(TRIFLUOROMETHYL)GERMANES. PREPARATION AND PROPERTIES OF $(CF_3)_2$ GeHX $(X = H, D, F, Cl, Br, I, CH_3)$ AND CF_3 GeH $_nX_{3-n}$ $(X = H, D, CF_2H, CH_3)$ R. EUJEN*, R. MELLIES and E. PETRAUSKAS FB 9, Anorganische Chemie, Universität-Gesamthochschule, Wuppertal (F.R.G.) (Received July 2nd, 1985) #### **Summary** The hydrogenation of $(CF_3)_nGeX_{4-n}$ (X = halogen, n=1-3) with NaBH₄ in an acidic medium has been investigated. Deuteration with NaBD₄ and D₃PO₄ gave the partially deuterated species $CF_3GeH_nD_{3-n}$ and $(CF_3)_2GeH_nD_{2-n}$ in reasonable isotopic purity. The $(CF_3)_2GeHBr$ was isolated and converted into the halides $(CF_3)_2GeHX$ (X = F, Cl, I) by treatment with AgX or HX. Insertion of CF_2 into a Ge-H bond has been observed, and $(CF_3)(CF_2H)GeH_2$ has been characterized. Direct alkylation of Ge-H bonds was brought about by reaction with a mixture of RI and R'₂Zn (R, R' = CH₃, C₂H₅), and the methyl(trifluoromethyl)germanes $CF_3GeH_2(CH_3)$, $CF_3GeH(CH_3)$ ₂ and $(CF_3)_2GeH(CH_3)$ were isolated. For R = CD₃, R' = CH₃ the product distribution can be accounted in terms of two competing mechanisms. ## Introduction Of the trifluoromethyl derivatives of Main Group IV elements, germanium compounds have been most systematically studied [1–3]. Whereas trifluoromethylsilane, CF_3SiH_3 , has been characterized recently [4], and some evidence has been presented for CF_3SnH_3 [5], the trifluoromethylgermanes, $(CF_3)_nGeH_{4-n}$ (n=1-3), are readily accessible from the corresponding halides and $NaBH_4$ in an acidic medium [6]. Their bonding properties, which are dominated by a rather weak Ge-C bond, have been investigated by means of vibrational [7,8] and photoelectron [9] spectroscopy as well as by structural methods [10]. Because of its high electronegativity, the CF_3 group behaves like a halide, the basic difference from a halide being the inability to accept a negative charge and thus to act as a leaving group in S_N -type reactions. However, strong nucleophiles will eliminate the CF_3 group irreversibly, e.g. OH^- yields HCF_3 quantitatively. The electron-withdrawing power of the CF_3 group increases the acidity of the Ge-H bonds, leading to facile formation of rather stable CF₃-substituted germyl anions [11]. In this contribution we report the syntheses and properties of some CF₅-substituted germanes. #### Results and discussion Trifluoromethylgermanes are obtained in high yields (> 90%) from the corresponding halides and sodium tetrahydroborate in 30% phosphoric acid. $$(CF_3)_n Ge(Hal)_{4-n} \xrightarrow{NaBH_4 \cap H_3 PO_4} (CF_3)_n GeH_{4-n} (n = 1-3)$$ All the hydrides are colourless gases or liquids, and their vapour pressure data are listed in Table 1. ¹H. ¹⁹F and ¹³C NMR parameters including those of partly deuterated germanes are presented in Table 2. The high electronegativity of the CF₃ group induces an increased acidity of the germanium bonded hydrogens with respect to GeH₄, e.g. slow H/D exchange is observed for $(CF_3)_3$ GeH in D₃PO₄ (5% in 24 h at 25°C). Since the exchange rate is greatly accelerated by the presence of a polarizable substituent such as iodine, the synthesis of distinct H/D isotopomers such as $(CF_3)_3$ GeHD becomes possible; for example, reaction of $(CF_3)_3$ GeI₂ with NaBD₄ in H₃PO₄ yields $(CF_3)_3$ GeHD: $$(CF_3)_2GeI_2 \xrightarrow{BD_3} (CF_3)_2GeDI \xrightarrow{H} (CF_3)_2GeHI \xrightarrow{BD_4} (CF_3)_2GeHD$$ The H/D exchange has been shown for pure $(CF_3)_2GeHI$ to be reversible and fast, the second hydrogenation step being much slower. The resulting $(CF_3)_2GeHD$ does not exchange under the conditions used. Similarly, CF_3GeH_2D and CF_3GeHD_2 may be obtained in reasonable isotopic purity by use of $NaBH_4/D_3PO_4$ or $NaBD_4/H_3PO_3$: $$CF_3GeI_3 \xrightarrow{BD_4} CF_3GeDI_2 \xrightarrow{H^2} CF_3GeHI_2 \xrightarrow{BD_4} CF_3GeHDI \xrightarrow{BD_4} CF_3GeHD_2$$ The H/D exchange is very rapid for CF₃GeH₂, but slow for CF₃GeH₃I. The vibrational spectra of the partly deuterated species have been studied in detail and force constants have been derived [7,8]. Though CF₃ is a poor leaving group, some CF₃ elimination is observed in the TABLE 1 VAPOUR PRESSURES * OF SOME (TRIFLUOROMETHYL)GERMANES | | B.p.
