): $\nu_{C=0}$ 1954(s), 1938(vs), 1882(vs), 1846(vs); $\nu_{C=0}$ 1716(s) cm⁻¹. ¹H NMR (CDCl₃): 1.27(t, *J* = 7.2 Hz, 6H, 2CH₃), 4.26(q, *J* = 7.2 Hz, 4H, 2CH₂), 5.40–5.62(m, 4H, 2H³, 2H⁴), 5.62–5.94(m, 4H, 2H², 2H⁵), 7.08–7.68(m, 10H, 2C₆H₅) ppm. ¹²⁵Te NMR (CDCl₃, Ph₂Te₂): –1164(s) ppm.

Reaction of 9 with Cp₂TiCl₂ or Cp₂ZrCl₂. To the same equipped flask described above were added 0.480 g (0.50 mmol) of $[\eta^5-MeO_2CC_5H_4(CO)_2Mo]_2(\mu-PhTe)_2$ (9), 0.125 g (0.50 mmol) of Cp₂TiCl₂, and 40 mL of xylene. The mixture was stirred at reflux for 4 h. Solvent was removed under reduced pressure. The residue was subjected to TLC separation using CH₂Cl₂/ petroleum ether as eluent. The dark green main band afforded

Table 3. Crystalllographic Data for 4b and 9

8					
	4b	9			
mol formula	C ₃₂ H ₂₉ ClMo ₂ O ₄ Te ₃ ·2CH ₂ Cl ₂	C ₃₀ H ₂₄ Mo ₂ O ₈ Te ₂			
mol wt	1257.58	959.59			
cryst dimens, mm	$0.90 \times 0.40 \times 0.30$	$0.60\times0.20\times0.10$			
cryst syst	monoclinic	triclinic			
space group	P21/c (No. 14)	P1 (No. 2)			
a, Å	9.856(3)	11.949(4)			
<i>b</i> , Å	19.4599(6)	12.809(7)			
<i>c</i> , Å	20.418(3)	11.503(4)			
α, deg		82.48(4)			
β , deg	95.91(3)	78.62(2)			
γ , deg		73.92(4)			
$V, Å^3$	3895(2)	1653(3)			
Ζ	4	2			
density(calcd), g/cm ⁻³	2.083	1.960			
F(000)	2304	928			
μ (Mo K α), cm ⁻¹	32.18	25.24			
diffractometer	Enraf-Nonius CAD 4	Rigaku-AFC 5R			
temp, °C	23	23			
scan type	$\omega/2\theta$	$\omega/2\theta$			
R	0.034	0.073			
$R_{ m w}$	0.047	0.094			
S	1.38	2.30			
largest peak (e/Å ⁻³)	0.706	2.76			

0.185 g (34%) of **4b** and a much less amount (not weighed) of **4a** and **3**. When 0.146 g (0.50 mmol) of Cp_2ZrCl_2 was used in place of Cp_2TiCl_2 , 0.054 g (10%) of **4b** and a much less amount of **4a** and **3** were produced.

Reaction of 3 with Cp₂TiCl₂. A mixture of 0.063 g (0.05 mmol) of **3** and 0.013 g (0.05 mmol) of Cp₂TiCl₂ in 40 mL of xylene was stirred and refluxed for 6 h. After removal of solvent under vacuum the residue was subjected to TLC separation using CH_2Cl_2 as eluent to recover 0.055 g (87%) of starting material **3**.

Reaction of 4b with Ph_2Te_2. A mixture of 0.109 g (0.10 mmol) of **4b** and 0.082 g (0.20 mmol) of Ph_2Te_2 in 40 mL of xylene was stirred at reflux for 6 h. After the same workup as above, 0.099 g (91%) of starting material **4b** was recovered.

Single-Crystal Structure Determinations of 4b and 9. Single crystals of **4b** and **9** suitable for X-ray diffraction analyses were grown from CH₂Cl₂/hexane solutions at about 5 °C. A crystal was mounted on a glass fiber and placed on the diffractometer with a graphite monochromator with Mo– K α radiation. A total of 7502 (**4b**) or 6128 (**9**) independent reflections were collected at 23 °C by the $\omega/2\theta$ scan mode, of which 7189 (**4b**) or 5820 (**9**) independent reflections with $I \ge$ $3\sigma(I)$ were considered to be observed and used in subsequent refinement. The data were corrected for Lorentz polarization factors. Crystallographic data are listed in Table 3.

The structures were solved by direct methods and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically, and H atoms were included but not refined. The final refinement by a full-matrix least-squares method with non-H atoms converged to give the unweighted and weighted agreement factors. All calculations were performed using the TEXSAN program system crystallographic software of the Molecular Structure Corporation.

Acknowledgment. We are grateful to the National Natural Science Foundation of China, the State Key Laboratory of Elemento-Organic Chemistry, and the State Key Laboratory of Structural Chemistry for financial support of this work.

Supporting Information Available: Full tables of crystal data, atomic coordinates and thermal parameters, and bond lengths and angles for **4b** and **9**. This material is available free of charge via the Internet at http://pubs.acs.org. OM9904448