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Abstract-The title compound, mer-[IrCl(py),(C,O,)], has been made by the reaction of the 
known trans-dichloro-tetrapyridine-iridium(II1) chloride with ethanedioate ion(oxalate) in 
aqueous ethanol. A non-electrolyte, it resembles its rhodium eutrope in showing extra- 
ordinary synergic solubility in water : pyridine. An X-ray structure determination has con- 
firmed the mer geometry. 

Complex ions of rhodium (and to an extent iridium) 
with pyridine and with chelating dicarboxylates 
such as ethane-1,Zdioate (oxalate) have been well 
studied. A few mixed species, such as 
[RhCl(py),(C,O,)] (A) are known. The unusual syn- 
ergic solubility of this compound had been known 
for many years and we are trying to understand 
its molecular origin. We therefore synthesized the 
new iridium(II1) mixed compound mer- 
[IrCl(py),(C,O,)] (B) and report here some of its 
properties, including its structure. The known bro- 
mo-rhodium compound [RhBr(py)3(C204)] (C) is 
also further described with a convenient synthesis. 

EXPERIMENTAL 

Preparation of complexes 

Mer-Chlorotrispyridineoxalatoiridium(ZZZ) (B). 
Truns-[IrC12(py)4]Cl* 6H202 (0.444 g, 0.614 mmol) 
and potassium oxalate (0.113 g, 0.614 mmol) were 
refluxed for 7 days in 50% ethanol solution (100 
cm3). Yellow needles (0.08 g) formed on cooling: 
these were collected by filtration. The filtrate was 
treated with an excess of ethanol to precipitate un- 
reacted potassium oxalate. After filtration, the 

*See ref. 1. 
tAuthors to whom correspondence should be addressed. 

volume was reduced on a rotary evaporator when a 
further crop of crystals of the desired product 
was obtained (0.116 g). Yield: 58%. Found: C, 
36.8 ; H, 2.8; N, 7.5. Calc. for C17ClH15N3041r: 
C, 36.9; H, 2.7; N, 7.6%. IR: 1700m, 1670m, 
1610m, 1245w, 116Ow, 1072m-w, 102Ow, 88Ow, 
805w, 762m-w, 7OOs, 655w, 56Ow, 485w, 465w, 
365w, 345s, 3lOw, 29Ow, 265m, 235~ cm-‘. 

A measurement of conductance (ca lop3 M in 
aqueous pyridine) gave A,,, = 6.82 S mol-‘dm3. 
Complex B dissolves in boiling concentrated hydro- 
chloric acid and on cooling, the solution yields the 
known complex [IrC13(py),] as its mer isomer,3 
identified by its electronic spectrum in chloroform. 
Three bands were observed in the UV region at 
320-3 17 shoulder, 266 and 238 nm. A visible 
absorption was also observed at 421436 nm. These 
are in accordance with the electronic spectrum of 
the mer-[IrCl,(py),14 isomer. 

Mer-bromotrispyridineoxalatorhodium(ZZZ) (C). 
Truns-[RhBr,(py),]Br was prepared by boiling 
trans-[RhC12(py),].6H20 with an excess of aqueous 
potassium bromide. After approximately 2 h the 
desired orange solid formed. This was collected by 
filtration, washed with ice-cold water and recry- 
stallized from hot water; C was synthesized from 
it, mutatis mutandis, as with A.2 Found : C, 40.3 ; 
H, 3.0 ; N, 8.3. Calc. for C,7BrH1SN304Rh : C, 
40.18; H, 2.98: N, 8.27%. IR: 1703m, 1668m, 
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1605m, 1242w, 1212m, 1153w, 1068m, 1015w, 
881w, 796w, 775m, 761m, 708s, 697s, 686m, 65 Is, 
553s, 480m, 47Os, 412m, 36Os, 35Os, 275m, 251~ 
cm-‘. 

Electronic spectra were measured using a Kon- 
tron-Uvikon 930 UV-vis spectrophotometer. IR 
spectra were measured using a Perkin-Elmer 577 
IR grating spectrophotometer, as Nujol mulls on 
caesium iodide plates ; wave numbers are quoted to 
+ 2 cm-‘. 

Crystallography 

Data for compound B were collected on a FAST 
TV Area Detector diffractometer following pre- 
viously described procedures.’ The structure was 
solved and developed via the heavy-atom method 
and refined by full-matrix least-squares techniques. 
A correction for absorption was made using 
DIFABS6 All hydrogens were placed in idealized 
positions. Crystal data and details of the structure 
refinement are given in Table 1. Atomic coordi- 

Table 1. Crystal data and details of structure refinement 
for mer-[IrCl(py),(C,OJ] 

Formula 
Mol. wt 
Crystal system 
a (A) 
b (A) 
c (A) 
v (A’) 
0 range for cell (“) 
Space group 
Z 

0, (g m-3 
F(ow 
P (cm-‘) 
T W 
0 range for data (“) 
h h InI”, nxix 
knina km 
1. I rnl”l Inax 
Total data measured 
Total unique 
R lTIe,ge 
Total observed 
Significance test 
Absorption correction factors : 

min, max 
No. of parameters 

kin-kax (e A-‘) 
(A/o),,, 
Weighting scheme 
R 
WR 

C17H,5N304ClIr 
552.997 
Orthorhombic 
10.016(l) 
12.059(3) 
14.950(3) 
1805.8(6) 
1.5-25 

F2,2,2, 
4 
2.0341 
1056 
75.410 
298 
2.170-29.610 
- 12, 13 
-15, 10 
- 14, 19 
7717 
3677 
0.045 
3359 
F. > 3aF0 

0.884, 1.198 
250 
-1.53, 1.88 
0.001 
Unit weights 
0.0420 
0.0420 

nates, bond lengths and angles and thermal par- 
ameters have been deposited as supplementary 
material with the Editor. Atomic coordinates have 
also been deposited at the Cambridge Cry- 
stallographic Data Centre. 