(°C) | A | В | H_z^{α} | \mathcal{N}_i^* | |---|--------------|------|-------|----------------|-------------------| | CF ₃ GeH ₃ | - 22.1 | 1033 | 7.120 | 19.78 | 78,8 | | (CF ₃) ₂ GeH ₂ | 20.5 | 1424 | 7.855 | 27.26 | 92.8 | | (CF ₃) ₃ GeH | 31.7 | 1480 | 7.861 | 28,33 | 92.9 | | (CF,)4Ge | 31.7 | 1505 | 7.942 | 28.81 | 94.5 | | (CF ₁)(CF ₂ H)GeH ₂ | 41.9 | 1685 | 8,355 | 32,26 | 102.4 | | (CF ₃) ₂ GeHBr | 48.6 | 1710 | 8.320 | 32.74 | 101.7 | [&]quot; $\log p \text{ (mbar)} = -A/T + B$. In kJ mol 1. In kJ mol 1 deg 1 | | GeH_4 | CF ₃ GeH ₃ | $(CF_3)_2GeH_2$ | (CF ₃) ₃ GeH | |----------------------------------|---------|----------------------------------|-----------------|-------------------------------------| | δ(H) " | 3.30 | 4.27 | 5.05 | 5.65 | | $\delta(F)^{ a,v }$ | | -49.2 | -50.3 | -50.1 | | $\Delta \delta(\mathrm{H})^{-6}$ | 0.013 | 0.013 | 0.010 | - | | $\Delta\delta(\mathbf{F})^{ b }$ | APP- | 0.033 | 0.032 | 0.027 | | $^2J(\mathrm{HD})^{ c }$ | 1.2 | 2.1 | 3.0 | | | ³ J(HF) ^c | - | 8.7 | 7.8 | 6.7 | | J(DF) ^c | | 1.35 | 1.20 | 1.00 | | ⁴ J(FF) ^c | News | TORRE | 4.72 ° | 4.10 | | $\delta(C)^{d}$ | | 131.0 | 129.1 | 127.5 | | J(CF) | room | 331.7 | 330.7 | 329.5 | | ² J(CH) ^c | | 9.1 | 12.3 | 15.1 | | ³ J(CF) ^c | | _ | 5.3 | 4.8 | TABLE 2 NMR DATA FOR THE (TRIFLUOROMETHYL)GERMANES $(CF_3)_nGe(H/D)_{4-n}$ reaction with NaBH₄, giving the corresponding $(CF_3)_{n-1}$ germane, e.g. somewhat less than 5% $(CF_3)_2GeH_2$ is obtained in the preparation of $(CF_3)_3GeH$, $$CF_3Ge \in \xrightarrow{BH_4} Ge-H + CF_3$$ However, such elimination reduces the yield of CF_3GeH_3 from CF_3GeI_3 by as much as 50% at ambient temperature. The generated CF_3^- is not only protonated to form HCF₃, it also appears to eliminate F^- with concomitant formation of difluorocarbene. The latter, which may be trapped as HCF_2Br in hydrobromic acid, also inserts into a Ge-H bond yielding ca. 10% of $(CF_3)(CF_2H)GeH_2$ as well as small amounts of $(CF_3)(CF_2H)GeHX$ (1.5%) and $(CF_3)(CF_2H)GeX_2$ (<0.5%), which were identified from their NMR spectra (Table 3): $$HCF_3 \stackrel{H^+}{\longleftarrow} CF_3^- \rightarrow CF_2 + F^-$$ $$CF_2 + CF_3GeHX_2 \rightarrow (CF_3)(CF_2H)GeX_2$$ If the hydrogenation is carried out in the corresponding HX acid the partially hydrogenated species may trapped, e.g. $(CF_3)_2GeHBr$ is obtained in a 10% yield when concentrated hydrobromic acid is used at ambient temperature. Conversion into other halides is readily brought about by AgX, to form the lighter halide (X = F, Cl), or with gaseous HI to form the iodide: $$R_2GeHX \stackrel{AgX}{\longleftarrow} R_2GeHY \stackrel{HZ}{\longrightarrow} R_2GeHZ (m_x < m_y < m_z)$$ The 1 H and 19 F NMR data of $(CF_3)_2$ GeHX $(X = F, Cl, Br, I, CH_3)$ are given in Table 3. As in other (trifluoromethyl)fluorogermanes, no coupling to the Ge-bonded fluorine is observed, and fast fluorine exchange, possibly catalyzed by traces of HF, seems likely. Mixed methyl(trifluoromethyl)germanes are accessible by several methods including partial methylation of the iodide followed by hydrogenation. Thus treatment of [&]quot;Internal TMS/CFCl₃ reference. $\delta = 10^6 \times (\nu - \nu_{Ref}) / \nu_{Ref}$." $\Delta \delta = \delta (GeH_n) - \delta (GeH_{n-1}D)$. In Hz. "In C_6D_6 , $\delta (C_6D_6)$ 127.0 ppm." Ref. 3. TABLE 3 $NMR |DATA''| FOR (CF_3)_2 GeHX (X + F, C), Br. 1) |AND (CF_3 (CF_2 H) GeX_3) (X \approx H, CL, Br. 1)$ | | &(GeH) | δ(CE ₂) | J(HF) | 1/(CF) * | , (FF) ¹ , | | | The second secon | | | |--|------------------------------|------------------------------------|-------------------------|-----------------------------------|--------------------------|-------|--------------|--|---------|------------| | (CE) GeHF
