

Manganese Disulfide (Hauerite) and Manganese Ditelluride. Thermal Properties from 5 to 350°K and Antiferromagnetic Transitions

Edgar F. Westrum Jr. and Fredrik Gro/nvold

Citation: The Journal of Chemical Physics **52**, 3820 (1970); doi: 10.1063/1.1673563 View online: http://dx.doi.org/10.1063/1.1673563 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/52/7?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

Xenon Difluoride: Heat Capacity from 5 to 350°K and Some Derived Thermodynamic Properties J. Chem. Phys. **57**, 4670 (1972); 10.1063/1.1678134

Xenon Tetrafluoride: Heat Capacity and Thermodynamic Functions from 5 to 350°K. Reconciliation of the Entropies from Molecular and Thermal Data J. Chem. Phys. **57**, 3401 (1972); 10.1063/1.1678772

Molecular Freedom of the Ammonium Ion. Heat Capacity and Thermodynamic Properties of Ammonium Perchlorate from 5° - 350° K J. Chem. Phys. **50**, 5083 (1969); 10.1063/1.1671022

Uranium Monosulfide. The Ferromagnetic Transition. The Heat Capacity and Thermodynamic Properties from 1.5° to 350°K J. Chem. Phys. **48**, 155 (1968); 10.1063/1.1667893

Uranium Mononitride: Heat Capacity and Thermodynamic Properties from 5° to 350°K J. Chem. Phys. **45**, 635 (1966); 10.1063/1.1727621

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 147.143.2.5 On: Sat. 20 Dec 2014 12:15:26

Manganese Disulfide (Hauerite) and Manganese Ditelluride. Thermal Properties from 5 to 350°K and Antiferromagnetic Transitions*

EDGAR F. WESTRUM, JR.

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104

AND

FREDRIK GRØNVOLD Institute of Inorganic Chemistry, University of Oslo, Blindern, Norway

(Received 28 May 1969)

The heat capacities of manganese disulfide and manganese ditelluride were determined by adiabatic calorimetry in the range 5–350°K. Lambda-type transitions are present in both compounds with maxima at 47.93°K for MnS₂ and at 83.0°K for MnTe₂. Entropies, enthalpies, and Gibbs energy function values are calculated and tabulated. At 298.15°K they are: $S^{\circ}=23.88$ cal/mole.°K, $H^{\circ}-H_{0}^{\circ}=3384$ cal/mole, $-[(G^{\circ}-H_{0}^{\circ})/T]=12.258$ cal/mole.°K for MnS₂ and 34.66, 4416, and 19.847 for MnTe₂. The clearly cooperative entropy increments are only 0.71 cal/mole.°K for MnS₂ and 0.80 for MnTe₂. Available magnetic susceptibility data are interpreted in terms of zero-field splitting of the ${}^{6}S_{5/2}$ state of the manganese $3d^{5}$ electrons. The resulting contributions to the heat capacity are evaluated. At 298°K the combined λ -transitional and Schottky contributions to the entropy are 2.6 and 2.4 cal/mole.°K for MnS₂ and MnTe₂, respectively.

INTRODUCTION

Manganese disulfide, manganese ditelluride, and manganese diselenide all crystallize with pyrite-type structures¹⁻³ in which manganese atoms and the center of the dichalcogenide groups form a sodium chloridelike arrangement. The structure is primitive cubic since the axes of the four X_2 groups in the unit cell (symmetrical about $0, \frac{1}{2}, 0,$ etc.) are parallel to different body diagonals. Each manganese atom is octahedrally coordinated to six chalcogen atoms, while each chalcogen atom is tetrahedrally coordinated to three manganese and one chalcogen atom.

These paramagnetic compounds have five unpaired spins.^{3,4} Antiferromagnetic spin arrangements have been observed by neutron diffraction^{5,6} near 4°K. The ditelluride was found to exhibit an ordering of the first kind,⁷ in which each manganese atom has eight nearest metal neighbors with antiparallel spins and four with parallel spins, while all six second-nearest metal neighbors have spins parallel to the central atom. In the case of the disulfide, the ordering was found to be of the third kind,⁸ which differs from the first kind in the arrangement of the second-nearest neighbors, with only four of them having parallel spins.

