Thermodynamic properties of the rare earth borides and carbides in a wide temperature range

A.S. Bolgar, V.B. Muratov, A.V. Blinder, A.I. Kryklya and A.P. Suodis

The Institute for Materials Science Problems, Ukrainian Academy of Sciences, Kiev (Ukraine)

(Received June 26, 1992; in final form March 10, 1993)

Abstract

For the first time a systematic study was made of the heat capacity and enthalpy of the rare earth tetra- and hexaborides and sesqui- and dicarbides in the temperature range 60-2300 K.

1. Introduction

Rare earth compounds with boron and carbon are convenient and interesting model objects to ascertain the correlation between electronic structure and physical and thermodynamic characteristics. Up to now the heat capacity of the rare earth carbides and borides was studied only in the temperature range up to 30 K, except for La, Nd and Gd hexaborides, the heat capacity of which was measured up to 350 K [1]. The enthalpy of LaB₆ was measured in the temperature range 1100-2200 K [2] and those of NdB₆, SmB₆ and EuB₆ were studied in the temperature range 300-1200 K [3]. The present paper is concerned with a methodical study of the heat capacity and enthalpy of the rare earth borides and carbides of the cerium subgroup and gadolinium in the temperature range 60-2300 K.

2. Results and discussion

The heat capacity of borides and carbides in the temperature range 60–300 K were studied by the adiabatic technique with periodic heat supply, the error limit not exceeding 0.4% [4]. Enthalpy in the temperature range 400–2300 K was measured by the drop calorimetry method using vacuum calorimetric units with the error limit not exceeding 1.5% [5]. The units were calibrated using standard samples for the thermodynamic properties of α -Al₂O₃ and Mo.

Rare earth carbides and tetraborides were prepared from the elements by arc melting in purified argon. The initial powders of hexaborides as well as gadolinium tetraborides were synthesized by borothermal reduction of the respective metal oxides in vacuum. Single crystals were grown from synthesized borides, except EuB_6 which was made by zone melting in purified argon. The results of chemical analysis of the samples are presented in Table 1.

Based on experimental data for the low temperature heat capacity the thermodynamic functions of the compounds at 298.15 K were calculated (Table 2). The heat capacity was extrapolated to 0 K [4] allowing for the phonon and electron component, while the Schottky contributions were taken into account implicitly. The values of the characteristic temperature possess an

 TABLE 1. Chemical composition (wt.%) and lattice parameters

 (nm) of rare earth carbides and borides

Compound	Metal	С	В	0	а	с
LaC ₂	84.6	14.6	_	0.18	0.3933	0.6573
PrC ₂	85.0	14.5	-	0.22	0.3850	0.6431
NdC ₂	85.3	14.0	-	0.16	0.3819	0.6397
SmC ₂	85.2	14.0	-	0.24	0.3761	0.6317
GdC_2	86.4	13.1	-	0.12	0.3712	0.6275
La_2C_3	87.0	12.3	-	0.41	0.8816	~
Pr ₂ C ₃	87.8	11.8	-	0.95	0.8587	~
Nd_2C_3	87.8	11.9	-	0.43	0.8542	
Sm_2C_3	87.7	12.0	-	0.27	0.8425	~
Gd_2C_3	87.5	11.0	-	0.69	0.8332	~
LaB₄	75.6	0.01	24.1	0.03	0.7323	0.4181
CeB₄	77.2	0.01	22.4	0.5	0.7213	0.4106
PrB ₄	75.0	0.01	23.7	0.4	0.7236	0.4119
NdB₄	75.9	0.01	22.3	0.3	0.7218	0.4102
GdB₄	77.6	< 0.01	21.0	< 0.1	0.7150	0.4042
LaB ₆	68.2	< 0.2	31.7	< 0.2	0.4156	-
CeB ₆	68.1	< 0.2	31.4	< 0.2	0.4138	-
PrB ₆	68.1	< 0.2	31.1	< 0.2	0.4135	-
NdB ₆	68.7	< 0.2	31.4	< 0.2	0.4126	-
SmB ₆	69.6	< 0.2	30.1	< 0.2	0.4134	-
EuB ₆	70.1	< 0.2	30.0	< 0.2	0.4181	-
GdB ₆	70.7	< 0.2	29.3	< 0.2	0.4109	-

TABLE 2. Heat capacity, entropy, free energy function (J mol⁻¹ K^{-1}) and enthalpy (J mol⁻¹) of the rare earth borides and carbides at 298.15 K

Compound	Cp	S°	${I\!\!\!P}^0$	H^0 (298.15 K) $-H^0(0)$
LaB ₄	79.07	64.9	27.3	11210
CeB ₄	73.95	66.4	29.4	11020
PrB₄	72.84	74.1	34.9	11680
NdB₄	72.71	71.6	36.6	11320
GdB₄	68.75	62.4	27.2	10500
LaC ₂	66.30	72.6	34.3	11420
PrC ₂	78.00	76.7	34.1	12720
NdC ₂	73.91	80.8	36.3	13270
SmC ₂	67.22	84.0	44.1	11920
GdC ₂	59.25	71.3	35.4	10710
La_2C_3	105.26	132.3	64.5	20230
Pr_2C_3	120.77	157.8	82.0	22610
Nd_2C_3	122.35	168.2	89.4	23520
Sm_2C_3	125.08	154.3	75.8	23390
Gd_2C_3	103.56	180.9	105.0	22620