(CE) GeHCI
(CE) GEHBr
(CE) GEHB | 6.20
6.20
5.97
5.57 | - 56.8
56.5
- 55.9
- 54.9 | 7.7 | 330(1)
330.5
332.5
335.9 | 3.9
6.4
8.4
8.4 | | 8(GeF) | . 323 | | | | | δ(GeH) | δ(CF, H) | $\delta(CF_{\epsilon})$ | 8(CF, H) | 7(HF) " | | 4/(FF) | , J(HH) | 'J(HF)' | 47/4 | | CF,)(CF,H)GeII; | 4.83 | 6.48 | - 49.9 | -125.3 | 7.8 | 46.0 | 4.1 | 2.1 | 5.5 | 90 | | C F, XC F, HIGGHC | 60.9 | 6.34 | - 56.2 | 128.6 | 7.3 | 46.7 | 3.6 | 3.0 | | 5.0 | | ,H)GeHBr | 5.83 | 6.43 | 55.2 | 127.2 | 7.4 | 46.3 | 3.6 | 9.0 | | . o | | (CF,)(CF, H)GeHI | 5.37 | 6.30 | 54.6 | 125.4 | 7.5 | 46(1) | - 36
- 67 | 3.0 | · | 5 5
5 5 | | H)GeCl ₂ | ŧ | 받 | 58.6 | 127.6 | į | 46,6 | j di
Lini | ì | | ်း
၁ | | .H)GeBr. | | ¥ | £.65 · | - 125.7 | | 47.3 | ~
~ | | | | | CF.)(CIŞH)GeL, | | | . 59.2 | 123.9 | | 47(1) | 3,9(5) | | | 34 | 'Shifts in ppm, coupling constants in Hz (see Table 2), "From PG satellites," [Addis] is not observed due to intermolecular fluorine exchange, "AdECGeH), AdECGEH), "A shift difference of 0.40 ppm is observed for the AB system of the diastercotopic fluorines of the CF, group," Not observed. $(CF_3)_2GeI_2$ with $(CH_3)_2Cd$ yields $(CF_3)_2GeI(CH_3)$, which was converted into $(CF_3)_2GeH(CH_3)$ with NaBH₄. An alternative route to methyl(trifluoromethyl)germanes, $(CF_3)_n(CH_3)_mGeH_{4-n-m}$ (n=1, 2), is the methylation of the corresponding trifluoromethylgermane CF_3GeH_3 or $(CF_3)_2GeH_2$ with a mixture of CH_3I and $(CH_3)_2Zn$ at or below ambient temperature; e.g., $$CF_3GeH_3 + CH_3I + (CH_3)_2Zn \rightarrow (CF_3)(CH_3)GeH_2 + CH_4 + CH_3ZnI$$ The ¹H and ¹⁹F NMR spectra of some methyl(trifluoromethyl)germanes are listed in Table 4. The reaction proceeds smoothly until all the methyl iodide is consumed. With an excess of CH₃I germanium iodides such as CF₃GeI₃ are formed in addition to the partially methylated species. Use of a 1/1 CD₃I/(CH₃)₂Zn mixture gives both CH₃- and CD₃-containing products; infrared analysis of the evolved methane confirms the presence of both CD₃H and CH₄ species. Methyl exchange between CD₃I and (CH₃)₂Zn under these conditions is excluded since hydrolysis of the residual (CH₃)₂Zn and CH₃ZnI yields CH₄ exclusively. These results may be accounted for by two alternative mechanisms which may be represented schematically as a "head-to-head" and a "head-to-tail" exchange; viz. $$\frac{-Ge^{-H}}{I-R} \xrightarrow{\kappa_1} \frac{\kappa_1}{-Ge^{-I}} + RH \xrightarrow{\frac{R_2'Zn}{-R'ZnI}} \frac{-Ge^{-R'} + RH}{-R'ZnI} \xrightarrow{-Ge^{-R'}} Ge^{-R'} + RH$$ (1) $$\frac{-Ge^{-H}}{R-I} \xrightarrow{k_2} \frac{k_2}{-Ge^{-R} + HI} \xrightarrow{R_2'Zn} \frac{-Ge^{-R} + R'H}{-R'ZnI} \xrightarrow{-Ge^{-R} + R'H} (2)$$ It should be noted that neither CH₃I nor (CH₃)₂Zn reacts with CF₃GeH₃ at room temperature. Activation of the methyl iodide is required, and transition states such as: for eqs. 1 and 2, respectively, are possible. For $R = CD_3$, $R' = CH_3$ the relative rate k_1/k_2 was evaluated from the