The present study was undertaken to gain further insight into the magnetic order-disorder processes by exploring the shape and location of the expected heat capacity maxima. Furthermore, it was anticipated that resolutions of the magnetic contributions to the heat capacities and thermodynamic functions of these compounds would be possible.

EXPERIMENTAL

Samples

The manganese disulfide used was in the form of selected naturally occurring hauerite single crystals from Raddusa, Sicily. The crystals were carefully abraded with fine emery paper on all faces to remove oxidation products. Chemical and spectrographic analyses were performed on several crystals. Duplicate chemical analyses by L. Reichen on one crystal indicated an average of 45.93% Mn and 53.65% S, corresponding to the formula MnS_{2.00}. Determinations on two other crystals by C. O. Ingamels indicated 46.46% Mn by weighing as Mn₂P₂O₇, 52.90% S by the fusion method, and 53.20% S by oxidation to elemental sulfur and sulfate. From these sulfur values, the composition of the sulfide would be deduced as MnS_{1.9}. Independent spectrographic analyses by W. H. Worthring and N. Suhr agreed on the presence of Sn (0.05%), Fe (0.03%), and Si (0.02% and 0.06%). In the sample further impurities found were as follows: V (0.03%), Ca (0.007%), Cr (0.002%), Mg (0.002%), Co (0.001%), Ni (0.001%), Nb (0.0007%), Ba (0.0003%), Mo (0.003%), and Ti (0.0003%). The following elements were also sought but not found: Ag, As, Au, B, Be, Bi, Cd, Ce, Ga, Ge, Hf, Hg, In, K, La, Li, Na, Pb, Pd, Pt, Re, Sb, Se, Sr, Ta, Te, Th, Tl, U, W, Y, Yb, and Zr. Se and Te were not detected by x-ray fluorescence.

The lattice constant determined on powdered specimens using a Guinier-type camera with KCl $(a_{20} = 6.2919 \text{ Å})$ as an internal standard were $a = 6.102 \pm 0.001 \text{ Å}$, which agrees well with earlier values⁹ $(6.109 \pm 0.005 \text{ Å}^{*,10} 6.107 \pm 0.003 \text{ Å},^{11} 6.1008 \pm 0.0001 \text{ Å}$ at 29°C,¹² and 6.1016 A at 20°C.¹³

The manganese ditelluride sample was prepared by reacting stoichiometric amounts of manganese and tellurium in an evacuated and sealed quartz tube. The 99.995% electrolytic manganese supplied by Light Ltd. was reported to contain the following impurities (in ppm): Cu<1, Mg<5, Si<5. After pickling the metal with 5% nitric acid in ethyl alcohol, it was ls degassed *in vacuo* at 600°C for 2 h. The 99.999% y tellurium from the American Smelting and Refining 3820 Co. contained no impurities detectable by spectrographic methods. The manganese-tellurium mixture was heated at 800°C for two days in a double-walled tube and, after cooling to room temperature, the telluride separated from the shattered inner tube. The crushed sample was then annealed at 500°C for one week and cooled with the furnace. Chemical analyses of manganese and tellurium indicated 18.35% manganese and 82.05% tellurium, which corresponds to a composition MnTe_{1.92} for the telluride. The amount of SiO₂ present in the sample was found to be 0.17%. The lattice constant of the ditelluride was determined to be $a=6.954\pm0.001$ Å, in good agreement with three earlier results (6.957 ± 0.002 Å,² 6.951 ± 0.002 Å,¹⁴ and 6.958 Å ¹⁵).

Cyrogenic Technique

The heat capacities were measured in the Mark II cryostat¹⁶ with intermittent heating of the sample under quasiadiabatic conditions. The gold-plated copper calorimeter (laboratory designation W-31) with a capacity of 48 cm³ was surrounded by adiabatic shields provided with electronic control. These consisted of three separate channels of recording circuitry with proportional, rate, and reset actions. Temperature differences between calorimeter and shields were maintained within a millidegree, and thereby the heat exchange was reduced to a magnitude negligible compared with other sources of error. The heat capacity of the calorimeter-heater-thermometer assembly was determined in a separate series of experiments. Small corrections were applied for the differences in the amounts of indium-tin solder for sealing the calorimeter, Apiezon-T grease for thermal contact between calorimeter and heater-thermometer assembly, and helium of about 10 cm Hg pressure for improving thermal equilibration between calorimeter and sample. Temperatures determined with the strain-free platinum resistor (laboratory designation A-5) are considered to accord with the thermodynamic temperature scale to within 0.03°K. All measurements of mass, temperature, resistance,

