Synthesis and Crystal Structures of Octahedral Metal Complexes containing the New Dianion [PhP(Se,O)Se-Se(O,Se)PPh]^{2–}

Weifeng Shi^a, Le Zhang^a, Maryam Shafaei-Fallah^a, and Alexander Rothenberger^{a,b,*}

Karlsruhe, aInstitut für Anorganische Chemie der Universität und b Institut für Nanotechnologie, Forschungszentrum Karlsruhe GmbH

Received November 4th, 2006.

Dedicated to Professor Michael Binnewies on the Occasion of his 60th Birthday

Abstract. The synthesis and structures of three new compounds are reported. $[Mg_2{PhP(Se,O)Se-Se(O,Se)PPh}_2(thf)_7(H_2O)_3]$ (1), $[Mg{PhP(Se,O)Se-Se(O,Se)PPh}(thf)_3(H_2O)]$ (2), and $[Mn{PhP(Se,O)Se-Se(O,Se)PPh}(thf)_3(H_2O)]$ (3) were prepared by

Introduction

The chemistry of metal complexes containing anionic phosphorus/selenium-ligands is currently intensively studied [1-6]. In addition to the great structural diversity observed in this class of compounds, the potential applications of new phosphorus-containing metal selenides in semiconducting devices is of interest [7].

For the revival of this area which was pioneered by *Kuchen* et al. [8], the availability of P–Se-containing starting materials was a key issue. For the present investigations, the synthesis of Woollins' reagent (W. R.) $[PhP(Se)(\mu-Se)]_2$ [9, 10] (which is commercially available) and its conversion to metal complexes containing P–Se ligands was the starting point for the development of a general route to coordination oligomers, polymers and clusters based on neutral P/Se precursors [11, 12]. The present work follows up results obtained earlier from reactions of neutral P/S and As/S precursors with metal salts [13–17] and describes the first solid-state structures of a new P/Se-anion with divalent metal ions.

Results and Discussion

The reaction of [PhPSe(μ -Se)]₂ (W. R.) with the hydrated metal carboxylate [NaOAc·3H₂O] has recently been reported and it was shown that the presence of water played a crucial role in the formation of the resulting coordination polymer 2/ ∞ [Na₂(PhPSe₂O)(H₂O)₄(thf)]_{∞} [11]. As an extension of this initial report, a number of metal carboxylates

100

treatment of Woollins' reagent $[PhP(Se)(\mu\mbox{-}Se)]_2$ with the corresponding hydrated metal acetates.

Keywords: Magnesium; Manganese; Phosphorus; Selenium; Crystal structure

were reacted with W. R. and herein synthesis and crystal structures of the first examples of metal complexes containing the new dianion [PhP(Se,O)Se-Se(O,Se)PPh]²⁻ are reported. Out of a number of first-row transition metal and main group metal carboxylates so far only those of magnesium and manganese have led to products which could be characterized unequivocally (Scheme 1).

So So Ph		$[Mg_{2}{PhP(Se,O)Se-Se(O,Se)PPh}_{2}(thf)_{7}(H_{2}O)_{3}] (1)$
P P	[M(OAc) ₂ (H ₂ O) ₄] THE M−Ma Ma	$[Mg{PhP(Se,O)Se-Se(O,Se)PPh}(thf)_3(H_2O)] \ \textbf{(2)}$
Ph' Se Se	TTT, W-Wg,WT	[Mn{PhP(Se,O)Se-Se(O,Se)PPh}(thf) ₃ (H ₂ O)] (3)

Scheme 1 Synthesis of 1-3.

