

Journal of Alloys and Compounds 352 (2003) 325-327

www.elsevier.com/locate/jallcom

A mild solvothermal route to nanocrystalline titanium diboride

Yunle Gu*, Yitai Qian, Luyang Chen, Fu Zhou

Department of Chemistry and Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, PR China Received 6 June 2002; received in revised form 18 October 2002; accepted 18 October 2002

Abstract

Titanium diboride (TiB_2) has been synthesized via a benzene-thermal reaction of metallic sodium with amorphous boron powder and titanium tetrachloride at 400 °C in an autoclave; the temperature was much lower than that of traditional methods. The X-ray diffraction (XRD) pattern can be indexed with the hexagonal cell of TiB₂ and the lattice constants a=3.027 and c=3.228 Å. X-ray photoelectron spectroscopy (XPS) results show the mole ratio of Ti:B as 1:1.766. Transmission electron microscope (TEM) images indicate that the average particle size is in the range of 15–40 nm in diameter.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Transition metal compounds; Ceramics; Chemical synthesis; X-ray diffraction

1. Introduction

Borides of transition metals have attracted considerable interest for their various unique properties. Among these intermetallic compounds, TiB_2 has a high melting point, high hardness and strength, excellent wear and corrosion resistance, which surpass that of titanium nitride and carbide [1–3]. Titanium diboride is an important material in diecasting and dry cutting industry for wear, corrosion and erosion protection [4,5]. As it has a high temperature stability and good electrical conductivity, titanium diboride is also a promising interconnection material for integrated circuits [6].

Traditionally, titanium diboride powder was prepared by a variety of high temperature methods [7], such as the direct reactions of titanium, its oxide or hydrides, with elemental boron over 1000 °C; carbothermal reduction of titanium oxide and boron oxide; or hydrogen reduction of boron halides in the presence of the metal or its halides. Recently, electrochemical syntheses [8,9] and solid-state reactions [3,10–12] have been developed for preparing titanium diboride. However, these methods generally cannot lead to nano-sized products.

Previously, Bates and co-workers [13] have prepared nanocrystalline TiB_2 of 5–100 nm via an initial solution-

phase reaction of NaBH₄ and TiCl₄, followed by annealing the obtained amorphous precursor at 900–1100 °C. Axelbaum and co-workers [14,15] have developed a gasphase combustion process that can directly yield unagglomerated, low-oxygen TiB₂ nanoparticles by the reaction of sodium vapor with TiCl₄ and BCl₃. However, the products were contaminated with metallic titanium and titanium oxide.

Recently, we have developed a novel route to nanocrystalline titanium diboride via a solvothermal reaction of metallic sodium with amorphous boron powder and $TiCl_4$ at 400 °C. It can be described as follows,

$$2B + TiCl_4 + 4Na \xrightarrow[400 \circ C]{\text{Benzene}} TiB_2 + 4NaCl$$

where TiB_2 formation and crystallization proceeded synchronously. In forming nanocrystalline TiB_2 , active nascent titanium was generated in reducing TiCl_4 by metallic sodium. The titanium reacted with boron forming titanium diboride. Benzene serves as reaction medium to control reaction speed and particle size. By confining the reaction within an anaerobic environment, the product was free of oxide impurity. However, sample surface oxidation may occur during the purification process.

2. Synthesis and purification procedure

Firstly, 1 g of amorphous boron powder (2 μ m, Merck KGaA), 25 ml of benzene and 5 ml of liquid analytical

^{*}Corresponding author. Tel.: +86-551-360-6144; fax: +86-551-360-1592.

E-mail address: ylgu@mail.ustc.edu.cn (Y. Gu).

pure TiCl₄ were placed in a quartz tube. The excessive metallic sodium (about 4.5–5.0 g) was freed of kerosene by washing with benzene. Then, the sodium was added in the quartz tube. Finally, the quartz tube was put in a stainless steel autoclave and sealed under argon atmosphere. The autoclave has a capacity of some 50 ml. Before sealing the autoclave, approximately 10 ml of benzene was put into the autoclave to balance heat and pressure. The autoclave was heated at 400 °C for 8 h, followed by naturally cooling to room temperature outside the furnace. The obtained sample from the quartz glass tube was washed several times with absolute ethanol, distilled water and acetone to remove impurities. The final product was vacuum-dried at 60 °C for 12 h, and 2.145 g of gray powder product was obtained.

The gray powder product was analyzed by X-ray photoelectron spectroscopy (XPS) using an ESCAlab MK2 with aluminium K α rays, powder X-ray diffraction (XRD) on an X-ray diffractometer (Rigaku rA) using Cu K α radiation (wavelength λ =1.54178 Å), and transmission electron microscopy (TEM) with a Hitachi 800 transmission electron microscope.

3. Results and discussion

Intensity/a.u.