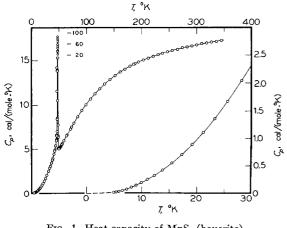


FIG. 1. Heat capacity of MnS₂ (hauerite).

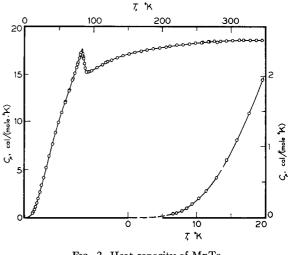


FIG. 2. Heat capacity of MnTe₂.

voltage, and time are based upon calibrations or standardizations performed by the U.S. National Bureau of Standards.

RESULTS AND DISCUSSION

The experimental heat capacity values for manganese disulfide (hauerite) and manganese ditelluride are listed in Table I in chronological sequence at the mean temperatures of the measurements. The data have been corrected for curvature of the heat capacity curve and are given in terms of the defined thermochemical calorie, equal to 4.1840 J, and an ice point of 273.15°K. The probable errors in the measurements are considered to decrease from about 3% at 5°K to 0.5% at 10°K and to less than 0.1% above 20°K.

In both compounds, λ -type maxima in the heat capacities were observed, the one in hauerite rising rather sharply to a maximum of 87.26 cal/mole.°K over a 0.04°K interval at 47.93°K, and the one in manganese ditelluride to a less pronounced maximum of 17.52 cal/mole.°K at 83.0°K. These anomalies are shown in Figs. 1 and 2.

The smoothed heat capacities and thermodynamic functions derived from them by means of a digital computer using a previously described program¹⁷ are given in Table II for selected temperatures. The thermodynamic functions may be considered reliable to better than 0.1% above 100°K.

Enthalpy-type determinations (ΔH Run E, 80– 113°K, and ΔH Run F, 113–181°K on MnS₂; ΔH Run A, 54–93°K, and ΔH Run B, 120–208°K on MnTe₂) noted in Table I provide a test of the heat capacity measurement and integration procedures. The enthalpy increments thus determined accord with corresponding values derived from the smoothed heat capacity curves well within $\pm 0.1\%$.

In order to evaluate the energy associated with λ -type transitions in MnS₂ the Debye θ 's calculated from the experimental heat capacities at constant pressure were

TABLE I. Heat capacity of manganese disulfide (hauerite) and manganese ditelluride.^a

