

Infrared spectra of T2O ice

Isao Kanesaka, Hideharu Hayashi, Hayato Kita, and Kiyoyasu Kawai

Citation: The Journal of Chemical Physics **93**, 6113 (1990); doi: 10.1063/1.459006 View online: http://dx.doi.org/10.1063/1.459006 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/93/8?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

Infrared spectra of ice surfaces and assignment of surfacelocalized modes from simulated spectra of cubic ice J. Chem. Phys. **102**, 8328 (1995); 10.1063/1.468825

Midinfrared spectra of deuterated ices at 10°K and interpretation of the OD stretching bands of ices II and IX J. Chem. Phys. **67**, 1511 (1977); 10.1063/1.435026

FarInfrared Spectra of Ice II, V, and IX J. Chem. Phys. **49**, 775 (1968); 10.1063/1.1670138

Neutron and Infrared Spectra of HCrO2 and DCrO2 J. Chem. Phys. **44**, 2496 (1966); 10.1063/1.1727070

The Infrared Spectra of CI2O and CIO2 J. Chem. Phys. **19**, 509 (1951); 10.1063/1.1748266

Infrared spectra of T₂O ice

Isao Kanesaka, Hideharu Hayashi, Hayato Kita, and Kiyoyasu Kawai Faculty of Science, Toyama University, Gofuku, Toyama 930, Japan

(Received 31 January 1990; accepted 5 July 1990)

There has been known two types of structure in ice-I at atmospheric pressure. One is the hexagonal ice and the other is the cubic ice I_c . A metastable ice I_v has also been known. It is well-known that there is no long-range order in the positions of hydrogen atoms in ice-I. Vibrational spectra of ice-I have been studied by many workers by both experimental observations¹⁻⁹ and interpretation.¹⁰

We may expect that T_2O ice is considerably different from ordinary ice, as found in electron bombarded ice.¹¹ On the other hand, T_2O ice may be unstable because of the high density of tritium, as found in β radiolysis of $[Co(en)_3]Cl_33T_2O$.¹² Fortunately we could report clear infrared spectra of T_2O ice.

T₂O was obtained from the reaction of 5 Ci T₂ with CuO at 320 °C. The infrared cell with a liquid N₂ reservoir was made of stainless steel with KRS-5 windows, which were stuck by using an In wire. The infrared spectrum for a film evaporated on a KRS-5 plate cooled by liquid. N₂ was recorded on a JASCO IR-302 spectrometer in the region of 4000–330 cm⁻¹. The observed spectra are given in Fig. 1, where (a) and (b) are those observed directly (t = 0) and at 6 h (t = 6 h), respectively, after the formation of T₂O ice. The observed frequencies and their assignments are given in Table I.

The infrared spectrum was quite clear and changed little in 7 h, as shown in Fig. 1. This indicates that T_2O ice is stable and keeps the same structure. Although the mixing of hydrogen into T_2O ice was found from two bands at 3280 and 1429 cm⁻¹, the ratio of H to T is estimated to be less than 20% from being no band owing to H_2O . There was a sharp band at 2443 cm⁻¹, which is assigned to $\nu(O-D)$; D was included in a T_2 ampule.¹³

The change in frequencies and half bandwidths for v(O-H) and v(O-D) with time is given in Table II. The half bandwidth of v(O-H) decreased from 150 to 107 cm⁻¹ between t = 0 and 1 h, in ~ 10 minutes, the frequency being

TABLE I. Observed frequencies (cm^{-1}) and their assignments in T₂O ice at 90 K.

t/h		
0	6	- Assignment
3472 sh	3464 sh	$\nu(O-T) + \delta(HOT)$
3291 s	3280 s	ν(O-H)
2446 m	2443 m	ν(O-D)
2174 sh	2175 sh	$v_1 + v_7^{a}$
2104 s	2102 s	ν,
2064 sh	2062 sh	$v(O-T)_{HTO}$
1988 ms	1985 ms	ν _I
1429 w	1429 w	$\delta(HOT)$
1023 wm	1024 wm	$\delta(T_2O)$
800 m	798 m	HOT lib
541 s	541 s	T ₂ O lib

^a v_T : translational mode.

