

Inverse Electron Demand Hetero Diels–Alder Reactions of Solid Supported α -Acilthiones

Stefano Menichetti Mattia Mori Cristina Nativi Dipartimento di Chimica Organica, Polo Scientifico Università di Firenze, Sesto Fiorentino, Firenze, Italy

A solid supported dienic α, α' -dioxothione, obtained from the corresponding resinlinked β -chetoester, is able to react with vinyl ethers to give chemo- and regiospecifically the expected oxathiin cycloadducts. Trans-esterification allowed a quantitative and very clean cleavage of the products from the solid support.

Keywords Diels-alder reactions; dioxothione; oxathiins; solid phase synthesis

INTRODUCTION

In the past few years we demonstrated the utility of the phthalimidesulfenyl chloride (PhthNSCl, Phth = Phthaloyl)-mediated generation of α -oxothiones and several related thiocarbonyl species.¹ This methodology is based on the electrophilic introduction of the *N*thiophthalimide group on a suitable α -functionalized carbon nucleophile followed by base-catalyzed formation of the carbon-sulfur double bond via phthalimide anion elimination (Scheme 1).

By applying this procedure to β -diketons, β -ketoesters, and *N*-sulfonyl- β -iminoesters, it is possible to generate the corresponding α, α' -difunctionalized tioketones, which behave as efficient electron-poor dienes in chemo- and regiospecific and highly stereoselective inverse electron demand Diels–Alder reactions with a plethora of electron-rich alkenes, to give oxathiin cycloadducts with interesting synthetic applications (Scheme 1).^{1,2}

Received July 9, 2004; accepted October 5, 2004.

Work was carried out in the framework of the National Project "Stereoselezione in Sintesi Organica. Metodologie ed Applicazioni" and supported by the MIUR (Ministero Istruzione Università e Ricerca) and by the University of Firenze.

Address correspondence to Stefano Menichetti, Dipartimento di Chimica Organica, Polo Scientifico Universitá di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy. E-mail: stefano.menichetti@unifi.it

Phth = Phthaloyl; XH = OH, NHSO₂Ph; Y = COR, COOR; EDG = OR, SR, NCOR, Ar

SCHEME 1

Among the features required in a successful synthetic protocol, the possibility of its exploitation on solid phase is nowadays particularly appreciated.

In this communication we report our preliminary results on the generation of a solid supported α, α' -dioxothione from a β -ketoester functionalized resin.

RESULTS AND DISCUSSION

 β -Ketoesters are among the more versatile reagents in organic synthesis, and consequently several methods have been reported for their loading on solid support.³ For this project we decided to use the Wang resin on which the β -ketoester moiety can be introduced by either simple trans-esterification with *t*-butylacetoacetate or using an acyl Meldrum's acid derivative.³ Both procedures gave the expected modified resin **1** as demonstrated by FTIR and ¹H NMR analysis even though, in our hands, the trans-esterification protocol was more convenient (Scheme 2).

The next step was the sulfenylation with PhthNSCl, which was the crucial point of the procedure because the co-formation of HCl could degrade Wang resin. The reaction was performed using 1.5 equiv of PhthNSCl, in dry CH_2Cl_2 at rt, and FTIR analysis showed the formation of the linked α, α' -dioxothiophthalimide **2** without evidence of cleavage of the intermediates from the resin either under this condition or using an excess (3 equiv) of the sulfenyl chloride (Scheme 2).

The final step was the generation of the solid-supported dioxothione **3** by reaction with a base. In a first attempt, functionalized resin **2** was

SCHEME 2

reacted with pyridine (1 equiv) in the presence of an excess of ethyl vinyl ether 4 in $CHCl_3$ at 60°C for 22 h. The formation of the supported oxathiin cycloadduct 5 was confirmed by spectroscopic analysis and eventually by cleavage from the resin with MeONa in THF,⁴ which allowed us to isolate cycloadduct 6 in 23% yield as a pure compound (Scheme 2).

Several example of Diels–Alder reactions on solid phase have been reported⁵ but, to the best of our knowledge, this is the first example of a hetero cycloaddition involving a solid-supported thicketone. Moreover, it must be considered that in this reaction the diene is a reactive intermediate that has to be generated on the resin and trapped by the electron-rich dienophile.

Crucial improvements to the methodology were obtained using a one-step procedure. Thus the resin-linked β -ketoester **1** was reacted in CH₂Cl₂ with PhthNSCl and, in sequence, with Et₃N and **4**,⁶ and the mixture heated at 60°C for 19 h. The same cleavage with an excess of MeONa in THF (5 h at rt) of the oxathiin modified resin **5** afforded the pure cycloadduct **6** in 81% yield (Scheme 2). Because the Wang resin requires five reactions (trans-esterification, sulfenylation, dioxothione generation, cycloaddition, and cleavage) to the final product **6**, the overall yield indicates that every step occurs with an almost quantitative conversion.

Using resin 1 as a suitable source of the supported dienic dioxothione 3, the reaction was carried out with vinyl ethers 7-9 under the aforementioned conditions and, in any case, the expected oxathiin cycloadducts 10-12 (Table I) were isolated as single isomers in satisfactory yield and as pure compounds directly from the washing of the resin after cleavage.