Т	C_p	Т	C_p	T	C_p	Т	C_p
laganese disu	lfide MnS2 (haueri	te); 1 mole=119	.07 g				
Sei	ies I	15.53	0.555	46.62	6.612	51.40	5.127
		17.34	0.333	47.01	7.055	52.41	5.248
64.99	6.653	19.21	0.891	47.36	8.474	53.40	5.324
71.05	7.318	21.20	1.107	47.63	14.114	55.28	5.533
77.40	8.001					59.23	5.98
84.23	8.725	23.32	1.364	47.77	34.74		
91.59	9.419	25.63	1.673	47.84	78.14	64.43	6.590
99.39	10.074	28.20	2.043	47.90	87.00	73.39	7.574
107.43	10.707	31.08	2.496	47.94	68.93		
115.56	11.291	34.38	3.066	48.00	37.32	ΔH Run E	2
124.11	11.858	38.13	3.792	48.13	15.36		
133.33	12.409	42.43	4.829	48.51	6.511	$\Delta H \operatorname{Run} \mathbf{F}$	•
142.76	12.911	A TH Dum				185.71	14.603
151.99	13.350	ΔHt Run I		Seri	es VI	194.63	14.862
		51.26	5.176		00 1 2	203.52	15.09
161.13	13.741	56.34	5.657	46.57	6.586	212.49	15.31
170.15	14.076	Sori	es III	47.43	10.537	212.49	15.51
179.18	14.399	1		47.81	58.08		
188.20	14.683	33.13	2.850	47.89	86.88	230.59	15.70
σ.	·. TT	36.32	3.432	47.93	87.26	238.09	15.85
Ser	ies II	39.09	3.993		45.65	247.24	16.02
4.98	0.020	41.02	4.435	47.97		256.32	16.17
5.38	0.024	42.77	4.905	48.06	23.73	265.30	16.29
5.88	0.035	44.36	5.419	48.41	7.771	274.17	16.48
6.54	0.051	ł				282.99	16.54
7.31	0.076	ΔHt Run I	3	Serie	es VII	291.75	16.67
8.15	0.111	50.12	5.031			300.49	16.77
				ΔHt Run l	D	309.27	16.92
9.04	0.154		es IV	10.05	E 001	318.11	17.00
9.99	0.205	ΔHt Run (2	49.05	5.081		17.00
11.05	0.255	South	ies V	49.58	4.992	327.03	
12.32	0.324	1		50.11	5.045	336.11	17.15
13.82	0.427	45.71	6.024	50.63	5.059	345.33	17.26
fang anese dit	elluride, MnTe2; 1	mole = 310.16 g					
Sei	ries I	9.31	0.182	Seri	les IV	96.88	15.40
257.01	18.39	10.29	0.265	58.75	12.114	104.66	15.73
		11.40	0.370	64.36	13.370	112.46	16.05
268.21	18.48	12.85	0.558	69.11	14.391	120.05	16.34
278.97	18.47	14.36	0.805		15.16	1	
Ser	ies II	15.88	1.093	72.60		ΔII Run E	
		(75.19	15.77	211.17	18.00
117.57	16.27	17.63	1.472	77.33	16.29	220.88	18.12
125.37	16.51	19.60	1.949	79.23	16.77	230.00	18.17
134.12	16.78	22.12	2.612	80.75	17.16	239.19	18.25
142.68	16.99	24.79	3.343	81.74	17.34	248.46	18.33
151.16	17.19	27.53	4.124	82.40	17.44	257.67	18.40
159.79	17.33	31.18	5.155	83.00	17.52	266.84	18.46
168.73	17.50	35.62	6.416	83.60	17.41	275.94	18.53
177.79	17.61	40.25	7.666	84.25	17.22	285.02	18.55
186.86	17.74	44.90	8.854	84.92	16.96	294.05	18.55
196.02	17.84	49.28	9.930	85.59	16.66		18.58
205.17	17.93	53.66	10.955	86.28	16.11	303.12	
205.17	17.93	58.59	12.076	87.33	15.67	312.27	18.65
_	es III	64.07	13.296	87.33	15.23	Seri	es VI
Seri	0.041	70.03	14.587		15.23	318.84	18.64
				93.92	13.27	328.12	18.64
6.58		76 46	16.08				
6.58 7.05	0.059	76.46	16.08	Ser	ies V	1	
6.58		76.46 83.46 91.55	16.08 16.98 15.29	Ser Δ <i>II</i> Run A		328.12 337.37 345.80	18.67 18.67

^a Units: calorie, mole, degree Kelvin.

nis article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to I 147.143.2.5 On: Sat. 20 Dec 2014 12:15:26

TABLE II. Thermodynamic properties of manganese disulfide (hauerite) and manganese ditelluride.^a