intensities of the corresponding ¹⁹F NMR signals, which show a well resolved CH_3/CD_3 isotopic shift for the CF_3 resonances (Table 4). For the first step of the reaction with CF_3GeH_3 a value of 2.5 is obtained, and this increases to 3.2 ± 0.3 for the second and third H/CH_3 substitution steps, whereas for $(CF_3)_2GeH_2$ the ratio decreases from 2.0 to 1.2. Use of C_2H_5I and $(C_2H_5)_2Zn$ yields the corresponding ethyl derivatives. Use of a mixture of $C_2H_5I/(CH_3)_2Zn$, however, yields C_2H_6 with traces of CH_4 , and the ¹⁹F NMR spectrum confirms the formation of methylated products only, indicating that k_1 is $\gg k_2$ for C_2H_5I . Presumably, the greater bulk of the ethyl group than of the methyl group TABLE 4 NMR DATA" FOR SOME METHYL (TRIFLA OROMETHYL) GERMANES | | δ(CF _λ) | $(J_i)_{i \in I_i}$ | DS(CF ₂) " | δ(GeH) | S(CH ₂) | (H)(I)/C | J(HH) | 47(I-F) | |---|---------------------|---------------------|------------------------|--------|---------------------|----------|--|--------------------| | (F;GeH, | 49.2 | 331.7 | | 4.27 | | 8.70 | THE RESIDENCE AND ADDRESS OF THE PERSON T | | | (T,GeH,(CH,) | - 53.9 | 333,3 | -0.053 | 4.39 | 0.61 | 7.75 | 3.75 | | | CF,GeH(CH,), | 58.2 | 335.6 | -0.040 | 4.53 | 0.52 | 6.85 | 3.37 | | | CF,Ge(CH.); | 8.19 | 3.36.8 | 0.027 | | 0.44 | | | | | CF,Gel(CH,), | . 62.4 | 338.5 | T' | | 1.24 | 1 | | | | CF,Gel,(CH,) | 64.7 | 340.8 | <i>p</i> : | | 2.03 | | i | | | (F,Gelfi(CH,) | - 59.4 | p | | 1. | 1.30 | 7.0 | ×. | | | (CF,),GeH, | - 50.3 ' | 330.7 | 1 | 5.05 | | 7.8 | | 4.72 | | (CE) Gell(CH) | 54.4 | 334.6 | - 0.038 | 80% | 0.79 | 6.8 | र्च (८) | 4.3 | | $\{C\Gamma_i\}_i$ Ge(CH _i); | 57.9 | 333.0 | 0.026 | | 0.70 | 1 | | 3,93 | | (CII.) (GelfCH.) | C.85 | 3362 | | | 7 | | | er
T | ** Chemical shifts or ppm; coupling constants in Hz. (\(\Delta KCF_{10} = \delta CF_{10} CH_{10} R_{10} - \delta CF_{10} CH_{10} R_{10} + \delta CF_{10} R_{10} + \delta R_{10} + \delta R_{10} + \delta R_{10} \). TABLE 5 $VIBRATIONAL \ FUNDAMENTALS \ (cm^{-1}) \ OF \ (CF_3)_2 GeHX \ (X = F. \ Cl. \ Br. \ I. \ CH_3)$ | AND THE PROPERTY OF PROPER | X | Ĺ | Cl | Br | | CH3 b | Intensity (IR/Ra) | |--|------------|--------|-----------|-------|-------|---------|-------------------| | v(GeII) | d' | 2162 | 2152 | 2145 | 2135 | 2133 | m-s/s,p | | $\rho(GeH)$ | a'/a" | 682 | 693/680 | 682 | 672 | 684/662 | s/m | | $\nu_s(\mathrm{CF}_3)$ | a' | 1201 | 1194 | 1190 | 1184 | 1199 | vs/w.(p) | | | a" | 1177 | 1165 | 1164 | 1158 | 1173 | vvs/w | | $\nu_{a\alpha}(\mathrm{CF}_3)$ | α' | 1144 | 1144 | 1144 | 1143 | 1136 | h,w/svv | | | a'' | (1120) | 1121/1117 | 1117 | 1117 | 1098 | s/w.b | | $\delta_{\epsilon}(CF_3)$ | α' | 732 | 732 | 731 | 731 | 727 | d's/m | | $\delta_{av}(CF_i)$ | a' | 527 | 524 | 524 | 522 | 518 | w/w | | | α" | 515 | 511 | 511 | 1 | (510) | \www. | | $\rho(CF_3)$ | a' | 321 | 313 | 309 | 295 | 308 | d'm/m | | | a' | 280 | 268 | 255 | 253 | 276 | w/w.