Letter

A new binary boride, Nb₅B₆

H. BOLMGREN and T. LUNDSTRÖM

Institute of Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala (Sweden) (Received December 13, 1989)

The crystal structures of a number of binary borides are based on zigzag boron chains and double metal layers containing trigonal metal prisms with boron atoms in the centre of each prism (BMe₆ prisms). These structures are represented by five structure types; the MoB-, the CrB-, the V₅B₆-, the Ta₃B₄- and the V₂B₃type structures [1]. The MoB-type structure is only represented by low temperature phases. Both the CrB- and the Ta₃B₄-type structures have several representatives among the transition metal borides. The first type is represented by VB, NbB, TaB, CrB, β -MoB and β -WB and the latter by V₃B₄, Nb₃B₄, Ta₃B₄, Cr₃B₄, Mn₃Bn₃₄ and probably, though not yet well characterized, Ti₃B₄. For the V₅B₆- and the V₂B₃-type structures [2] only two representatives of each type have been reported. These are V₅B₆ and Ta₅B₆[3, 4], and V₂B₃ and Cr₂B₃[5, 6] respectively. Since all iso-stoichiometrical borides of the fifth group in the periodic system crystallize in the same structure type, it was decided to study the Nb-B system with respect to the occurrence of phases isomorphous to V₅B₆ and V₂B₃.

In the present work a new binary boride, Nb₅B₆, has been synthesized. The sample was prepared by arc-melting a pellet of pressed powder mixtures of the elements^a under a purified argon atmosphere on a water-cooled copper hearth. X-ray examination of the sample was performed using a Guinier-Hägg focusing camera with Cu K α_1 radiation ($\lambda = 1.540598$ Å) and with silicon (a = 5.431065 Å [7]) as internal calibration standard. The positions and the intensities of the reflexions were measured with a computer-controlled microdensitometer [8] and the unit cell dimensions were refined using the local least-squares program CELLKANT [9]. The result of this investigation showed that the sample consisted of NbB and Nb₅B₆. It was found that Nb₅B₆ is isomorphous with V₅B₆ and Ta₅B₆. It has an orthorhombic structure and belongs to space group *Cmmm*. The cell parameters obtained for Nb₅B₆ are a = 22.768(2) Å, b = 3.1539(3) Å and c = 3.2992(3) Å (ESD:s in parentheses). Observed and calculated intensities are given in Table 1. The observed intensities are multiplied with a factor, *a*, to give

^aNiobium, Highways International, Baarn, The Netherlands, claimed purity 99.9% and boron, H. C. Starck, Werk Goslar, F.R.G., analysed purity 99.4% with iron as main impurity.

TABLE 1

hkl	$d_{ m calc}({ m \AA})$	$d_{ m obs}({ m \AA})$	$I_{\rm calc}$	$I_{\rm obs}$
600	3.7947	3.7973	6	7
0 0 1	3.2992	3.2985	3	vvw ^a
2 0 1	3.1688	3.1678	49	29
401	2.8544	2.8541	8	4
5 1 0	2.5927	2.5915	100	100
601	2.4898	2.4920	2	vvw ^a
10 0 0	2.2768	2.2766	28	16
1 1 1	2.2684	2.2690	10	19
3 1 1	2.1834	2.1830	100	160 ^b
8 0 1	2.1550	2.1565	69	68
5 1 1	2.0386	2.0384	4	4
711	1.8669	1.8676	14	12
11 1 0	1.7305	1.7307	12	10
911	1.6936	1.6942	4	vvw ^a
0 0 2	1.6496	1.6498	20	37 ^b
0 2 0	1.5770	1.5773	18	24
16 0 0	1.4230	1.4234	5	3
2 2 1	1.4118	1.4119	11	10
5 1 2	1.3918	1.3918	35	46
13 1 1	1.3889	1.3886	36	58
4 2 1	1.3803	1.3800	2	vvw ^a
15 1 0	1.3677	1.3677	9	5
10 0 2	1.3358	1.3358	13	9
10 2 0	1.2964	1.2962	12	11
821	1.2726	1.2727	33	36
11 1 2	1.1940	1.1941	10	7
18 0 1	1.1811	1.1808	17	9
0 2 2	1.1399	1.1403	19	36
2 0 3	1.0946	1.0946	4	w ^c

Powder diffraction data of Nb₅B₆. Data are given for all observed reflexions. Non-observed reflexions with $I_{calc} \leq 2$ are excluded

^aIntensity too low to be determined by the atomic microdensitometer.

^bLine overlap with NbB line.

^cThe background was too high to permit a good intensity determination.

intensities on the same scale as the calculated ones. The factor *a* is obtained from the formula $I_{calc} = aI_{obs} + b$, where *b* is the intercept on the I_{calc} -axis. Least-squares methods were used to calculate *a* and *b* but *b* was found to be negligible. Efforts to prepare single-phase samples of Nb₅B₆ by heat treatment or arc melting powder mixtures with different compositions have not been successful. An attempt was made to prepare Nb₂B₃ in the same way as Nb₅B₆. A number of heat treatments were also performed in the temperature range 1300–1700 °C. None of the samples, with an approximate composition of Nb₂B₃, contained anything but already known phases or Nb₅B₆. It has not been possible to synthesize either Na₅B₆ nor Ta₂B₃ with the method described above. However, single crystals of Ta₅B₆ have been prepared by a high temperature solution method [3]. Financial support from the Swedish Natural Science Research Council and the Swedish National Board for Technical Development is gratefully acknowledged.

References

- 1 T. Lundström, in V. I. Matkovich (ed.), Boron and Refractory Borides, Springer, Berlin, 1977, p. 351.
- 2 K. E. Spear and P. W. Gilles, *High Temp. Sci.*, 1 (1969) 86.
- 3 S. Okada, K. Hamano, I. Higashi, T. Lundström and L. E. Tergenius, *Bull. Chem. Soc. Jpn.*, in the press.
- 4 H. Bolmgren, T. Lundström, S. Okada, L.-E. Tergenius and I. Higashi, J. Less-Common Met., submitted.
- 5 S. Okada, T. Atoda, I. Highashi and Y. Takahashi, J. Less-Common Met., 113 (1985) 331.
- 6 S. Okada, T. Atoda and I. Higashi, J. Solid State Chem., 68 (1987) 61.
- 7 R. D. Deslattes and A. Henins, Phys. Rev. Lett., 31 (1973) 972.
- 8 A. E. Johansson, T. Palm and P. E. Werner, Phys. E: Sci. Instrum., 13 (1980) 1289.
- 9 N.-O. Ersson and J. Tegenfeldt, Institute of Chemistry, University of Uppsala, Sweden, unpublished.