Т	Cp	S°	$H^{\circ}-H_{0}^{\circ}$	$-(G^{\circ}-H_{0}^{\circ})/T$	Т	C_p	S°	$H^{\circ}-H_{0}^{\circ}$	$-(G^{\circ}-H_{0}^{\circ})/T$
Mangar	iese disulfide	e, MnS ₂ (ha	uerite);1 mc	le = 119.07 g	Mai	nganese dite	lluride, Mn'	Γe_2 ; 1 mole =	310.16 g
5	0.018	0.006	0.02	0.002	5	0.019	0.006	0.023	0.002
10	0.196	0.063	0.48	0.015	10	0.228	0.060	0.471	0.013
15	0.513	0.198	2.20	0.051	15	0.918	0.266	3.126	0.058
20	0.975	0.405	5.85	0.112	20	2.041	0.676	10.382	0.157
25	1.584	0.685	12.19	0.198	25	3.403	1.275	23.94	0.318
30	2.322	1.037	21.90	0.307	30	4.829	2.022	44.52	0.538
35	3.182	1.458	35.61	0.441	35	6.233	2.872	72.19	0.810
40	4.195	1.947	53.97	0.598	40	7.600	3.794	106.79	1.125
20		11/1/	00.77	01070	45	8.879	4.765	148.05	1.475
60	6.079	4.572	183.5	1.514	50	10.099	5.764	195.5	1.854
70	7.212	5.595	250.0	2.024	60	12.391	7.810	308.1	0 675
80	8.276	6.629	327.5	2.535	70	12.391	9.886	443.0	2.675
90	9.251	7.661	415.2	3.047	70 80	14.388			3.557
100	10.129	8.682	512.2	3.560	30 90	15.21	$11.984 \\ 14.053$	600.5	4.476
440	10.010	0 (04		4.054	90 100	15.54	14.055	766.2 919.4	5.540 6.473
110	10.912	9.684	617.5	4.071					
120	11.607	10.664	730.1	4.580	110	15.96	17.169	1077.0	7.378
130	12.222	11.618	849.4	5.085	120	16.33	18.574	1238.5	8.253
140	12.767	12.544	974.4	5.585	130	16.65	19.893	1403.4	9.098
150	13.251	13.442	1104.5	6.079	140	16.92	21.138	1571.3	9.914
160	13.684	14.311	1239.2	6.566	150	17.16	22.313	1741.8	10.702
170	13.004 14.070	15.153	1378.0	7.047	160	17.35	23.427	1914.3	11.462
180	14.418	15.967	1520.5	7.520	170	17.52	23.427 24.484	2088.7	12.198
190	14.730	16.755	1666.2	7.985	180	17.66	25.489	2264.6	12.198
200	15.01	17.518	1815.0	8.443	190	17.78	26.448	2441.8	13.596
200	20102	11.010	1010.0	0.110	200	17.89	27.362	2620.1	14.262
210	15.26	18.256	1966.4	8.893		11.02	27.002	2020.1	14.202
220	15.49	18.972	2120.2	9.335	210	17.99	28.238	2799.5	14.906
230	15.70	19.665	2276.1	9.769	220	18.08	29.08	2979.9	15.53
240	15.89	20.337	2434.0	10.195	230	18.17	29.88	3161.1	16.14
250	16.06	20.989	2593.8	10.614	240	18.25	30.66	3343.2	16.73
					250	18.33	31.40	3526.1	17.30
260	16.22	21.622	2755.2	11.025	260	18.41	32.12	3709.8	17.86
270	16.37	22.237	2918.1	11.429	270	18.47	32.12	3709.8	
280	16.51	22.835	3082.5	11.826	280	18.53	33.49	4079.2	18.40 18.92
290	16.65	23.416	3248.3	12.216	230	18.58	33.49 34.14	4079.2	
300	16.77	23.983	3415.4	12.598	300	18.62	34.14 34.77	4450.8	19.44 19.94
310	16.89	24.535	3583.7	12.975					
320	17.01	25.073	3753.2	13.344	310	18.64	35.39	4637.1	20.43
330	17.11	25.598	3923.8	13.708	320	18.65	35.98	4823.5	20.90
340	17.20	26.110	4095.4	14.065	330	18.65	36.55	5010.0	21.37
350	17.28	26.610	4267.8	14.416	340	18.66	37.11	5196.6	21.82
					350	18.68	37.65	5383.2	22.27
273.15	16.41	22.43	2970	11.555	273.15	18.49	33.03	3952	18.565
298.15	16.75	23.88	3384	12.528	298.15	18.61	34.66	4416	19.847

^a Units: calorie, mole, degree Kelvin.

smoothly interpolated over the range 25–65°K and the noncooperative heat capacities calculated from them. By this procedure, the entropy and enthalpy of transition are found to be $\Delta St = 0.71$ cal/mole.°K and $\Delta Ht = 33$ cal/mole for MnS₂ (see Table III). For MnTe₂ a similar procedure over the range 54–93°K leads to

 $\Delta St = 0.55$ cal/mole.°K and $\Delta Ht = 41$ cal/mole (see Table IV).