(p) | | | <i>a''</i> | 238 | 230 | 230 | 225 | 235 | w/wv | | | a" | ŧ | 202 | 202 | 1 | 200 | vw/- | | $\nu_s(\operatorname{GeC}_2)$ | a' | 249 | 250 | 241 | 212 4 | 247 | -/s.p | | $r_{es}(\text{GeC}_2)$ | <i>a</i> " | 338 | 332 | 332 | 325 | 323 | m/s | | v(GeX) | a' | 700 | 451 | 347 | 348 d | 619 | d'm/s | | $\delta(GeC_2)$ | a' | 82 | 78 | 77 | 7.5 | 78 | n.o./w-m | | δ(CGeX) | a'/a" | l | 108 | 28/84 | 88 | 129 | n.o./m | ^a Gas phase IR or liquid phase Raman (< 300 cm ¹) frequencies. ^b p_{ab} (CH₃) 3011 (w/w), p_{c} (CH₃) 2940 (w/m.p), δ_{ab} (CH₃) 1423 (m/vw), δ_{ab} (CH₃) 1267 (w/w.p), ρ (CH₃) 858 (m-s/w) and 820 (s/vw). ^c s = strong, m = medium, w = weak, p = polarized, n.o. = out of range of the spectrometer. ^d The lines at 212 and 348 cm ⁻¹ are strongly mixed in Ge-C and Ge-X characters. prevents the direct formation of a $Ge-C_2H_5$ unit. In contrast, for the combination $CH_3I/(C_2H_5)_2Zn$ all possible products $CF_3GeH_a(CH_3)_b(C_2H_5)_\zeta I_d$ are evident from the NMR spectra. #### Vibrational spectra Except for some characteristic Ge-X features the vibrational spectra of the compounds $(CF_3)_2GeHX$ $(X = F, CI, Br, I, CH_3)$, Table 5, are very similar, and are readily assigned by comparison with the spectra of $(CF_3)_2GeH_2$ and $(CF_3)_3GeH$ [8]. Thus, the skeleton vibrations of $(CF_3)_2GeHBr$ are almost identical to those of $(CF_3)_3GeH$ owing to the similarity of the Br and CF_3 masses and the Ge-Br and Ge- CF_3 bond strengths [12], whereas the internal CF_3 vibrations are characteristic for a $(CF_3)_3Ge$ unit [8]. Similarly the spectra of $(CF_3)(CF_2H)GeH_2$ strongly resemble those of (CF_3) -GeH- with the exception of the C-H stretching, the C-H rocking mode with TABLE 6 VIBRATIONAL SPECTRA AND ASSIGNMENTS FOR (CF₃)(CF₃H)GeH 5 | IR _{gas} | Ra _{fiq.} | Assignment | |-------------------|--------------------|------------------------------------| | | 85W. | $\delta(\operatorname{GeC}_2)$ | | 207w | 212w, (p) | $\rho(\mathrm{CF}_3)$ | | 250sh | 253s.p | $v_s(\mathrm{GeC}_2)$ | | 262m | 265vw | Lucr cr | | 305sh | 303w-m.p | $\left\{ \rho(CF_3/CF_2) \right\}$ | | 323s | 320m.p | $r_{ab}(\mathrm{GeC}_2)$ | | 441m-s | 442w.p | $\delta(\text{CGeH})$ | | 517vw | 512w | S (CT) | | 538vw | 552w-m.p | $\delta_{uv}(\mathrm{CF}_3)$ | | 610m | 614m.p | $\delta(CF_{\pi})$ | | 642m | 653w | twist (CGeH) | | 691m-s | 700w | wag (CGeH) | | 729vs | 726s.p | $\delta_{s}(CF_{\lambda})$ | | 809vw | , | 729 + 82 % 811 | | 849s | 843m | $\delta(GeH_{+})$ | | 935vw | | 729 + 207 = 936 | | 1055vs | 1030va | | | 1093sh | | $\nu(\mathrm{CF}_2)$ | | 1118vvs | 1090w,b | $P_{as}(CF_3)$ | | 1184vs | 1182w. (p) | $\nu_{s}(\mathrm{CF}_{s})$ | | 13118 | 1312w.p | 1 | | 1338sh | 1337vw | ρ(CH) | | 1385vw | | 1118 + 262 = 1380 | | 1837vw | | $1118 \pm 729 = 1847$ | | 1909vw | | 1184 + 729 - 1913 | | 21318 | 2137s.p | $r_s(\text{GeH}_s)$ | | 2150s | 2155w | F_{α} (GeII+) | | 2205vw | | 1118 - 1093 = 2211 | | 2230vw | | 2×1118 = 2236 | | 2298w | | 1184 €1118 = 2302 | | 2360w | | $2 \times 1184 = 2368$ | | 2396vw | | 2150 - 250 = 2400 | | 2951m | 2965w.p | ν(CH) | its two components at 1311 and 1338 cm⁻¹, and the CF₂ deformation at 610 cm⁻¹ (Table 6). Conclusions about the geometry of $(CF_3)(CF_2H)GeH_2$ may be drawn from the Raman polarization spectra. The highest possible symmetry for this molecule is C_s , with the C-H bond located in the mirror plane. The skeleton vibrations of the molecule $(CF_3)_2GeH_2$, which have been analyzed in terms of C_{2v} symmetry, correlate as $a_1 \rightarrow a'$, $a_2 \rightarrow a''$, $b_1 \rightarrow a''$, and $b_2 \rightarrow a'$. Inspection of Table 6, however, shows that the GeH_2 rocking mode (a'') for C_s symmetry at 440 cm⁻¹ is clearly polarized; that is, the