TABLE 3. Temperature dependence parameters of the enthalpy $(J \text{ mol}^{-1})$, heat capacity, entropy and free energy function $(J \text{ mol}^{-1} \text{ K}^{-1})$ of the rare earth borides and carbides

Compound	T _m (K)	A (×10 ³)	B	С	-D	- <i>E</i>
 LaB₄	2211	13.173	100.32	2587850	39762	529.08
CeB ₄	2254	22.396	85.63	2225388	34986	447.38
PrB₄	2307	14.290	107.71	3522290	45198	573.26
NdB ₄	2307	10.522	116.55	4454762	50625	623.82
GdB₄	2251	15.623	99.57	3567918	43042	534.26
LaB ₆	2296	14.926	138.15	4458324	57471	737.98
CeB ₆	2216	26.147	126.07	3773105	52568	657.23
PrB ₆	2115	27.104	123.82	3603537	51411	640.28
NdB ₆	2112	30.203	117.19	3207235	48382	600.20
SmB ₆	2157	28.341	129.99	3928009	54450	675.60
EuB ₆	2313	30.809	118.39	3558078	49969	605.87
GdB ₆	2309	21.823	131.86	4249919	55507	662.40
α -LaC ₂	1369	1.575	71.84	575996	23491	340.95
α -PrC ₂	1425	3.159	79.11	266373	24762	377.42
α -NdC ₂	1436	2.410	78.48	533563	25401	370.60
α -SmC ₂	1455	4.925	85.33	1870949	32154	415.63
α -GdC ₂	1529	3.110	74.07	1482546	27334	380.98
β-LaC₂	1900	10.714	61.49	- 3887632	6245	277.72
β-PrC ₂	2293	5.237	89.48	- 346340	25988	446.36
β-NdC ₂	2095	3.068	96.88	3666096	41454	495.76
β-SmC ₂	2067	4.930	97.55	453096	31041	492.10
β-GdC ₂	2278	3.676	91.02	3627838	39633	476.75
La_2C_3	1633	20.107	104.35	985031	36203	479.73
Pr_2C_3	1815	24.913	111.73	517188	37262	496.53
Nd_2C_3	1892	23.328	112.04	320346	36554	485.83
Sm_2C_3	1480	19.088	129.32	1388570	44910	601.75
Gd_2C_3	1740	16.475	109.35	1387800	38721	459.80

"effective" behaviour. The coefficient of electron heat capacity γ for the substances studied was taken to be 5×10^{-3} J mol⁻¹ K⁻² as a mean value characteristic of the rare earth and transition carbide and boride phases [6]. The error limits for the entropy and enthalpy do not exceed 1% and 1.5% was the maximum error for the free energy function, except for Gd₂C₃. In this compound at about 130 K a heat capacity anomaly is observed that is not accompanied by changes in structure or magnetic susceptibility. The enthalpy of transition is 1.3 kJ mol⁻¹. For Gd₂C₃ the error limits are 2.1% and 2.9% respectively.

Experimental data for the enthalpy were approximated using the Mayer-Kelly equation:

$$H^{0}(T) - H^{0} (298.15 \text{ K}) = AT^{2} + BT + CT^{-1} + D$$
(1)

The parameters in eqn. (1) were estimated by the leastsquare-root method with two boundary conditions: (1) $H^0(T) - H^0$ (298.15K) = 0 at 298.15 K and (2) the heat capacity values at 298.15 K. Since in the range 1350–1530 K for the rare earth dicarbides an uneven change in the enthalpy is observed resulting from the reversible α - β polymorphic transformation, for the LaC₂ β modification the data were processed using only the first boundary condition. Proceeding from eqn. (1) the temperature dependences of heat capacity, entropy and the free energy function are as follows:

$$C_{\rm p}(T) = 2AT + B - CT^{-2} \tag{2}$$

$$S^{0}(T) = 2AT + B \ln T + 0.5CT^{-2} + E$$
(3)

$$\Phi(T) = AT + B \ln T - DT^{-1} - 0.5CT^{-1} + E - B$$
(4)

The parameters of eqns. (1)-(4) for the interval 298.15- $T_{\rm m}$, where $T_{\rm m}$ is the upper limit of the measurement for the compounds studies, are presented in Table 3. The error limit for the thermodynamic function determined using eqns. (1)-(4) does not exceed 1.5% for the enthalpy and 5% for the other characteristics.

References

- 1 E.F. Westrum, in *Les Elements des Terres Rares*, Centre National de Recherches Scientifiques, Paris, 1970, pp. 443-451.
- 2 V.Ya. Kapirina, V.N. Prilepsky and V.A. Timofeev, Teplofiz. Vys. Temp., 6 (1968) 193.
- 3 V.N. Prilepsky, E.I. Timofeeva and V.A. Timofeev, Izv. Akad. Nauk SSSR, Neorg. Mater., 11 (1970) 2069.
- 4 A.S. Bolgar, A.V. Blinder and L.M. Novoseletskay, J. Phys. Chem., 4 (1988) 909.
- 5 A.S. Bolgar, A.G. Turchanin and V.V. Fesenko, *Thermo*dynamic Properties of Carbides, Nauk Dumka, Kiev, 1973, p. 272.
- 6 T.Ya. Kosolapova (ed.), Handbook of High Temperature Compounds: Properties, Production, Application, Hemisphere, New York, NY, 1990, p. 933.