1 crystallizes in the orthorhombic space group $Pca2_1$ with two differently-coordinated Mg atoms in the asymmetric unit. The constituting magnesium complexes $[Mg{PhP(Se,O)Se-Se(O,Se)PPh}(thf)_3(H_2O)]$ and $[Mg{PhP(Se,O)Se-Se(O,Se)PPh}(thf)_4(H_2O)_2]$ in 1 exhibit an octahedral metal coordination environment (Fig. 1). The new generated ligand [PhP(Se,O)Se-Se(O,Se)PPh]²⁻ chelates the magnesium atoms and coordinates in a similar fashion like the neutral related ligand 1,2-Bis-diphenylphosphineoxide [18, 19]. The two isolated units are connected by a weak hydrogen bond between Se(5) and O(6) (distance Se5...O6 ca. 3.35 Å) [20]. Other hydrogen bonds present include the strongly bound THF at O(12) and a weak H-bond between Se(1) and O(6). 2 is very similar to 1. Slightly modified experimental conditions, however have led to a slight change in the substitution pattern of the magnesium atom in $[Mg{PhP(Se,O)Se-Se(O,Se)PPh}(thf)_3(H_2O)]$ (2) (Fig. 2).

2 crystallizes in the monoclinic space group $P2_1/c$ with two crystallographically independent molecules in the asymmetric unit. Attempts to characterize the new anion spectroscopically were also made and indicated that **2** slowly decomposes in [D₆]DMSO. It was, however, possible to dissolve **2** by stirring crystals in [D₈]THF during 12 hours. In the ³¹P{¹H}NMR a singlet resonance for the

^{*} Dr. A. Rothenberger Institut für Anorganische Chemie der Universität Karlsruhe Engesserstraße 15 76131 Karlsruhe FAX: 0721-6088440 E-mail: ar252@chemie.uni-karlsruhe.de

Figure 1 Molecular structure of **1** in the solid state [carbon atoms of THF at O(3, 4, 5, 9, 11, 13, 14) have been omitted for clarity]. Selected bond lengths /Å and angles /°:

[PhP(Se,O)Se-Se(O,Se)PPh]²⁻ dianion was observed together with two satellite sets, which can be ascribed to ${}^{1}J_{P-Se}$ coupling to chemically inequivalent terminal and 'inner' Se atoms [2, 12]. In the ⁷⁷Se NMR spectra of 1 and 2, however, one weak resonance at ca. 40 ppm was detected, whilst at 131 ppm a further resonance could be ascribed to the different Se environments present. Generally, NMR investigations are complicated by low solubility of 1 and 2.

The incorporation of paramagnetic metal ions into the new ligand framework was finally exemplified by treating W. R. with $[Mn(OAc)_2(H_2O)_4]$ and X-ray analysis of crystals of **3** (Figure 3).

3 crystallizes in the monoclinic space group $P2_1/c$ with two crystallographically independent, but chemically equivalent [Mn{PhP(Se,O)Se-Se(O,Se)PPh}(thf)_3(H_2O)] (**3**) complexes in the asymmetric unit. In the extended solid-state structure **3** forms a 1D polymeric arrangement held together by weak hydrogen bonds (Se1…O12A ca. 3.36 Å). The formation of the [PhP(Se,O)Se-Se(O,Se)PPh]²⁻ in **1-3** represents a new development in P-Se chemistry. The new ligand can be regarded as the product of an oxidation of the recently reported [PhP(O)Se_2]²⁻ anion [11]. Future work will both attempt to clarify the mechanisms, involved in nucleophilic addition/hydrolysis reactions of neutral P-chalcogen precursors and use the formation of novel ligands for the synthesis of novel coordination polymers.

Figure 2 Molecular structure of one of the two complexes present in the asymetric unit of 2 (disordered components of THF ligands are omitted). Selected bond lengths /Å and angles /°:

Figure 3 Molecular structure of 3 (connections to adjacent complexes in the 1D polymeric arrangement of complexes are indicated by dashed bonds; symmetry operation (A) x, y+1, z) [carbon atoms of THF at O(3, 4, 5, 9, 10, 11) have been omitted for clarity]. Selected bond lengths /Å and angles /°:

 $\begin{array}{l} Mn(1)-O(1)\ 2.078(6),\ Mn(1)-O(2)\ 2.124(6),\ Mn(2)-O(7)\ 2.138(6),\ Mn(2)-O(8)\\ 2.096(6),\ Mn-O(3,\ 4,\ 5,\ 9,\ 10,\ 11;\ thf\ 2.188(6)-2.284(6),\ Mn(1)-O(6)\ 2.206(6),\\ Mn(2)-O(12)\ 2.186(7),\ Se(1)-P(1)\ 2.124(2),\ Se(2)-P(1)\ 2.264(2),\ Se(2)-Se(3)\\ 2.3353(12),\ Se(3)-P(2)\ 2.249(2),\ Se(4)-P(2)\ 2.118(2),\ Se(5)-P(3)\ 2.125(2),\\ Se(6)-P(3)\ 2.247(2),\ Se(6)-Se(7)\ 2.3306(14),\ Se(7)-P(4)\ 2.261(2),\ Se(8)-P(4)\\ 2.120(2),\ P(1)-O(1)\ 1.497(6),\ P(2)-O(2)\ 1.517(6),\ P(3)-O(7)\ 1.505(6),\ P(4)-O(8)\ 1.502(6),\ Se(1)\cdotsO(12A)\ ca.\ 3.36,\ O(1)-Mn(1)-O(2)\ 95.9(2),\ O(8)-Mn(2)-O(7)\ 94.6(2),\ P(1)-Se(2)\ 59.8(3)\ 98.71(7),\ P(2)-Se(3)-Se(2)\ 102.02(6),\ P(3)-Se(6)-Se(7)\ 101.71(7),\ P(4)-Se(7)\ 58.6(6)\ 98.46(7),\ O(1)-P(1)-Se(1)\ 118.0(3),\\ O(1)-P(1)-Se(2)\ 110.2(3),\ Se(1)-P(1)-Se(2)\ 102.23(9),\ O(2)-P(2)-Se(4)\ 118.6(3),\ O(2)-P(2)-Se(3)\ 111.4(3),\ Se(4)-P(2)-Se(3)\ 99.55(9),\ O(7)-P(3)-Se(5)\ 120.8(3),\ O(3)-P(4)-Se(7)\ 109.2(3),\ Se(5)-P(4)-Se(7)\ 101.45(9). \end{array}$

Experimental Part

All operations were carried out in an atmosphere of purified dinitrogen. Solvents were dried over appropriate drying agents and freshly distilled.

1: A mixture of 266 mg (0.5 mmol) Woollins' reagent and 107 mg (0.5 mmol) [Mg(OAc)₂(H₂O)₄] was dissolved in 8 mL THF. The yellow solution was heated to 50 °C for 5 hours and then stirred 12 h at room temperature. The reaction was filtered and the filtrate layered with 50 mL hexane. Storage of the solution at room temperature for 4 weeks produced yellow crystals. 0.26 g, yield 60 % (based on [Mg(OAc)₂(H₂O)₄] supplied). mp 130 °C (decomposition); Found: C, 32.79; H, 4.17. $C_{44}H_{66}Mg_2O_{12}P_4Se_8$ requires C, 33.21; H, 4.18 %.

IR (Nujol, NaCl): *v*(H₂O) 3321 br, 1608 m, *v*(P-C) 1430 s, 1036 m, 880 m, 692 m cm⁻¹; ¹H NMR (400 MHz, [D₆]DMSO, 25 °C) δ = 8.1 (4H, m, ArH), 7.4 (4H, m, ArH), 36 (10H, m, OCH₂CH₂), 3.3 (s, H₂O), 1.8 (10H, m, OCH₂CH₂); ¹³C NMR (100 MHz, [D₆]DMSO, 25 °C) δ = 130.9, 130.8, 129.8, 126.8, 126.7, 67.0, 25.2; ³¹P NMR (162 MHz, [D₆]DMSO, 25 °C, 65 % H₃PO₄) δ = 32.9 (s + 2 d satellites, ¹J_{P-Se} = -396 Hz, -698 Hz); ⁷⁷Se NMR (76 MHz, [D₆]DMSO, 25 °C, Me₂Se) δ = 40.5 (d, ¹J_{P-Se} = -698 Hz).