The estimated entropy values are only a fraction of the value $R \ln 6=3.56$ cal/mole.°K expected for randomization of the manganese 3d electrons over the state ${}^{6}S_{5/2}$ and indicate that some of the levels are

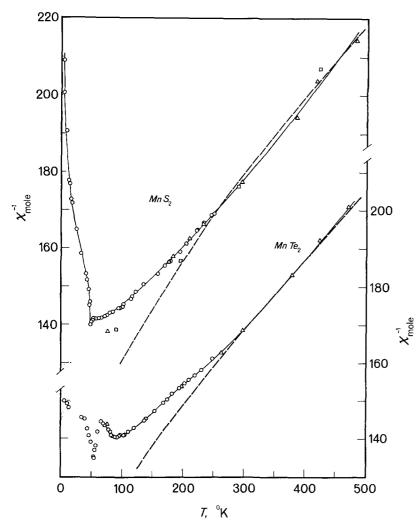


FIG. 3. Reciporcal molar susceptibilities of NnS₂ and MnTe₂ (corrected for diamagnetism) vs temperature. \triangle represents data by Haraldsen and Klemm⁴; \square represents data by Hastings *et al.*⁵; O represents data by Lin¹⁸; — represents calculated data assuming zero-field splitting as indicated in the text.

TABLE III. Enthalpy and entropy of transition of MnS₂ (hauerite).^a

Determina designati		T_1	T_2	$H_{T_2} - H_{T_1}$	$H_{55} - H_{44}$	
		MnS2 (haueri	te)			
A (Series II)	2	44.737	53.968	72,226	81.84	
B (Series III)	6	43.599	50.884	62,087	81.73	
C (Series V)	1	46.098	48.785	37,460	82.05 ^b	
Series V	12	44.988	48.806	44.045	81.70	
Series VI	8	46.023	48.690	37.341	81.76	
D (Series VII)	8	46.094	53.884	63.673	81.72	
А	verage value		$H_{55}^{\circ} - H_{44}^{\circ} - H_{26}^{\circ} - H_{55}^{\circ} - H_{55}^{\circ}$	$^{\circ} = 60.6$		
			$H_{65}^{\circ} - H_{25}$	$^{\circ} = 203.2$		
Ν	foncooperative contrib	oution	$H_{65}^{\circ} - H_{25}$ $\Delta Ht = 33$ $\Delta St = 0.7$			
$T_t = 47.93^{\circ} \text{K}$						

^a Units: calorie, mole, degree Kelvin.

^b Rejected from average by Chauvenet criterion.

Determinations designation	No. of runs	T_1	T_2	$H_{T_2} - H_{T_1}$	$H_{95} - H_{55}$	
Series III	7	51.339	95.958	647.02	592.6	
Series IV	19	55.917	96.937	611.28	591.7	
Α	1	53.687	93.060	577.64	592.0	
Average v		L	$H_{95} - H_{55} = 592.1$	l		
Lattice co		$H_{95} - H_{55} = 551$ $\Delta Ht = 41$ $\Delta St = 0.55$				

TABLE IV. Enthalpy and entropy of transition of MnTe_{2.^a}

^a Units: calorie, mole, degree Kelvin.

occupied only at temperatures far above the transition. This interpretation is supported by the magnetic susceptibility measurements. Data for MnS₂ by Lin,¹⁸ Haraldsen and Klemm,⁴ and Hastings *et al.*⁵ show a Weiss constant of about 600°K which might be explained in terms of a large zero-field splitting of the $\pm \frac{3}{2}$ and especially of the $\pm \frac{5}{2}$ levels from the $\pm \frac{1}{2}$ levels. The observed molar susceptibility data can be fitted by the equation

$$\chi_{\text{mole}} = \frac{N\beta^2 g^2}{kT} \\ \times \left[\frac{(\frac{1}{2})^2 + (\frac{3}{2})^2 \exp(-E_1/kT) + (\frac{5}{2})^2 \exp(-E_2/kT)}{1 + \exp(-E_1/kT) + \exp(-E_2/kT)} \right],$$

where E_1 and E_2 are the energy separations of the excited states from the ground state, N is Avogadro's