lowered by 6 cm^{-1} , whereas there was no further change for both the bands as well as other bands. The spectral change is ascribed to the phase transition from T_2O ice- I_v to I_c in good correspondence with the H system.^{3,4,7,9,10} It is probable that the phase transition results from the high radiation dose $(3.3 \times 10^{20} \text{ eV/g in 10 min})$ as well as the formation of He and OT or OT⁺ (5.9×10^{16} g in 10 min), by referring that the temperature of a KRS-5 plate was estimated to be 90 ± 4 K from the frequency of v_3 , 3512 ± 3 cm⁻¹, $^{1-4}$ in H₂O ice-I_c in cold runs, though the actual temperature of a film is unknown. The O-H and O-D frequencies coincide almost with the decoupled ones in the D and H systems⁶ in Table II. whereas the bandwidth in the T system is larger by ~ 4 times in ν (O-H) than that in the D system, which may indicate increase of an intrinsic width owing to decomposed species, trapped electrons, and L defects (at least 5.9×10^{16} g in 10 min).

TABLE II. Variation of frequencies and bandwidths (cm⁻¹) with time.^a

^b From Raman spectra for 3 mol % HDO diluted water at 123 K (Ref. 4).

1

3285

(107)

2447

(37)

2

3283

(106)

2445

(35)

6

3280

(110)

2443

(38)

H system^b

3279 (30)

2423

(20)

0

3291

(150)

2446

(38)

* Bandwidth in parentheses.

t/h

v(O-H)

v(O-D)

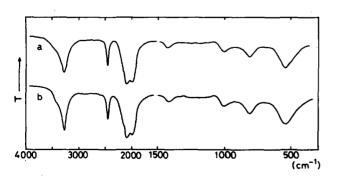


FIG. 1. Infrared spectra of T_2O ice at 90 K. (a) t = 0; (b) t = 6 h.

J. Chem. Phys. 93 (8), 15 October 1990

0021-9606/90/206113-02\$03.00

© 1990 American Institute of Physics 6113

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IF 152.2.176.242 On: Sun, 30 Nov 2014 19:01:32

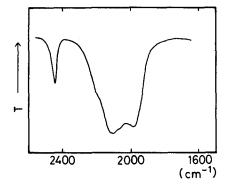


FIG. 2. Infrared spectrum in the region of O–T stretchings of T_2O ice- I_c at t = 0.

The infrared spectrum in the region of O-T stretchings of T_2O ice- I_c at t = 0 is given in Fig. 2. Two bands at 2104 and 1988 cm⁻¹ are assigned to v_3 and v_1 , respectively. The spectrum seems not so resolved as expected.³ One of the reasons is overlapping with the O-T stretching of HTO, which is expected to be lower than ν_3 .³ A shoulder at 2064 cm⁻¹ may be, thus, assigned to the O–T stretching. On the other hand, the main reason is probably that the bandwidths are broad in themselves, as described above.

- ¹N. Ockman, Adv. Phys. 7, 199 (1958).
- ²C. Haas and D. F. Hornig, J. Chem. Phys. 32, 1763 (1960).
- ³J. E. Bertie and E. Whalley, J. Chem. Phys. 40, 1637 (1964).
- ⁴A. H. Hardin and K. B. Harvey, Spectrochim. Acta 29A, 1139 (1973).
- ⁵P. T. T. Wong and E. Whalley, J. Chem. Phys. 62, 2418 (1975).
- ⁶J. R. Scherer and R. G. Snyder, J. Chem. Phys. **67**, 4794 (1977).
- ⁷E. Whalley, Can. J. Chem. 55, 3429 (1977).
- ⁸T. C. Sivakumar, S. A. Rice, and M. G. Sceats, J. Chem. Phys. **69**, 3468 (1978).
- ⁹M. S. Bergren, D. Schuh, M. G. Sceats, and S. A. Rice, J. Chem. Phys. **69**, 3477 (1978).
- ¹⁰M. S. Bergren and S.A. Rice, J. Chem. Phys. 77, 583 (1982).
- ¹¹J. P. Devlin and H. H. Richardson, J. Chem. Phys. 81, 3250 (1984).
- ¹²I. Kanesaka, H. Nishimura, K. Kanamori, K. Kawai, K. Ichimura, and K. Watanabe, Spectrochim. Acta 43A, 817 (1987).
- ¹³M. Matsuyama, H. Miyake, K. Ichimura, K. Ashida, and K. Watanabe, Ann. Rept. Tritium Res. Centr. 6, 39 (1986).