symmetry must be lower than C_s , with the C-H bond rotated out of the GeC_2 plane. Because of their importance for the determination of reliable force constants, especially in the direct comparison of Ge-CF₃ and Ge-CH₃ bond strengths, the vibrational spectra of CF₃GeH₂(CH₃) and CF₃GeH(CH₃)₂ including both GeD and CD₃ containing isotopomers will be subject of a separate study [13]. #### **Experimental** (Trifluoromethyl)iodogermanes, $(CF_3)_nGeI_{4-n}$, were obtained from GeI_4 and $(CF_3)_2Hg$ [6]. Dimethyl zinc was prepared from CH_3I , Cu, Zn and catalytic amounts of I_2 at $120^{\circ}C$, sealed in a glass ampoule. D_3PO_4 was made from P_4O_{10} and P_2O_{10} . Manipulations were carried out under dry nitrogen or on a vacuum line equipped with greaseless stopcocks. Reaction mixtures for NMR analysis were sealed in 4 mm glass tubes. ¹H and ¹⁹F NMR spectra were recorded on a Varian EM 390 spectrometer operating at 90.00 and 84.67 MHz, respectively, and ¹³C NMR spectra on a Varian FT 80A spectrometer at 20.0 MHz. Positive chemical shifts refer to high frequencies relative to the standards, TMS (¹H, ¹³C) and CFCl₃ (¹⁹F). Infrared spectra of volatile compounds were recorded in 20 cm gas cells equipped with KBr or polyethylene windows on a Perkin–Elmer 580B instrument between 180 and 4000 cm⁻¹. Raman spectra were taken on the liquids sealed in 1 mm capillaries with a Cary 82 spectrometer with Kr⁺ laser excitation at 647.1 nm. Mass spectra were obtained with a Varian MAT 311 spectrometer. Masses of isotopic clusters refer to the most abundent isotope (e.g. ⁷⁴Ge). Vapour pressure data were obtained with a MKS Baratron BHS 315 manometer and a Pt 100 resistance thermometer. #### Synthesis of trifluoromethylgermanes $(CF_3)_3GeH$. A 500 ml flask equipped with a magnetic stirrer, a septum and a dropping funnel was charged with 100 ml of 30% phosphorous acid and connected to a vacuum line via a reflux condenser kept at -20° C. After degassing and venting with nitrogen, 20.3 g (50 mmol) of $(CF_3)_3$ GeI were added from a syringe to the ice-cooled acid. While a pressure of ca. 600 mbar was maintained, a solution of 8 g NaBH₄ in 80 ml H₂O was added during 1 h, and the evolved condensable gases were collected in two -196° C traps. Fractional condensation followed by isothermal distillation at 0° C using a slit tube column yielded 11.3 g $(CF_3)_3$ GeH, unreacted $(CF_3)_3$ GeI (4 g), and small amounts of $(CF_3)_3$ GeH₂. MS: 263 (CF₃)₂(CF₂)GeH (10), 213 (CF₃)₂GeH (60), 181 CF₃GeF₂ (5), 163 CF₃GeHF (90), 143 CF₃Ge (20), 119 C₂F₅ (7), 113 F₂GeH (68), 101 C₂F₄H (20), 93 GeF (100), 75 GeH (6), 74 Ge (15), 69 CF₃ (60), 51 CF₂H (90). (CF₃)₂GeH₂ and CF₃GeH₃ were obtained by a similar procedure with yields exceeding 90%. (CF₃)₂GeH₂. MS: 195 (CF₃)(CF₂)GeH₂ (10), 163 CF₃GeHF (11), 145 CF₃GeH₂ (95), 143 CF₃Ge (25), 113 F₂GeH (25), 95 FGeH₂ (55), 93 GeF (100), 83 C₂F₃H, 75 GeH (50), 74 Ge (30), 69 CF₂ (8), 51 CF₃H (20). *CF*₃*GeH*₃. MS: 145 CF₃GeH₂ (10), 144 CF₃GeH (15), 143 CF₃Ge (20), 93 GeF (80), 77 GeH₃ (100), 75 GeH (25), 74 Ge (20), 69 CF₃ (25), 51 CF₃H (25). The partly deuterated compounds (CF₃)₂GeHD, contaminated with 24% (CF₃)₂GeH₂ and 2% (CF₃)₂GeD₂ were obtained from (CF₃)₂GeI₂. H₃PO₄ and NaBD₄. The corresponding reaction of CF₃GeI₃ with NaBD₄/H₃PO₄ yielded a sample containing 35% CF₃GeH₃, 50% CF₃GeH₂D and 15% CF₃GeHD₇, whereas use of NaBH₄/D₃PO₄ resulted in 16% CF₃GeH₂D, 72% CF₃GeHD₇ and 12% CF₃GeD₃, the compositions being determined by NMR analysis. $(CF_3)_3GeHBr$. 