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Abstract-The m~nitude of the electric tieid gradient at the boron nucleus, leql, in divatent- and ~valent-metal 
hexaborides (MBs) as well as in mixed-valent SmBs has been measured by the nuclear magnetic resonance method. 
In each group of divalent- and trivalent-metal hexaborides, jeq/ decreases remarkably with increasing lattice 
parameter. At a given lattice parameter, /eq/ for the trivalent-metal hexaborides is smaller than that for the 
divalent-metal hexaborides. The value of leq/ for SmBd is situated between those for the divalent- and trivalent- 
metal hexaborides. On the basis of these results, the electronic structure of the hexaborides is discussed. 

1. INTRODUCTION 

Rare-earth and alkaline-earth metals form isomorphous 
hexaborides (MB6) which have the crystal structure 
shown in Fig. 1; the structure consists of a three-dimen- 
sional boron framework and metal ions embedded into 
the interstices. Recently, considerable attention has been 
paid to a variety of interesting properties of the hex- 
aborides. For example, LaB6 has an unusually low work 
function and is expected to be the most promising elec- 
tron-beam source of high brightness[l-51. SmBs is a 
remarkable compound in that it contains both Sm3’ and 
Sm” ions in the ratio of - 7: 3 and exhibits complicated 
electrical properties[6-111. Up to this time, a number of 
experimental and theoretical investigations have been 
made concerning the electronic structure of the 
hexaborides [IZ-181. It is generally agreed that the boron 
framework absorbs two electrons from each metal atom 
so as to complete its covalent bonding. Thus, divalent- 
metal hexabo~des are semiconductors while trivalent- 

Fig. 1. The crystal structure of metal hexaborides. The structure 
consists of a boron framework and metal ions embedded into the 
interstices. The boron framework can be regarded as a simpte 

cubic lattice formed by boron octahedra. 

metal hexaborides are metals which have one conduction 
electron per metal ion. In the present study, the mag- 
nitude of the nuclear electric quadrupole interaction of 
“B in divalent- and t~valent-Mets hexaborides as well 
as in mixed-valent SmBa has been measured by NMR 
(nuclear magnetic resonance). A similar inves~ation 
was already made by Gossard and Jaccarino[i9], but no 
experiment was made on divalent-metal hexaborides. 
The purpose of this paper is to discuss the bonding 
nature of the hexaborides on the basis of the experimen- 
tal results on the “B nuclear electric quadrupole inter- 
action. 

2. ExPFMrmmTAL 

Rare-earth hexaborides LaBs, SmBs, EuB,, and YbBs, 
as well as an alkaline-earth hexaboride CaBs, have been 
studied. The rare-earth hexaborides were synthesized by 
the reaction 2Mz03 + 30B = 4MBs + 6BO f , where M 
denotes a rare-earth metal, while CaBs was synthesized 
by the reaction 2Ca0 + 14B = 2CaB6 + 2B0 t . In every 
case, a mixture of the starting materials was placed in a 
ZrBn crucible and heated at - 1700°C for about one hour 
under an argon atmosphere. X-Ray diffraction patterns 
showed that each reaction product was a single-phase 
hexaboride. 

NMR spectra were measured at room temperature 
with a wide-line spectrometer at a fixed frequency of 
14.50 MHz. The derivative of the adsorption was recor- 
ded with a meld-modulation lock-in detection method; the 
field m~ulation was usually 14OHz. The external mag- 
netic field was calibrated with the proton resonance. 

3. RESULTS 

As typical examples, the “B NMR spectra of LaB, 
and SmBa are shown in Fig. 2. The central line is due to 
the nuclear magnetic Zeeman interaction, and the satel- 
lite lines are caused by the nuclear electric quadrupole 
interaction. Similar spectra were obtained for E?uBs, 
YbBa, and CaBs, although the central lines for EuBa 
were broad and asymmetric because of the internal 
magnetic field due to magnetic europium ions. 