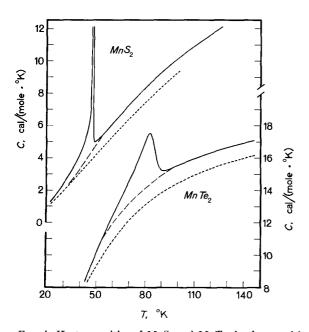


FIG. 4. Heat capacities of MnS_2 and $MnTe_2$ in the transition region. — represents experimental data; --- represents estimated lattice heat capacity; -- represents lattice heat capacity plus Schottky contribution.

number, g is the Landé factor, β is the Bohr magneton, k is Boltzmann's constant, and T is the absolute temperature. As can be seen from Fig. 3, good agreement is obtained with $E_1/k=190^{\circ}$ K and $E_2/k=900^{\circ}$ K. According to this picture, the λ -type transition should involve mainly the $\pm \frac{1}{2}$ states, since the higher ones are slightly populated at the transition temperature, and are not fully excited even at 298°K. At this temperature, the transitional entropy contribution is R ln6 minus that for the order persisting at 298°K, i.e.,

$\Delta St = 3.56 - 0.60 = 2.96$ cal/mole•°K.

Separation of the magnetic heat capacity from that of the lattice presupposes knowledge about the phonon dispersion spectrum which, unfortunately, is not yet available. Direct comparison with the structurally related iron compounds is questionable because of the large influence of the number of unpaired 3d electrons on the metal-nonmetal bond distances (2.59 A in hauerite and 2.27 A in pyrite) and thus on the lattice heat capacity. An estimate of the lattice heat capacity can be obtained by subtracting the assumed Schottky contribution from the observed heat capacity in the region above 70°K (where the contribution of the λ -type transition presumably vanishes) and calculating θ_D 's for residual heat capacity. These are joined smoothly with those in the region 10-15°K to provide a lattice estimate over the anomalous region. With this tentative lattice contribution (see Fig. 4) a magnetic entropy increment ΔS at 298°K = 2.6 cal/mole °K is obtained. Residual contributions from the λ -type transition above 70°K and antiferromagnetic spin waves below 15°K would tend to increase this value.

The relative sharpness of the heat capacity maximum in MnS₂ poses the question as to whether or not the transition is of first order. It might be answered by the Landau theory of phase transitions,¹⁹ which puts definite and quite restrictive conditions on the changes in symmetry allowed during a higher-order transition. Dimmock²⁰ has discussed these requirements for the magnetic transition in MnSe₂ and found that the low-temperature structure cannot transform con-

tinuously into the pyrite-type structure; for MnS₂ and MnTe₂ no such restrictions exist. However, even for MnS₂, isothermal heat absorption must be small since the enthalpy increment over a 0.04°K interval at the maximum is only 3.5 cal/mole. The large naturally occurring single crystals employed may have contributed to the relative sharpness of the transition in comparison with those in other antiferromagnetic substances studied in the form of fine crystalline particles of synthesized samples. X-ray diffraction studies of MnS₂ in a cryostat on a horizontal Ge goniometer showed the same profiles of the split α_1 and α_2 lines above and below the transition. The structure seemingly remained cubic, with a = 6.096 A at 4°K.

For MnTe₂ the structure also remains cubic with no indication of deformation on cooling through the transition region. The lattice constant at 4°K is a = 6.931 Å.

Analysis of the available magnetic susceptibility data by Lin¹⁸ and by Hastings et al.⁵ on MnTe₂ gives level splittings rather similar to those obtained for MnS₂. The reciprocal susceptibility calculated for $E_1/k =$ 180°K and $E_2/k = 800$ °K is shown as a function of temperature in Fig. 3 together with the experimental data.

The results indicate, just as for MnS₂, that the higher levels are only partially populated at 298°K. Although the temperature region of the Schottky anomaly is indicated to go below that of the λ -type transition in Fig. 4, resolution of the two phenomena is probably not feasible in this region. As evidenced by the broadness of the heat capacity maximum, the degree of cooperation is smaller than for MnS₂ where the Schottky contribution is less because of higher population of the ground state. Other effects might, however, be asor more-important.

