

Journal of Alloys and Compounds 345 (2002) 155-157

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Phase equilibria in the Dy-Ti-Si system at 1200 K

A.V. Morozkin*

Department of Chemistry, Moscow Lomonosov State University, Leninskie Gory, V-234, GSP-3, Moscow 119899, Russia Received 14 January 2002; received in revised form 20 February 2002; accepted 20 February 2002

Abstract

Phase equilibria in the Dy–Ti–Si system were investigated by X-ray powder diffraction, local X-ray spectral analysis, metallographic analysis and the isothermal cross-section at 1200 K was obtained. The CeFeSi-type (space group P4/nmm, No. 129) DyTiSi compound has been confirmed. The new Sc₂Re₃Si₄-type (space group $P4_12_12$, No. 92) compound Dy₂Ti₃Si₄ [a=0.6977(1) nm, c=1.2814(2) nm] was found. It is obvious that the AlB₂-type (space group P6/mmm, No. 191) compound DyTi_{0.3}Si_{1.7} [a=0.3824(1) nm, c=0.4119(1) nm] belongs to an extended region of the AlB₂-type DySi_{1.56}-based solid solution. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Transition metal compounds; Rare earth compounds; Phase diagram; X-Ray diffraction

1. Introduction

The interaction between the components in the Dy–Si, Ti–Si and Dy–Ti binary systems have been studied in Refs. [1–4]. However, phase equilibria in the Dy–Si and Dy–Ti systems were not obtained. No binary compounds were detected in the Dy–Ti system. The CeFeSi-type ternary compound DyTiSi was reported earlier [5] (Tables 1 and 2).

2. Experimental

The alloys (Fig. 1) were made in an electric arc furnace under an argon atmosphere using a non-consumable tungsten electrode and a water-cooled copper tray. Silicon, titanium and disprosium (purity of each component \geq 99.99%) were used as starting components. Zirconium was used as an O₂ getter during the melting process. The alloys were re-melted three times in order to achieve complete fusion and homogeneous composition. The melted alloys were subjected to an anneal in evacuated quartz ampoules containing titanium chips as an O₂ getter. The ampoules were placed in a resistance furnace. The alloys were annealed at 1200 K for 2 weeks. The samples were quenched from 1200 K in ice-cold water. The phase equilibria in the Dy-Ti-Si system were determined from X-ray phase analysis, local X-ray spectral analysis and metallographic analysis. Powder X-ray data were obtained on a DRON-3.0 diffractometer (Cu K α radiation, 2θ =20–70°, step 0.05°, for 5 s per step).

The powder X-ray diffractograms obtained were identified by means of calculated patterns using the Rietan program [6,7] in the isotropic approximation.

A 'Camebax' microanalyser was employed to perform local X-ray spectral analysis of the samples.

A 'Neophot' microscope was employed for metallographic inspections ($\times 250$, $\times 500$).

3. Results and discussion

The results obtained were used in the construction of the isothermal cross-section of the Dy–Ti–Si system at 1200 K, presented in Fig. 2.

The CeFeSi-type DyTiSi compound has been confirmed. The new ternary compounds $Dy_2Ti_3Si_4$ and $DyTi_{0.3}Si_{1.7}$ were found. Analysis of the powder X-ray diffractograms shows that the $Dy_2Ti_3Si_4$ and $DyTi_{0.3}Si_{1.7}$ compounds crystallize in the tetragonal $Sc_2Re_3Si_4$ -type structure (space group $P4_12_12$) and hexagonal AlB₂-type structure (space group P6/mmm), respectively (Table 2). The atomic coordinates for the $Dy_2Ti_3Si_4$ compound are given in Table 3.

The reliability factors in Tables 1 and 2 are $R_{\rm F} = 100 \cdot [\Sigma_k | (I_k^{\rm obs})^{1/2} - (I_k^{\rm cal})^{1/2} |] / \Sigma_k | (I_k^{\rm obs})^{1/2} | \% (I_k^{\rm obs}$ is the inte-

^{*}Fax: +7-095-932-8846.

E-mail address: morozkin@general.chem.msu.ru (A.V. Morozkin).