The nuclear electric quadrupole interaction considered 
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Fig. 2. The 8B NMR qxctra of L&, and SmB, at rwm temperature. The NMR frequency is 14.50 MHz, and the 
field modulation is 140 Hz. 

in the present paper is described by the Hamiltonian 

where eQ is the nuclear electric quadrupole moment, I 
the nuclear spin, ix, i,., L, and 1” the nuclear spin 
operators, and V,, VP,, and V, the principal vahtes of 
the electric field gradient tensor due to electric charges 
suffounding the nucleus. In the case of “B, I is equal to 
3/2. As we see in Fig. f, all the boron sites in the 
hexaboride structure are crystallographically equivalent 
and have four-fold symmetry. Therefore, if we chose the 
tocal z axis as the symmetry axis, V, and V,, are equal, 
and hence the last term in the brackets in eqn (1) 
vanishes. That is, the nuclear electric quadrupole inter- 
action of “B in hexaborides is described only by V,, 
which customarily denoted by JeqJ and is merely called 
electric field gradient. In the experimental conditions 
used, the nuclear electric quadrupoie interaction of “I3 
can be treated as a first-order p~~~~n to the *‘B 
nuciear magnetic Zeeman interaction, and hence we can 
estimate the magnitude of the coupling constant of the 
“B nuclear electric quadrupole interaction, Je*qQJ, from 
the separation of the satellite lines in the NMR spectra 
such as those in Fig, 2[20]. 

The values of Je’qQJ for various hexaborides esti- 
mated in this way, as well as those reported by Gossard 
and Jaccarino[ I!& are plotted in Fig. 3 against the lattice 
parameter a. Since Q for “‘B is known as 0.03 x 
to-“cm*f2f], we can convert [e”qQI into the magnitude 
of the electric field gradient, leqj, as indicated on the 
right hand side of Fig. 3, although ]eqj thus estimated is 
only approximate since the varwe of Q used is not 
accurate. 

4. XX!XiJSSHIN 

From the experimental results summarized in Fig. 3, 
the hexaborides can be divided into three groups. The 
first group involves EuBs, YbBa, and VaB6, the second 
group contains Sn& only, and the third group consists 
of the other hexaborides. The hexaborides in the first and 
third groups are divalent and trivalent, respectively, and 
SmBb of the second group is a mixed-va]ent compound 
in which Sm’” and Sm” ions coexist. 

In Fig. 3, the following features are observed: (I) In 
each group of the divalent- and trivalent-metal hex- 
aborides, the electric field gradient at the boron nucteus, 
JePf. decreases remarkably with increasing lattice 
parameter. (2) At a given lattice parameter, Jeq] for the 
trivalent-metaf hexaborides is distinctly smaller than that 
for the divalent-metal hexaborides. (3) The value of JeqJ 
for SmB6 lies between those for the divalent- and 
trivalent-metal hexaborides. 
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Fii. 3. The ma&tttde of the “I3 nuclear electric quadrupole interaction, [e%$& in divalent- and ~ivale~t-meta 
hexaborides as welt as rn~~-v~ent SmBs is plotted against the lattice parameter. The scale on the ri&t-hand side, 
feq], shows the m~itude of the electric field gradient at the boron nucieus converted from {e2q@ The broken and 
dotted curves, which should be compared with the experimental curves for the divaient- and trivalent-metal 

hexaborides, respectively, show the results of theoretical calculations described in the text. 

Since the ~vaIent~me~ hexaborides have no metallic 
conduction efectrous, their electronic structure is simpIe 
compared with that of the trivalent-metal hexaborides, so 
let us first consider the divalent-metal hexaborides and 
the origin of the experimental results (1). In early work 
by Longuet-Higgins and Roberts[lZ], they carried out a 
LCAO energy band calculation of the boron f~mework 
by negWing the interaction between boron and con- 
stituent metals and tried to exptin the electrical proper- 
ties of the hexaborides on the basis of the calculation. In 
what follows, let us examine whether this approximation 
is consistent with the above-mentioned experimental fact 
(I), that feq] decreases remarkably with increasing lattice 
parameter. 

