Total syntheses of amythiamicins A, B and C†‡

K. C. Nicolaou, *^{abc} Dattatraya H. Dethe^a and David Y.-K. Chen*^a

Received (in Cambridge, UK) 25th March 2008, Accepted 11th April 2008 First published as an Advance Article on the web 8th May 2008 DOI: 10.1039/b805069b

Total syntheses of the thiopeptide antibiotics amythiamicins A, B and C are reported.

Isolated from a strain of Amycolatopsis sp. MI481-42F4, amythiamicins A, B and C^1 (1–3, Fig. 1) are members of the trisubstituted pyridine subclass of the thiopeptide family of antibiotics.² In addition to their impressive antibiotic properties against Gram-positive bacteria, including MRSA,1a these substances also exhibit activity against Plasmodium falciparum, the causative parasite responsible for malarial infections.³ The antiparasitic properties of these thiopeptides are believed to be exerted through inhibition of protein synthesis by binding to elongation factor EF-Tu. This mechanism of action is similar to that exhibited by GE2270A but with a different binding site.³ In view of their novel molecular architectures and mechanism of action, amythiamicins A, B and C (1-3) were deemed worthy synthetic targets.⁴ In this communication we report expedient total syntheses of all three natural products 1-3 through application of our recently developed synthetic technologies⁵ for the construction of thiopeptide antibiotics.

Our synthetic strategy towards the amythiamicins features application of the powerful hetero-Diels–Alder dimerization process,⁵ followed by oxidative aromatization to assemble the trisubstituted pyridine core of the molecule. A subsequent regioselective macrocyclization engaging the C1 carboxylic acid terminus was envisaged for the construction of the 29-membered macrolactam ring of the amythiamicins while at the same time activating the C1' terminus of the growing molecule so as to facilitate side chain attachment, thereby enabling a "one-pot", tandem bis-amidation process.^{5d,6}

The synthesis of the required thiazolidine **9** and its dimerization to trisubstituted pyridine **12** is summarized in Scheme 1. Thus, coupling of α -bromo ketone **4**^{5d} with thioamide **5**⁷ in the presence of TFAA and pyridine gave bis-thiazole **6** in 78% yield. Reduction of the ethyl ester group within **6** (DIBAL-H) (85% yield) followed by condensation with amino thiol TFA salt **8**^{5b} afforded thiazolidine **9** in 80% yield (*ca.* 7 : 3 mixture

Fig. 1 Molecular structures and retrosynthetic analysis of amythiamicins A (1), B (2) and C (3). (a) Hetero-Diels–Alder dimerization; (b) regioselective macrolactamization.

of diastereomers) for the two steps. Exposure of thiazolidine **9** to the previously established reagent mix (Ag₂CO₃, DBU, BnNH₂, py) under the optimized reaction conditions $(-12 \, ^{\circ}C, 1 \, h)^{5d}$ smoothly delivered dehydropiperidine **11** in 51% yield as a *ca*. 1 : 1 mixture of diastereoisomers through the intermediacy of heterodiene **10**. Finally, oxidative aromatization (DBU, EtOAc) with concomitant extrusion of ammonia gave trithiazolyl pyridine **12** in 36% yield.

The other major fragment required for the total synthesis of the amythiamicin molecule, tripeptide carboxylic acid **15**, was prepared by the coupling of carboxylic acid **13**^{5d} with glycine methyl ester (HATU, iPr_2NEt), followed by saponification (LiOH) as shown in Scheme 2 (54% overall yield).