Table 1	
Crystallographic data of compounds in the binary Dy–Si and Ti–Si \ensuremath{s}	ystems

No.	Compound	Space group	Structure type	<i>a</i> (nm)	<i>b</i> (nm)	<i>c</i> (nm)	$R_{\rm F}(\%)$	Refs.
1	Si ^a	Fd3m	С	0.54307				[1,2]
2	Ti (LT) ^a	$P6_3/mmc$	Mg	0.29511		0.46843		[1,2]
	Ti (HT)	Im3m	W	0.33065				[1,2]
3	Dy (LT1)	Cmcm		0.3595	0.6183	0.5677		[1,2]
	Dy (LT2) ^a	$P6_3/mmc$	Mg	0.35903		0.56475		[1,2]
	Dy (LT2) ^a	$P6_3/mmc$	Mg	0.3588(2)		0.5646(3)	7.9	This work ^b
	Dy (HT)	Im3m	W	0.398				[1,2]
4	Ti ₃ Si ^a	$P4_2/n$	Ti ₃ P	1.0196		0.5097		[2,4]
	Ti ₃ Si ^a	$P4_2/n$	Ti ₃ P	1.0159(4)		0.5085(2)	4.1	This work ^b
5	Ti ₅ Si ^a ₃	$P\bar{6_3}/mcm$	Mn ₅ Si ₃	0.7429		0.5139		[2,4]
	Ti ₅ Si ₃	$P6_3/mcm$	Mn ₅ Si ₃	0.7482(9)		0.5153(4)	4.7	This work ^b
6	Ti ₅ Si ^a ₄	$P4_{1}2_{1}2$	Zr_5Si_4	0.6702		1.2174		[2,4]
7	TiSi ^a	Pnma	MnP	0.6544	0.3638	0.4997		[2,4]
	TiSi ^a	Pnma	MnP	0.6609(2)	0.3593(1)	0.5006(1)	2.7	This work ^b
	TiSi	Pmm2	TiSi	0.3618	0.6492	0.4973		[2,4]
8	TiSi ^a	Fddd	TiSi ₂	0.8267	0.4800	0.8551		[2,4]
	TiSi ^a	Fddd	TiSi ₂	0.8258(2)	0.4796(1)	0.8543(2)	3.7	This work ^b
	TiSi ₂	Cmcm	ZrSi ₂	0.360	1.376	0.360		[2,4]
9	$Dy_5Si_3^a$	$P6_3/mcm$	Mn ₅ Si ₃	0.837		0.626		[2,3]
	Dy ₅ Si ^a ₃	$P6_3/mcm$	Mn ₅ Si ₃	0.8371(4)		0.6284(2)	6.0	This work ^b
10	Dy ₅ Si ^a ₄	Pnma	Sm_5Ge_4	0.736	1.448	0.765		[2,3]
	Dy ₅ Si ^a ₄	Pnma	Sm_5Ge_4	0.7317(8)	1.451(2)	0.779(1)	5.0	This work ^b
11	DySi (HT)	Pnma	FeB	0.787	0.380	0.565		[2,3]
	DySi (LT) ^a	Cmcm	CrB	0.4237	1.0494	0.3818		[2,3]
	DySi (LT) ^a	Cmcm	CrB	0.4235(1)	1.0470(3)	0.3810(1)	3.1	This work ^b
12	DySi ^a _{1.67}	P6/mmm	AlB ₂	0.383		0.411		[2,3]
	DySi ^a _{1.67}	P6/mmm	AlB ₂	0.3830(1)		0.4116(1)	3.9	This work ^b
13	DySi ₂ (HT)	$I4_1/amd$	ThSi ₂	0.403		1.338		[2,3]
	$DySi_2(LT)^a$	Imma	GdSi ₂	0.404	0.394	1.334		[2,3]
	DySi ₂ (LT) ^a	Imma	GdSi ₂	0.4027(1)	0.3934(1)	1.3335(4)	3.8	This work ^b

^a Compounds belongs to the isothermal cross-section at 1200 K.