20

Fig. 1 shows the XRD pattern of the as-prepared TiB₂ sample. All the seven peaks at *d*-spacing of 3.2274, 2.6217, 2.0350, 1.6133, 1.5131, 1.3747, 1.2147 Å were indexed as hexagonal TiB₂ [(001), (100), (101), (002), (110), (102), (021)]. The rms error of fit was 9.334 $\times 10^{-5}$, with the lattice constants *a*=3.027 and *c*=3.228 Å in good agreement with *a*=3.030 and *c*=3.230 Å (JCPDS card# 35-741).

The wide-scan XPS spectrum of the as-prepared TiB_2 sample is shown in Fig. 2. It shows that the sample surface consists of titanium, boron, carbon and oxygen, with binding energies of Ti3p, Ti3s, B1s, C1s, Ti2p_{3/2}, Ti2p_{1/2},

101)

(100)

40

<u>6</u>

30

Fig. 1. XRD pattern of the as-prepared TiB₂ sample.

50

2Theta/deg.

(110)

002)

60

(102)

70

(021)

80

Fig. 2. Wide-scan XPS spectrum of the as-prepared TiB₂ sample.

O1s and Ti2s at 32.20, 58.83, 187.68, 285.00, 454.42, 460.00, 530.95 and 561.29 eV, respectively. The B1s peak at 187.68 eV indicates boron combined with titanium forming titanium boride; this corresponds to the $Ti2p_{3/2}$ at 454.42 eV, which was considered as the titanium bonding with boron forming TiB₂ [16]. As the reaction is strongly exothermic, the local temperature may temporarily become higher than 400 °C. Therefore, the carbon may come mainly from carbonization of small quantities of benzene and sample surface adsorption. The O1s peak was not very symmetric, indicating TiB₂ surface oxidation as well as oxygen adsorption. The mole ratio of Ti:B was calculated as 1:1.766, slightly less than that of TiB₂. It may be due to surface enrichment of titanium induced by surface oxidation.

A transmission electron microscope (TEM) image and selected area transmission electron diffraction (TED) pattern are shown in Fig. 3. In Fig. 3a, the material exhibits slightly agglomerated particle morphology. The primary particle size was estimated in the range of 15–40 nm in diameter. Some amorphous carbon may cling to and disperse between the TiB₂ primary particles. The TED pattern in Fig. 3b confirms the nanocrystallinity of TiB₂, in which the diffraction ring diameters and intensities again correspond well to the hexagonal TiB₂ phase.

4. Conclusion

In summary, nanocrystalline TiB₂ of 15 to 40 nm with the hexagonal cell has been successfully prepared via a benzene-thermal synthetic route by the reaction of metallic sodium with amorphous boron powder and titanium tetrachloride at 400 °C. This study demonstrates that the solvothermal synthesis can be a mild method for preparing titanium diboride nanomaterials. In a further study, efforts will be made to research a better understanding of the reaction mechanism and to control the reaction kinetics.

Fig. 3. TEM (a, scale bar, 150 nm) and TED (b) images of the as-prepared TiB₂ sample.

Acknowledgements

Financial support from the Chinese National Foundation of Natural Science Research is gratefully acknowledged.

References

- [1] H. Holleck, J. Vac. Sci. Technol. 4 (6) (1986) 2661.
- [2] M. Jones, A.J. Horlock, P.H. Shipway, D.G. McCartney, J.V. Wood, Wear 250 (2001) 1009.
- [3] R.A. Andrievskii, S.E. Kravchenko, S.P. Shilkin, Inorg. Mater. 31 (1995) 965.
- [4] M. Kornmann, R. Funk, Aluminium 53 (1977) 249.
- [5] H.O. Pierson, Mater. Manuf. Process 8 (1993) 519.
- [6] K. Schwarz, CRC Crit. Rev. Solid State Mater. Sci. 13 (1987) 211.

- [7] F.C. Kracek, G.W. Morey, H.E. Merwin, Am. J. Sci. 35A (1938) 143.
- [8] V.I. Shapoval, V.V. Malyshev, Powder Metall. Metal Cera. 38 (1999) 556.
- [9] S.A. Kuznetsov, Russian J. Electrochem. 35 (1999) 1143.
- [10] H. Taimatsu, T. Atsumi, T. Okaniwa, K. Kodama, J. Ceram. Soc. Japan 107 (1999) 1041.
- [11] E.G. Gillan, R.B. Kaner, Chem. Mater. 8 (1996) 333.
- [12] L. Rao, E.G. Gillan, R.B. Kaner, J. Mater. Res. 10 (1995) 353.
- [13] S.E. Bates, W.E. Buhro, C.A. Frey, S.M.L. Sastry, K.F. Kelton, J. Mater. Res. 10 (1995) 2599.
- [14] R.L. Axelbaum, D.P. DuFaux, C.A. Frey, K.F. Kelton, S.A. Lawton, L.J. Rosen, S.M.L. Sastry, J. Mater. Res. 11 (1996) 948.
- [15] R.L. Axelbaum, D.P. Dufaux, C.A. Frey, S.M.L. Sastry, Metall. Mater. Trans. B28 (1997) 1199.
- [16] G. Mavel, J. Escard, P. Costa, J. Castaing, J. Surf. Sci. 35 (1973) 109.