An estimate of the MnTe₂ lattice heat capacity was obtained in the same way as for MnS₂ by calculating Debye θ 's outside the transition region after subtracting the assumed Schottky contribution from the observed heat capacity above the λ transition (see Fig. 4). The resulting transitional contribution to the entropy at 298°K is then $\Delta St = 2.4$ cal/mole·°K. The entropy not yet acquired in the Schottky transition is 0.60 cal/ mole.°K. Thus, about 85% of the expected contribution is accounted for. Evaluation of the lattice heat capacity by other more accurate methods (e.g., inelastic neutron scattering) is a desideratum.

ACKNOWLEDGMENTS

The continued support by the Division of Research of the U.S. Atomic Energy Commission is gratefully acknowledged. The authors wish to thank Dr. Edward J. Olsen of the Chicago Natural History Museum and Dr. Richard Robie of the U.S. Geological Survey for supplying single crystals of hauerite and Drs. Merritt Hougen and Ray Radebaugh who collaborated in making the measurements. We also thank J. L. Nerliens Fond for financial assistance and Dr. J. Tichy and Mrs. Soung-Sik Kim for assistance with some of the calculations.

* Supported in part by the Division of Research of the U.S. Atomic Energy Commission.

¹ P. P. Ewald and W. Friedrich, Ann. Phys. 44, 1183 (1914); P. P. Ewald, Physik. Z. 15, 399 (1914).

² I. Oftedal, Z. Physik. Chem. **135**, 291 (1928). ³ N. Elliott, J. Am. Chem. Soc. **59**, 1958 (1937).

⁴ H. Haraldsen and W. Klemm, Z. Anorg. Allgem. Chem. 223, 409 (1935)

⁵ J. M. Hastings, N. Elliott, and L. M. Corliss, Phys. Rev. 115, 13 (1959); see also J. Appl. Phys. 29, 392 (1958); H. Haraldsen, "Die Chalkogenide der Ubergangselemente" in *Experientia* Supplementum VII, XVIth International Congress of Pure and Applied Chemistry, Paris, 1957 (Birkhäuser Verlag, Basel, 1957), pp. 165-82 ⁶ L. M. Corliss and J. M. Hastings J. Phys. (Paris) 25, 557

(1964)

⁷ L. Neél, Ann. Phys. **3**, 137 (1948); see also J. S. Smart, Effective Field Theories of Magnetism (W. B. Saunders, Co., Philadelphia, Pa., 1966).

⁸ P. W. Anderson, Phys. Rev. 79, 705 (1950).

⁹ Values by earlier investigators expressed in kX units have been transformed to angstroms by multiplication by the factor 1.00202.

¹⁰ F. Offner, Z. Krist. 89, 182 (1934); see also L. Pauling and M. L. Huggins, *ibid.* 87, 205 (1934). ¹¹ W. Biltz and F. Wiechmann, Z. Anorg. Allgem. Chem. 228,

268 (1936)

¹² R. B. Gordon, Am. Mineralogist 36, 918 (1951).

¹³ S. Furuseth and A. Kjekshus, Acta Chem. Scand. 19, 1405 (1965)

¹⁴ S. Furberg, Acta Chem. Scand. 7, 693 (1953)

¹⁵ A. Sawoka and S. Miyhara, J. Phys. Soc. Japan 20, 2087 (1965).

¹⁶ E. F. Westrum, Jr., J. Chem. Educ. 39, 443 (1962)

¹⁷ B. H. Justice, doctoral dissertation, University of Michigan, Ann Arbor, Mich., 1961. U.S.A.E.C. Rept. TID-12722, 1961.

¹⁸ M. S. Lin, "A study on the Antiferromagnetic Transitions of Three Ionic Compounds at Low Temperatures," dissertation, University of Michigan Ann Arbor, Mich, 1964; Dissertation Abstr. 25, 7159 (1965).

 ¹⁹ L. Landau, Phys. Z. Sowjet. 11, 26, 545 (1937); Collected Papers of L. D. Landau (Gordon and Breach Science Publishers,