2.3 g (6.2 mmol) $(CF_3)_3GeBr_2$ in 48% HBr solution were reacted with an excess of NaBH₄ as described above, solution and reflux condenser being kept at ambient temperature. After fractional condensation the products were separated by gas chromatography on a SE 30 $1/4'' \times 6'$ column (gas chromatograph Varian 3700), yielding 0.48 mmol of $(CF_3)_2GeHBr$. MS: 225 CF₃GeHBr (100), 175 FGeHBr (28), 155 GeBr (56), 113 F₂GeH (16), 93 GeF (64), 74 Ge (16), 69 CF₃ (22), 51 CF₃H (94). $(CF_3)_2$ GeHCl. 280 mg (0.96 mmol) $(CF_3)_2$ GeHBr were condensed on 2 g freshly prepared AgCl and the mixture was shaken at room temperature for 2 h, after which the process was repeated with a fresh charge of AgCl. Fractional condensation yielded 205 mg (86%) $(CF_3)_2$ GeHCl. MS: 229 (CF₃)(CF₂)GeHCl (6), 179 CF₃GeHCl (100), 163 CF₃GeHF (20), 129 FGeCl (35), 109 GeCl (59), 93 GeF (68), 74 Ge (21), 69 CF₃ (39), 51 CF₃H (98). $(CF_3)_2GeHF$. 180 mg (0.62 mmol) $(CF_3)_2GeHBr$ were condensed on 1.2 g freshly prepared AgF which had been dried and degassed at 50°C and 10⁻⁴ mbar for 24 h. After fractional condensation 120 mg (84%) $(CF_3)_2GeHF$ were obtained. Mol.weight (gas phase) 228.7 (calcd. 230.6). MS: 213 (CF₃)(CF₅)GeHF (6), 163 CF₅GeHF (100), 113 F₅GeH (46), 93 GeF (80), 74 Ge (12), 69 CF₃ (26), 51 CF₅H (62). $(CF_3)_3GeHI$ was obtained from repeated cocondensation of 440 mg (1.5 mmol) $(CF_3)_3GeHBr$ and an excess of HI. Separation was achieved by trap-to-trap condensation yielding 330 mg (65%) $(CF_3)_3GeHI$. MS: 340 (CF₃)₂GeHI (71), 271 CF₃GeHI (100), 221 FGeHI (25), 220 FGeI (9), 201 GeI (50), 93 GeF (50), 74 Ge (10), 69 CF₃ (13), 51 CF₃H (47), $(CF_3)(CF_2H)GeH_2$. The hydrogenation of CF_3GeI_3 (6.35 g, 12.2 mmol) was carried out as described above for $(CF_3)_3GeH$, however without cooling. Product separation was by fractional condensation. The $-96^{\circ}C$ trap retained CF_3GeH_2I , $(CF_3)(CF_2H)GeH_2$ and traces of $(CF_3)(CF_2H)GeHI$, $(CF_3)(CF_2H)GeI_2$ and $CF_3GeHI_2.(CF_3)(CF_2H)GeI_2$ was purified by GLC yielding 260 mg (11%). MS: 177 (CF₂)(CF₂H)GeH₂ (0.7), 145 CF₃GeH₂ (98), 127 (CF₂H)GeH₂ (26), 93 GeF (100), 82 C₂F₃H (23), 75 GeH (30), 74 Ge (10), 69 CF₃ (5), 51 CF₃H (35). $(CF_3)_3Gel(CH_3)$. To a stirred solution of 12 g (26 mmol) $(CF_3)_2Gel_2$ in 30 ml n-butyl ether, a solution of 1.8 g (12.6 mmol) $(CH_3)_3Cd$ in 20 ml n-butyl ether was added during 30 min. Distillation yielded 4.3 g (12.2 mmol, 47%) $(CF_3)_3Gel(CH_4)$. MS: 354 (CF₃)₂GeI(CH₃) (38), 339 (CF₃)₂GeI (11), 285 CF₃GeI(CH₃) (100), 235 FGeI(CH₃) (60), 177 CF₃GeF(CH₃) (27), 127 GeF₃(CH₃) (28), 93 GeF (10), 1R: 2970m, 2940m, 1417m, 1257m, 1189vs, 1164vs, 1130vs, 1106s, 816s, 728m, 617m, 525w, 320s. Raman: 2930mp, 1415vwp, 1258wp, 1183wp, 1157w, 1120vw, 1105vw, 838vw, 813vwp, 724mp, 617mp, 523w, 318w, 289mp, 248mp, 237vw, 210vsp, 188vwp, 144m, 85sh, 73s. $(CF_3)_2GeH(CH_3)$ was obtained in 85% yield from $(CF_3)_2GeI(CH_3)$ and NaBH₄ as described above. MS: 209 (CF₃)(CF₂)GeH(CH₃) (1), 177 CF₃GeF(CH₃) (6), 159 CF₃GeH(CH₃) (55), 127 F₂GeCH₃ (16), 109 FGeH(CH₃) (100), 93 GeF (35), 89 GeCH₃ (30), 74 Ge (4), 51 CF₂H (10). Reactions of $(CF_3)_nGeH_{4-n}$ (n = 1, 