The union of trithiazolyl pyridine 12 and tripeptide carboxylic acid 15 and further elaboration to amythiamicins A (1), B (2) and C (3) are shown in Scheme 3. Thus, removal of the Boc group from 12 (TFA) followed by coupling of the resulting amine (16) with carboxylic acid 15 (HATU, iPr₂NEt) afforded hexathiazole pyridine 17 in 60% yield for the two steps from 12. Exposure of di-ester 17 to excess LiOH in aqueous DME followed by treatment with TFA furnished amino di-acid 19 via Boc di-acid 18, setting the stage for the anticipated "one-pot" sequential intramolecular/intermolecular bis-amidation. In the event, and under previously established conditions,5d,6 subjecting 19 to excess HATU and iPr2NEt under high dilution conditions (0.001 M in CH₂Cl₂-DMF 4 : 1) induced regioselective macrolactamization, affording the presumed activated macrolactam intermediate 20, which was treated, without isolation, with the HCl salt of prolinamide-serine conjugate (21),⁸ delivering amythiamicin B (2) in 25% yield over the three steps from

^a Chemical Synthesis Laboratory@Biopolis, Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, The Helios Block, #03-08 Singapore 138667. E-mail: david_chen@ices.a-star.edu.sg

^b Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. E-mail: kcn@scripps.edu

^c Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA

[†] Dedicated to Andrew B. Holmes on the occasion of his 65th birthday.

[‡] Electronic supplementary information (ESI) available: Experimental details and NMR spectra. See DOI: 10.1039/b805069b

Scheme 1 Synthesis of trithiazolyl pyridine 12. Reagents and conditions: (a) 4 (1.5 equiv.), 4 Å MS, DMF, $0 \rightarrow 25$ °C, 18 h; then TFAA (1.5 equiv.), pyridine (3.0 equiv.), CH₂Cl₂, 0 °C, 3 h, 78%; (b) DIBAL-H (1.0 M in toluene, 2.0 equiv.), toluene, -78 °C, 3 h, 85%; (c) 8·TFA (1.2 equiv.), KHCO₃ (10.0 equiv.), MeOH-H₂O (3.75 : 1), 25 °C, 16 h, 80% (*ca.* 3 : 1 mixture of diastereoisomers); (d) Ag₂CO₃ (1.0 equiv.), BnNH₂ (2.0 equiv.), DBU (0.25 equiv.), pyridine, -12 °C, 1 h; then H₂O-EtOAc (1 : 1), 25 °C, 1 h, 51% (*ca.* 1 : 1 mixture of diastereoisomers); (e) DBU (5.0 equiv.), EtOAc, reflux, 5 h, 36%. DMF = *N*,*N*'-dimethylformamide; TFA = trifluoroacetic acid; TFAA = trifluoroacetic anhydride; DIBAL-H = diisobutylaluminium hydride; Bn = benzyl; DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene.

di-ester 17. Exposure of 2 to DAST converted its hydroxy amide moiety to the corresponding thiazoline unit, thus furnishing amythiamicin A (1) in 70% yield. The latter was then transformed to amythiamicin C (3) through the action of aq. HCl by a literature procedure.^{1c} Synthetic 1–3 exhibited identical physical properties (¹H and ¹³C NMR, mass spectra for 1 and 2; ¹H NMR spectra for 3) to those reported for the corresponding natural products.^{1c}

Notable for their brevity and convergency, the described total syntheses allow facile entries to these antibiotics (1-3) and their analogs, and provide yet another demonstration of

Scheme 2 Preparation of tripeptide carboxylic acid fragment 15. Reagents and conditions: (a) glycine methyl ester (1.2 equiv.), HATU (1.2 equiv.), iPr_2NEt (5.0 equiv.), CH_2Cl_2 , 25 °C, 12 h, 60%; (b) LiOH (5.0 equiv.), DME-H₂O (4 : 1), 25 °C, 2 h, 90%. HATU = O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; DME = ethylene glycol dimethyl ether.