^b Data for compounds from X-ray phase analysis of the three-component samples.

grated intensity evaluated from summation of contribution of the *k*th peaks to net observed intensity, I_k^{cal} is the integrated intensity calculated from refined structural parameters).

It was found that the system contains an extended region of ternary solid solution based on the DyTiSi ternary compound (DyTiSi_{1...0.9}). However, DyTiSi does not demonstrate a transformation of the CeFeSi structure type to the CeScSi structure type within this homogeneity area, like the GdTiGe compound [8].

It is obvious that the DyTi_{0.3}Si_{1.7} compound belongs to

an extended region of the AlB_2 -type $DySi_{1.56}$ -based solid solution. The other binary compounds do not show any visible solubility.

4. Conclusions

We have confirmed the known CeFeSi-type DyTiSi compound and found the new $Sc_2Re_3Si_4$ -type $Dy_2Ti_3Si_4$ and AlB_2 -type $DyTi_{0.3}Si_{1.7}$ compounds in the Dy-Ti-Si isothermal cross-section. It is obvious that the isothermal

Table 2
Crystallographic data of compounds in the ternary Dy-Ti-Si system

No.	Compound	Space group	Structure type	<i>a</i> (nm)	<i>c</i> (nm)	$R_{\rm F}(\%)$	Ref.
1	DyTiSi	P4/nmm	CeFeSi	0.4004	0.7512		[5]
	DyTiSi _{10.9}	P4/nmm	CeFeSi	0.4014(1) 0.4017(1)	0.7525(1) 0.7530(1)	5.7 6.0	This work
2	Dy ₂ Ti ₃ Si ₄	$P4_{1}2_{1}2$	Zr_5Si_4	0.6977(1)	1.2814(2)	1.5	This work
3	DyTi _{0.3} Si _{1.7}	P6/mmm	AlB ₂	0.3824(1)	0.4119(1)	2.9	This work

Fig. 1. Composition of samples investigated in the Dy-Ti-Si system.

Table 3 Atomic position parameters of the $Sc_2Re_3Si_4$ -type $Dy_2Ti_3Si_4$ compound (space group $P4_12_12$)

Atom	Type position	<i>x</i> / <i>a</i>	y/b	z/c	Occupation factor
Dy	8(b)	0.341(2)	0.005(2)	0.4678(4)	1
Ti1	4(a)	0.321(5)	x	0	1
Ti2	8(b)	0.153(4)	-0.002(4)	0.871(3)	1
Si1	8(b)	0.209(8)	0.137(5)	0.684(3)	1
Si2	8(b)	0.288(5)	0.963(6)	0.052(2)	1

sections of the R-Ti-Si systems are similar to the Dy-Ti-Si isothermal section when R=Gd, Tb, Ho, Er, Tm.

Fig. 2. Isothermal section of the Dy-Ti-Si system at 1200 K.

References

- [1] J. Emsley, The Elements, 2nd Edition, Clarendon Press, Oxford, 1991.
- [2] Person's Handbook of Crystallographic Data for Intermetallic Phases, Vol. 3, American Society for Metals, Metals Park, OH, 1985, p. 3144.
- [3] E.I. Gladyshevsky, O.I. Bodak, in: Kristallohimia Intermetallicheskih Soedinenii Redkozemel'nyh Metallov, Vischa Shkola, Lviv, 1982, p. 24, in Russian.
- [4] V.N. Svechnikov, Yu.A. Kocherzhinsky, L.M. Yupko, O.G. Kulik, E.A. Shishkin, Dokl. Akad. Nauk. SSSR 193 (No. 2) (1970) 393–396.
- [5] A.V. Morozkin, J. Alloys Comp. 284 (1999) L7-L9.
- [6] F. Izumi, RIGAKU J. 6 (No. 1) (1989) 10-19.
- [7] F. Izumi, in: R.A. Young (Ed.), The Rietveld Method, Oxford University Press, Oxford, 1993, Chapter 13.
- [8] A.V. Morozkin, L.M. Viting, I.A. Sviridov, I.A. Tskhadadze, J. Alloys Comp. 297 (2000) 168–175.