2) with $CH_3I/(CH_3)_*Zn$ To 1.15 mmol of CF₃GeH₃ were condensed 1.15 mmol CH₃I and 1.15 mmol (CH₃)₂Zn. A white solid separated when the mixture was warmed to room temperature. Analysis of the volatile materials yielded 1.3 mmol CH₄, 0.38 mmol unreacted CF₃GeH₃, 0.44 mmol CF₃GeH₂(CH₃), 0.24 mmol CF₃GeH(CH₃)₂, 0.09 mmol CF₃Ge(CH₃)₃ and 0.17 mmol unreacted (CH₃)₂Zn. Hydrolysis of the non-volatile residue yielded 0.55 mmol CH₄. Separation was achieved by fractional condensation. *CF*₃*GeH*₂(*CH*₃). MS: 160 CF₃GeH₂(CH₃) (4), 159 CF₃GeH(CH₃) (5), 143 CF₃Ge (10), 109 FGeH(CH₃) (42), 93 GeF (72), 89 GeCH₃ (100), 75 GeH (34), 74 Ge (44), 69 CF₃ (12). $CF_3GeH(CH_3)_2$. MS: 159 CF₃GeH(CH₃) (3), 158 CF₃GeCH₃ (2), 143 CF₃Ge (2), 123 FGe(CH₃)₂ (30), 109 FGeH(CH₃) (33), 105 GeH(CH₃)₂ (100), 93 GeF (20), 89 GeCH₃ (45), 75 GeH (6), 74 Ge (8), 69 CF₃ (3). Utilizing CD₃I/(CH₃)₂Zn yielded CD₃H/CH₄ (IR analysis), CF₃GeH₂(CH₃)/CF₃GeH₂(CD₃) (0.72/0.28), CF₃GeH(CH₃)₂/CF₃GeH(CH₃)₂/CF₃GeH(CD₃)₂ (0.56/0.37/0.07) and CF₃Ge(CH₃)₃/CF₃Ge(CH₃)₂(CD₃)/CF₃Ge(CH₃)₂/CF₃Ge(CD₃)₃ (0.41/0.38/0.17/0.03), relative abundancies given in parentheses being determined by relative peak heights of the CF₃ NMR signals. Hydrolysis of the residue gave only CH₄. Similarily, $(CF_3)_2GeH_2$, CD_3I and $(CH_3)_2Zn$ yielded $(CF_3)_2GeH(CH_3)/(CF_3)_2GeH(CD_3)$ (0.68/0.32) and $(CF_3)_2Ge(CH_3)_2/(CF_3)_2Ge(CH_3)(CD_3)/(CF_3)_2Ge(CD_3)_2$ (0.37/0.46/0.17). A reaction mixture of 0.60 mmol CF₃GeH₃, 0.45 mmol CH₃I and only 0.10 mmol (CH₃)₂Zn yielded iodogermanes, the product composition being CF₃GeH₂(CH₃) (25%), CF₃GeH₂I (13%), CF₃GeH(CH₃)₂ (4.5%), CF₃GeHI(CH₃) (5%), CF₃GeHI₂ (2.5%), CF₃Ge(CH₃)₃ (3%), CF₃GeI(CH₃)₂ (14%), CF₃GeI₂(CH₃) (9%), and CF₃GeI₃ (24%). Derivatization of CF₃GeH₃ with $(C_2H_5)_2$ Zn and slight excess of C_2H_5 I yielded 35% of CF₃GeH₂(C_2H_5) (δ (CF₃) –51.3 ppm, 3J (HF) 7.3 Hz), 20% CF₃GeH(C_2H_5)₂ (δ (CF₃) –53.8 ppm, 3J (HF) 6.8 Hz) and 30% CF₃GeI₃ (δ (CF₃) –68.5 ppm). The 1H NMR spectrum showed the non-resolved ethyl resonances around 1.2 ppm as well as C_2H_6 at 0.87 ppm (referenced to δ (CF₃GeH₃) 4.27 ppm). With CF₃GeH₃/(C_2H_5)₂Zn/CH₃I all above mentioned CF₃ resonances attributed to methyl- and ethyl-containing species were observed and both CH₄ and C_2H_6 were evolved. In contrast, use of the combination CF₃GeH₃/(CH₃)₂Zn/ C_2H_5 I led only to methylated germanes. ## References - 1 Gmelin, Handbuch der Anorganischen Chemie, Syst. Nr. 5, Part 4 (1975) pp. 145 and Suppl. Vol. 1 (1984) pp. 41. - 2 R.J. Lagow and J.A. Morrison, Adv. Inorg. Radiochem., 23 (1980) 177. - 3 R. Eujen and R. Mellies, J. Fluor. Chem., 22 (1983) 263. - 4 H. Beckers, H. Bürger and R. Eujen, J. Fluor, Chem., 27 (1985) 461. - 5 L.J. Krause and J.A. Morrison, Inorg. Chem., 19 (1980) 604. - 6 R.J. Lagow, R. Eujen, L.L. Gerchman and J.A. Morrison, J. Amer. Chem. Soc., 100 (1978) 1722. - 7 R. Eujen and H. Bürger, Spectrochim, Acta, 37A (1981) 1029. - 8 R. Eujen and R. Mellies, Spectrochim, Acta, 38A (1982) 533. - 9 J.E. Drake, K. Gorzelska and R. Eujen, J. Electr. Spectrosc. Relat. Phenom., 26 (1982) 19. - 10 J.R. Durig, C.M. Wang, H. Bürger and R. Eujen, J. Mol. Struct., in press; H. Oberhammer and R. Wehrlein, private communication. - 11 R. Eujen, to be published. - 12 R. Eujen and H. Bürger, Spectrochim. Acta. 35A (1979) 549. - 13 R. Eujen, in preparation.