Scheme 3 Total syntheses of amythiamicins A (1), B (2) and C (3). Reagents and conditions: (a) TFA-CH₂Cl₂ (1 : 4), 25 °C, 2 h; (b) **15** (1.2 equiv.), HATU (1.5 equiv.), iPr_2NEt (5.0 equiv.), CH_2Cl_2 , 25 °C, 16 h, 60% for two steps from **12**; (c) LiOH (10.0 equiv.), DME-H₂O (4 : 1), 5 h; (d) TFA-CH₂Cl₂ (1 : 4), 25 °C, 2 h; (e) HATU (5.0 equiv.), iPr_2NEt (10.0 equiv.), CH_2Cl_2 -DMF (4 : 1) (0.001 M), 0 °C, 3 h; then **21** (5.0 equiv.), $0 \rightarrow 25$ °C, 24 h, 25% for the three steps; (f) DAST (1.5 equiv.), CH_2Cl_2 , -25 °C, 1 h, 70%; (g) aq. HCl, 110 °C, 1 h, 60%. DAST = *N*,*N*'-diethylaminosulfur trifluoride.

the hetero-Diels-Alder dimerization approach to this type of structural motif.

We thank Ms Doris Tan (ICES) for high resolution mass spectrometric (HRMS) assistance. Financial support for this work was provided by A*STAR, Singapore.

Notes and references

- (a) K. Shimanaka, N. Kinoshita, H. Iinuma, M. Hamada and T. Takeuchi, J. Antibiot., 1994, 47, 668–674; (b) K. Shimanaka, Y. Takahashi, H. Iinuma, H. Naganawa and T. Takeuchi, J. Antibiot., 1994, 47, 1145–1152; (c) K. Shimanaka, Y. Takahashi, H. Iinuma, H. Naganawa and T. Takeuchi, J. Antibiot., 1994, 47, 1153–1159.
- 2 (a) M. C. Bagley, J. W. Dale, E. A. Merritt and X. Xiong, *Chem. Rev.*, 2005, **105**, 685–714; (b) R. A. Hughes and C. J. Moody, *Angew. Chem., Int. Ed.*, 2007, **46**, 7930–7954.
- 3 B. Clough, K. Rangachari, M. Strath, P. R. Preiser and R. J. M. Wilson, *Protist*, 1999, **150**, 189–195.
- 4 For total synthesis of amythiamicin D, see: (a) R. A. Hughes, S. P. Thompson, L. Alcaraz and C. J. Moody, J. Am. Chem. Soc., 2005, 127, 15644–15651; (b) R. A. Hughes, S. P. Thompson, L. Alcaraz and C. J. Moody, Chem. Commun., 2004, 946–948.
- 5 (a) K. C. Nicolaou, M. Zak, B. S. Safina, A. A. Estrada, S. H. Lee and M. Nevalainen, J. Am. Chem. Soc., 2005, 127, 11176–11183; (b)

K. C. Nicolaou, B. S. Safina, M. Zak, S. H. Lee, M. Nevalainen, M. Bella, A. A. Estrada, C. Funke, F. J. Zecri and S. Bulat, *J. Am. Chem. Soc.*, 2005, **127**, 11159–11175; (c) K. C. Nicolaou, B. Zou, D.-H. Dethe, D. B. Li and D. Y.-K. Chen, *Angew. Chem., Int. Ed.*, 2006 **45**, 7786–7792; (d) K. C. Nicolaou, D.-H. Dethe, G. Y. C. Leung, B. Zou and D. Y.-K. Chen, *Chem. Asian J.*, 2008, **3** 413–429.

- 6 T. Mori, S. Higashibayashi, T. Goto, M. Kohno, Y. Satouchi, K. Shinko, K. Suzuki, S. Suzuki, H. Tohmiya, K. Hashimoto and M. Nakata, *Tetrahedron Lett.*, 2007, 48, 1331–1335.
- 7 Prepared in two steps from Boc-L-valine: (i) DCC, *N*-hydroxysuccinimide, NH₄OH; (ii) Lawesson's reagent.
- 8 O. Delgado, H. M. Müller and T. Bach, *Chem.-Eur. J.*, 2008, 14, 2322–2339.