Fur this purpose, we shah calculate the eieetronic 
structure of the boron framework as a function of the 
lattice parameter by neglecting the boron-metal inter- 
action and evaluate leql as a function of the lattice 
parameter on the basis of the calculation, In the evahra- 
tion of fe& constituent divalent-metal ions will be 
regarded as point chnrges of +2e; this is a necessary 
consequence of the disregard of the boron-metal inter- 

action. As we see in Fig. f, the boron framework is a 
simple cubic lattice formed by boron octahedra. It is 
known that the intraoctahedral B-B distance is always 
1.76 A for all the hex&rides [22]. That is, the size of the 
boron octahedra is invariant, and only the interocta- 
hedral B-B distance varies for individual hexaborides 
with different lattice parameters. The electronic structure 
of the boron framework with a certain lattice parameter 
can be cakudated by allowing the boron octahedra to 
interact with each other at a spacing determined by the 
lattice parameter. At first, LCAO-MO’s and energy levels 
of a single boron octahedron were calculated in the 
Hiicket approximation by taking 2s‘ 2p,, 2p, and 2p, of 
boron as AO% the Ao’s were expressed by SIater 
functions. The LCAO-MO’s thus cah,uIated, which are 
24 in number and are classified into 10 irreducibie 
representations of point group a, were essentially the 
same as those obtained by Longuet-Higgins and 
Roberts[l21 despite the fact that they used rougher ap- 
proximations. The LCAO-MO’s calculated in this way 
will be denoted by Q (y = I, 2,. . .> 24). One-efectron 
wave functions of the boron framework can be expres- 
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sed by the following Block functions: 

Tky(r) = N,’ c exp (ik . Rn)lCIT(r - R,), (2) 
n 

where R, = (X., Y,, 2.) is the position of the nth boron 
octahedron, k the wave vector, and N,’ the nor- 
malization factor estimated by taking overlap integrals 
between only adjacent boron octahedra into account. 

An electron defined by qvILT(r) produces an electric 
field gradient 

eq’(y, k) = - e 
I 

[9kY(r)j2 V,,(r) d3r (3) 

at the boron nucleus chosen as the origin. In eqn (3), 
V,,(r) denotes the electric field gradient due to a unit 
charge at r = (x, y, z): 

V,,(r) = #(l/r)/& = (32’ - r2)/r5. 

Substituting eqn (2) for qkT(r) in eqn (3) yields 

(4) 

eq’(y, k) = - e(Nk’)* c exp {ik(R, - RdG(r; n, ml 
“.l?l 

(5) 

where 

G(y; n, m) = 
I 

4’(r - R.)t,b?(r - R,) V&r) d3r. (6) 

Most of the integrals G(y; n, m) can be simplified or 
neglected. Of the intraoctahedral integrals G(y; n, n), 

those which relate to the central and nearest-neighbor 
boron octahedra were calculated straightforwardly, 
where the central boron octahedron is the boron octa- 
hedron which contains the boron atom at the origin. As 
for the other (more distant) boron octahedra, G(y; n, n) 

were approximated as 

G(y; n, n) = V,,(R,) = (32.* - R.‘)/R, (7) 

since each distant boron octahedron can be regarded as a 
point. Similarly, as to the interoctahedral integrals 
G(y; n, m) (n # m), they were calculated straightfor- 
wardly only when the boron octahedron was one of the 
central or nearest-neighbor boron octahedra, the others 
being neglected because of their small values. This ap- 
proximation, however, results in an underestimation of 
the total number of electrons, so that in the terms in 
which the approximation described by eqn (7) is used, 
(N,‘)’ was substituted by l/N, N being the total number 
of boron octahedra. If the positions of the central and 
nearest-neighbor boron octahedra are denoted by RI and 
Rt, RJ, . . ., and R,, respectively, the above-mentioned 
approximations allow us to rewrite eqn (5) as follows: 

eq’(x k) = - e(K’)’ 
C 

“2, G(y; n, n) 