2: Synthesis of **1** performed at room temperature. 0.25 g, yield 60 %. mp 125-128 °C (decomposition); Found: C, 35.94; H, 4.41. $C_{24}H_{36}MgO_6P_2Se_4$ requires C, 35.04; H, 4.41 %.

IR (KBr): $\nu(H_2O)$ 3306 br , 2970 m, 1610 s, $\nu(P-C)$ 1436 s, 1036 s, 888 br s, 690 s cm⁻¹. ¹H NMR (400 MHz, [D₆]DMSO, 25 °C) δ = 8.1-6.9 (10H, 6 x m, ArH), 3.6 (10H, m, OCH_2CH_2), 3.3 (s, H₂O), 1.7 (10H, m, OCH_2CH_2); 1³C NMR (100 MHz, [D₆]DMSO, 25 °C) δ = 126.2 – 130.9 (8C, ar. C), 67.0, 25.2; ³¹P NMR (162 MHz, [D₆]DMSO, 25 °C, 65 % H₃PO₄) δ = 32.9 (s + two d satellites, ¹J_{P-Se} = –395 Hz, –697 Hz), 43.6 (m, slow decomposition in [D₆]DMSO into a yet unknown compound); ³¹P NMR (162 MHz, [D₈]THF, 25 °C, 65 % H₃PO₄) δ = 37.3 (s + two d satellites, ¹J_{P-Se} = –392 Hz, –704 Hz); ⁷⁷Se NMR (76 MHz, [D₆]DMSO, 25 °C, Me₂Se) δ = 40.5 (d, ¹J_{P-Se} = 698 Hz), 131.0 (d, ¹J_{P-Se} = –710 Hz).

3: A mixture of 266 mg (0.5 mmol) Woollins' reagent and 123 mg (0.5 mmol) [Mn(OAc)₂(H₂O)₄] was dissolved in 8 mL THF. The yellow cloudy solution was stirred overnight at room temperature, and filtered. The filtrate was layered with 60 mL hexane. Storage of the solution at room temperature for 2 weeks produced yellow crystals. 0.28 g, yield 60 %. mp 105 °C (decomposition); Found: C, 33.25; H, 4.18. $C_{24}H_{36}MnO_6P_2Se_4$ requires C, 33.78; H, 4.25 %.

IR (KBr): $\nu({\rm H_2O})$ 3306 br, 2973 m, 1601 m, $\nu({\rm P-C})$ 1435 s, 1027 s, 870 br s, 687 s cm $^{-1}.$

X-ray Crystallographic Study

Data for **1** and **2** were collected on a Stoe Ipds II diffractometer using graphite-monochromated Mo- K_{α} radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods and refined by fullmatrix least-squares on F^2 (all data) using the Shelxtl program package [21]. Hydrogen atoms were placed in calculated positions, non-hydrogen atoms were assigned anisotropic thermal parameters. Disordered components were refined with isotropic thermal parameters. A summary of crystal data and refinement parameters is given in table 1.

CCDC nos. 624864-624866 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

 Table 1
 Details of the X-ray data collection and refinements.