Dienophile	Product	$Yield^a$
		81%
" 4 '		$50\%^b$
7 ∫ 0		$53\%^b$
8		$40\%^b$
9		

TABLE I Oxathiins 6, 10–12 Prepared by Hetero Diels–Alder Reactions of a α, α' -Dioxothione on Solid Phase

^aIsolated yield of the pure command (>95% by ¹H NMR) after cleavage. ^bIsolated yield on a single run without optimization.

Together with their spectroscopic data, the definitive attribution of the structural identity of derivatives 6, 10-12 was easily achieved by comparison with authentic samples obtained in solution using the 3-oxo-2-thioxo-butyric acid methyl ester¹ as diene.

CONCLUSION

In conclusion the phthalimidesulfenyl chloride-mediated synthesis of α, α' -dioxothiones can be successfully applied on solid phase. Using a β -ketoester functionalized Wang resin, it is possible to generate in situ an α -oxothione that participates as electron-poor diene to hetero Diels–Alder reactions with vinyl ethers. The solid-supported cycloadducts can be quantitatively cleaved from the resin by trans-esterification, which afforded the required oxathiins, which do not deserve further purification.

The application of this methodology to other dienophiles as well as different sulfur-containing dienes is under investigation.

REFERENCES

- a) G. Capozzi, R. G. W. Franck, M. Mattioli, S. Menichetti, C. Nativi, and G. Valle, J. Org. Chem., 60, 6416 (1995); b) G. Capozzi, A. Dios, R. G. W. Franck, A. Geer, C. Marzabadi, S. Menichetti, C. Nativi, and M. Tamarez, Angew. Chem., 35, 777 (1996); c) B. Li, R. W. Franck, G. Capozzi, S. Menichetti, and C. Nativi, Organic Letters, 1, 111 (1999).
- [2] S. Menichetti, and C. Nativi, "Hetero Diels-Alder Approach to Oxathins," in Target in Heterocyclic Systems—Chemistry and Properties, Società Chimica Italiana, Rome, Vol. 7, 2003, pp. 108–139 and references cited therein.
- [3] a) H. Rodriguez, O. Reyes, M. Suarez, H. E. Garay, R. Perez, L. J. Cruz, Y. Verdecia, N. Martin, and C. Seoane, *Tetrahedron Lett.*, **43**, 439 (2002); b) B. Clapham, S.-H. Lee, G. Koch, J. Zimmermann, and K. D. Janda, *Tetrahedron Lett.*, **43**, 5407 (2002); c) G. A. Strohmeier and C. O. Kappe, *J. Comb. Chem.*, **4**, 154 (2002); d) C. Pierres, P. George, L. van Hijfte, J.-B. Ducep, M. Hilbert, and A. Mann, *Tetrahedron Lett.*, **44**, 3645 (2003).
- [4] Cleavage using the acid condition usually reported for Wang resin (*i.e.*, TFA/CH₂Cl₂) caused extensive decomposition of the cycloadducts with ring opening of the oxathiin ring.
- [5] a) B. A. Lorsbach and M. J. Kurth, Chem. Rev., 99, 1549 (1999); b) J. Yli-Kauhaluoma, Tetrahedron, 57, 7053 (2001) and references cited therein.
- [6] To a pre-swelled suspension of resin 1 (153 mg, loading 1.1 mmol/g, 0.17 mmol) in dry CH_2Cl_2 (2.5 mL), PhthNSCl (75 mg, 0.35 mmol) in dry CH_2Cl_2 (1.5 mL) and dry Et_3N (44 mg, 0.43 mmol) were added in succession. After 20 min at rt, vinyl ether 4 (62 mg, 0.86 mol) was introduced and the mixture heated at 60°C for 19 h. The resin was washed with CH_2Cl_2 , MeOH, Et_2O ed again CH_2Cl_2 , (3 × 8 mL each), and dried under vacuum. Oxathiin functionalized resin 5 thus obtained (170 mg, loading 0.93 mmol/g, 0.16 mmol) was swelled in dry THF (6 mL) and freshly prepared MeONa (0.5 mL, 1.58 M in MeOH) was added to the mixture kept at rt for 5 h. The resin was washed with CH_2Cl_2 , Et_2O , and CH_2Cl_2 (3 × 8 mL each), the collected organic phase washed with H_2O (50 mL), saturated NH₄Cl (2 × 30 mL), and dried over anhydrous Na₂SO₄. Evaporation of the solvent gave cycloadduct 6 as pure compound by ¹H NMR, identified also by comparison with an authentic sample.¹ ¹H NMR (200 MHz, CDCl₃) δ : 1.25 (t, J = 7.5 Hz, 3H), 2.32 (s, 3H), 2.76–2.94 (AB part of an ABX system, $J_{AB} = 13.5$ Hz, 2H), 3.64–3.76 (m, 1H), 3.73 (s, 3H), 3.84–3.96 (m, 1H); 5.24 (X part of an ABX system, J = 4.0 and 2.0 Hz, 1H).