+ i exp WL -WGtr; I, ml 
m=Z 

+ i exp lik(R, - R.)lG(r; n, I) 
n=2 1 

- eN-’ $* (3Z,‘- R:)IR:. (8) 

The total contribution from all the valence electrons of 
the boron framework is evaluated by summing up eqn (8) 

for occupied LCAO-MO’s and for allowed k’s in the first 
Brillouin zone. Since the boron framework has 20 
valence electrons per unit cell (18 from six boron atoms 
and 2 from a constituent metal atom), each of the low- 
lying 10 LCAO-MO’s is occupied by two electrons. Thus, 
we obtain 

eq’ = - 2e $ ?$I _/ tN,')'[ “2, Gty; n, n) 

+ i exp Iik(R, - Rr)}G(r; 1, m) 
m=2 

t 9 exp {ik(R, - R,)}G(y; n, 1) 
n=Z 1 

d’k 

- 20e 2 (3Z,‘- R,‘)/R,‘. (9) 
“=8 

In addition to leq(’ given by eqn (9), there is another 
contribution from boron cores and divalent metal ions. 
The boron core consists of a nucleus of t Se plus two 1 s 
electrons and may be regarded as a point charge of t 3e 
to good approximation. Each divalent metal ion can also 
be regarded as a point charge of t 2e as mentioned 
before. The distribution of boron cores in the central and 
nearest-neighbor boron octahedra was correctly con- 
sidered, but six boron cores of each distant boron octa- 
hedron were regarded as a point charge of f 18e as a 
whole. The contribution from these positive charges is 
thus written as 

eqP = 3e i 2’ (322, - RZj)/RS, 
n=* j=* 

t 18e n$8 (32,’ - R,‘)/R,’ 

t 2e i (32A2 - RA2)/RA5. 
n=l 

(10) 

The first term in the right-hand side is the contribution 
from the boron cores of the central and nearest-neighbor 
boron octahedra, the second term is derived from boron 
cores of distant boron octahedra, and the third term is 
due to the divalent metal ions; Rnj and Znj are the radial 
and z coordinates of the jth boron atom of the nth boron 
octahedron, respectively, and R: and ZA are the radial 
and z coordinates of the nth divalent metal ion, respec- 
tively. 

The electric field gradient eq' t eq” discussed above 
distorts the distribution of the 1 s electrons of the boron 
atom at the origin from spherical symmetry. As a result 
of this so-called antishielding effect, an additional elec- 
tric field gradient Aeq is induced. It is necessary to divide 
Aeq into two parts. One is induced by the electric field 
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gradient due to the valence electrons of the boron atom 
at the origin itself, and the other is induced by the 
remaining electric field gradient due to distant sources. 
Proportionality constants which are related to the former 
and the latter are denoted by R and +y-, respectively, 
and, in general, R and ‘y- are different from each other. 
In the case of boron, however, R and y- have close 
values with the same sign (R = 0.143[231, ‘y_ = 0.145 [24]), 
so that we can use a common proportionality constant 
y = 0.144, the average of R and my-. 

The electric field gradient at the boron nucleus in the 
divalent-metal hexaborides is given by 

eq[M2’(Bs)2-] = (1- y)(eq’ t eq”), (11) 

which is a function of the lattice parameter. The right- 
hand side of eqn (11) involves three infinite series (N + 
m). These diverge individually but converge as a whole; 
the evaluation was made by Evjen’s method. The value 
of eq[M2’(Ba)*-] was calculated for three different lat- 
tice parameters, a = 4.11,4.18 and 4.25 A, and the results 
are summarized in the last row of Table 1. The other 
rows indicate various contributions to eq[M2’(Bs)*-I. 
The broken curve in Fig. 3 shows eq[M2’(Bs)*-] as a 
function of the lattice parameter. Although quantitative 
agreement between this curve and the experimental 
curve for the divalent-metal hexaborides is not complete, 
the qualitative tendency that experimental eq[M2’(Ba)*-I 
decreases remarkably with increasing lattice parameter is 
explained by this calculation. That is, as far as the 
electric field gradient at the boron nucleus and its change 
with the lattice parameter are considered, our ap- 

proximation that the metal-boron interaction in the 
divalent-metal hexaborides is weak seems to be fairly 
good. 