Compound	1	2	3
Formula	C ₅₂ H ₈₂ Mg ₂ O ₁₄ P ₄ Se ₈	C ₂₄ H ₃₆ MgO ₆ P ₂ Se ₄	C ₂₄ H ₃₆ MnO ₆ P ₂ Se ₄
Formula weight	1735.36	822.62	853.25
<i>T</i> /K	170(2)	150(2)	105(2)
Crystal system	orthorhombic	monoclinic	monoclinic
Space group	$Pca2_1$	$P2_1/c$	$P2_1/c$
aĺÅ	42.900(9)	15.527(3)	9.6810(19)
b/Å	15.650(3)	41.777(8)	15.539(3)
c/Å	10.115(2)	9.782(2)	42.003(8)
βl°	90	91.38(3)	95.33(3)
$V/Å^3$	6791(2)	6343(2)	6291(2)
Ζ	4	8	8
μ/mm^{-1}	4.474	4.782	5.185
F(000)	3448	3248	3352
Reflections	45508	19615	38688
collected			
Unique data	15777	10383	12175
R _{int}	0.0843	0.0684	0.0968
Parameters	739	651	673
wR_2 (all data)	0.1928	0.2967	0.1901
$R_1 [I > 2\sigma(I)]$	0.0661	0.0997	0.0660

Acknowledgment. The work was funded by the DFG Center for Functional Nanostructures (fellowship W. S.) and the Forschungszentrum Karlsruhe. A. R. thanks *Prof. Dieter Fenske* for his support. **References**

- [1] T. S. Lobana, J.-C. Wang, C. W. Liu, Coord. Chem. Rev. 2006, DOI:10.1016/j.ccr.2006.05.010.
- [2] R. P. Davies, M. G. Martinelli, A. J. P. White, *Chem Commun.* 2006, 3240.
- [3] C. Q. Nguyen, A. Adeogun, M. Afzaal, M. A. Malik, P. O'Brien, *Chem. Commun.* 2006, 2179.
- [4] C. Q. Nguyen, A. Adeogun, M. Afzaal, M. A. Malik, P. O'Brien, *Chem. Commun.* 2006, 2182.
- [5] J. Konu, T. Chivers, H. M. Tuononen, Chem. Commun. 2006, 1634.
- [6] I. P. Gray, A. M. Z. Slawin, J. D. Woollins, *Dalton Trans.* 2005, 2188.
- [7] M. Afzaal, P. O'Brien, J. Mater. Chem. 2006, 16, 1597.
- [8] W. Kuchen, B. Knop, Angew. Chem. 1964, 76, 496.
- [9] M. J. Pilkington, A. M. Z. Slawin, D. J. Williams, P. T. Wood, J. D. Woollins, *Heteroat. Chem.* 1990, 1, 351.
- [10] I. P. Gray, P. Bhattacharyya, A. M. Z. Slawin, J. D. Woollins, *Chem. Eur. J.* 2005, 11, 6221.
- [11] W. Shi, M. Shafaei-Fallah, L. Zhang, C. E. Anson, E. Matern, A. Rothenberger, *Chem. Eur. J.* **2006**, DOI: 10.1002/ chem.200600626.
- [12] W. Shi, M. Shafaei-Fallah, C. E. Anson, A. Rothenberger, *Dalton Trans.* 2006, 2979.
- [13] W. Shi, A. Rothenberger, Eur. J. Inorg. Chem. 2005, 2935.
- [14] W. Shi, R. Ahlrichs, C. E. Anson, A. Rothenberger, C. Schrodt, M. Shafaei-Fallah, *Chem. Commun.* 2005, 5893.
- [15] W. Shi, M. Shafaei-Fallah, C. E. Anson, A. Rothenberger, Dalton Trans. 2005, 3909.
- [16] R. Langer, W. Shi, A. Rothenberger, Dalton Trans. 2006, 4435.
- [17] W. Shi, M. Shafaei-Fallah, C. E. Anson, A. Rothenberger, *Dalton Trans.* 2006, 3257.
- [18] C. Stoll, I.-P. Lorenz, H. Nöth, W. Ponikwar, J. Organomet. Chem. 2000, 602, 24.
- [19] Z. Spichal, M. Necas, J. Pinkas, Inorg. Chem. 2005, 44, 2074.
- [20] G. Gilli, in *Fundamentals of Crystallography* (Ed.: C. Giacovazzo), Oxford University Press, Oxford, 2002, pp. 590.
- [21] G. M. Sheldrick, Shelxtl v. 5.1, University of Göttingen, 1997.