Next, let us consider the experimental fact (2) men- 
tioned before, that leql for the trivalent-metal hex- 
aborides is smaller than that for the divalent-metal hex- 
aborides at a given lattice parameter. The trivalent-metal 
hexaborides can be obtained by substituting each 
divalent metal ion in the divalent-metal hexaborides by a 
trivalent metal ion plus one conduction electron: M*‘+ 
M3’ + e- (conduction electron). If the conduction elec- 
trons are uniformly distributed, they make no con- 
tribution to the electric field gradient. In this case, it is 
easy to calculate the difference in [eqJ between the 
divalent- and trivalent-metal hexaborides; the difference 
is a function of the lattice parameter: S(a). In Fig. 3, the 
dotted curve, which should be compared with the 
experimental curve for the trivalent-metal hexaborides, 
has been obtained from the calculation of S(a) and the 
experimental curve for the divalent-metal hexaborides. 
As we see, this dotted curve is certainly situated below 
the experimental curve for the divalent-metal hex- 
aborides, but its deviation from the experimental curve 
for the trivalent-metal hexaborides is large. This in- 
dicates that the distribution of conduction electrons in 
the trivalent-metal hexaborides deviates considerably 
from a uniform distribution. This is consistent with 
recent energy band calculations[l6,18] and Fermi sur- 
face studies[l6,17] on LaB6. 

The experimental fact (3) mentioned before, that leql 
for SmB6 lies between those for the divalent- and 
trivalent-metal hexaborides is easily explained by the 

Table I. The electric field gradient at the boron nucleus in divalent-metal hexaborides, eq[M*‘(B&-1, calculated as 
a function of the lattice parameter by neglecting the interaction between boron and constituent metals. Various 

contributions to eq[M*‘(B,$] are also shown 

Electric field gradient at the boron nucleus (eA -3) 

a = 4.11A a = 4.18 A a = 4.25 A 

Boron octahedra 

at Rl,R2,...,R7 1.707 

Nearest-neighbor 

eight M2+ ions -0.164 

Other boron octa- 

hedra and M2+ ions 

Total 1.563 

Correction of 

shielding effect 

1.489 1.412 

1.543 I 1.337 

-0.152 -0.140 

0.020 

-0.225 

0.018 

1.355 

-0.195 

I 1.272 
0.015 

1.287 

-0.185 

eq[M2+(B6: 2-] 1.338 1.160 1.102 
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fact that SmB, contains both Sm3+ and Sm” ions in a 5. Verhoven J. D. and Gibson E. D.. 1. Phvs. E 9.65 (1976). 
ratio of - 7: 3 as mentioned in Section 1. 

5. SUhfMARY 

The magnitude of the electric field gradient at the 
boron nucleus in hexaborides, jeq(, decreases remarkably 
with increasing lattice parameter in each group of 
divalent- and trivalent-metal hexaborides. This remark- 
able decrease in (eql can be explained by a change in the 
electronic structure of the boron framework due to the 
increase in the lattice parameter. At a given lattice 
parameter, Jeq( for the trivalent-metal hexaborides is 
smaller than that for the divalent-metal hexaborides. 
Analysis of this difference leads us to a conclusion that 
the distribution of conduction electrons in the trivalent- 
metal hexaborides deviates considerably from a uniform 
distribution. The value of Jeq( for SmBs is situated be- 
tween those for divalent- and trivalent-metal hexaborides 
since SmBs is a mixed-valent compound which contains 
both Sm2+ and Sm3’ ions. 
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