RESULTS AND DISCUSSION 

The three compounds, [MX(PYX(GW 
(A:M=Rh, X=Cl; B:M=Ir, X=Cl; 
C : M = Rh, X = Br) show synergic solubility in 
aqueous pyridine, as depicted in Fig. 1. The prop- 
erty was discovered’ for the chloro-rhodium species 
and Reichard? singled out this case in his discussion 
of solvent effects in organic systems. Chloro-oxal- 
ato-tris-pyridine-iridium(II1) forms only slowly, 
even with ethanol present. Such a substitution at 
rhodium(II1) centres is often strongly catalysed by 
the 2e-reductant ethanol, but that is not obvious 
here. Powder patterns show that compounds A and 
B are clearly isostructural (powder data have been 
deposited). The crystalline form which we have is 
isostructural with the well-known rhodium(II1) 
eutrope. Our structure, therefore, confirms both 
that the rhodium compound is indeed the mer iso- 
mer and that its reaction [eq. (l)] with hydrochloric 
acid is, like many such acid displacements of oxalate 
in acid, stereoretentive : the product with an absorp- 
tion at 428 nm was already known from spec- 
troscopy to be the mer isomer. 

mer-[RhCl(py),(C,O,)] + 2HCl+ 

mer-[RhCl3(py)J+HG04 
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Fig. 1. Solubilities (given as concentrations of saturated 
solutions at 30°C) in water/pyridine of mer-[MX(py), 
(C,O,)]: ----, A(M = Rh, X = Cl-); -__-__- 

B(M = Ir, X = Cl-) ; -----, C(M = Rh, X = Br-)I 
The curve ---- is that reported’ for A, mer- 

[RhCl(py),(C,O,)], measured at 15” C. 



Equilibria in complexes of N-heterocyclic compounds-L1 

Table 2. Selected bond lengths (A) and angles (“) for B 

Ir-Cl 2.341(6) Ir-O( 1) 2.040( 11) 
Ir-O(2) 2.033( 11) Ir-N( 11) 2.045( 14) 
Ir-N(21) 2.045( 13) Ir-N(3 1) 2.061(11) 

O(l)-Ir-Cl 174.0(3) 0( l)-k-O(2) 83.0(5) 
O(2)-Ir-Cl 91.1(4) N( 1 l)-Ir-Cl 89.9(5) 
N( 1 l)-Ir-O(2) 87.6(5) N( 1 l)--Ir-0( 1) 90.0(5) 
N(21)-h-Cl 91.3(4) N(21)-Ir-O(1) 88.5(S) 
N(21)-h-O(2) 88.5(5) N(21)---Ir-N(l l) 176.0(5) 
N(31)-Ir-Cl 92.8(4) N(31)-Ir-O(1) 93.2(5) 
N(31)---Ir-O(2) 176.0(5) N(31)-Ir-N(l1) 93.4(6) 
N(31)-Ir-N(21) 90.4(5) 
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We have also shown this stereoretention for eq. (2) : 

mer-[IrCl(py),(C,O,)] + 2HCl-+ 

Our crystals of the product from eq. (1) indeed have 
the well-known spectroscopic properties of mer- 
[RhCl,(py),] (e.g. d-d absorption at 428 nm). They 
have the same space group and unit cell as those 
studied in crystallographic detail elsewhere.’ The 
available’ crystal and molecular structure of mer- 
[RhC13(py),], determined for a compound of 
unknown spectroscopic properties and provenance, 
is that of the isomer absorbing at 428 nm. 

The vibrational spectra of A and B (as solids) are 
also very similar. The IR spectrum of C, the bromo- 
rhodium member, is closely similar, but its crystal 
lattice is entirely different (data deposited). Despite 
this (and it may be that a second dimorph cry- 
stallizes in this case alone), the solubility properties 
of all three are alike. The vibrational spectra of these 
[MX(py)3(C,0,)] complexes are superimposable to 
360 cm-’ : the vibrations involving metal ions may 
be compared in A(Rh-Cl) and B(Ir-Cl), sug- 
gesting o(Rh-Cl) at 3 18 + 3 and u(Ir-Cl) at 290 
cm-‘. These frequencies are in line with others from 
the literature. 

We interpret the synergism in solubility as repre- 
senting the specific solvation of the polar meridian 
(P) by water and the non-polar (NP) meridian by 
pyridine. Describing the solvation enthalpies EAH 
as AHr or AHNp, in any solvent mixture we have : 

CAH = AH,+AHNp. 

Using suffixes W for water and H for heterocycle, 
we see that : 

&yw, ‘> AH,,,, ; A&J(H) ‘> Wwpvp 

Denoting the lattice enthalpy by U, dissolution 
occurs when 

CAH > U. 

We believe that : 

u > CA&[ = AH,,,, +Aff~~(wjl 

> =ffd = Afb,,, + Afbwl 

but < ZAH,[ = AHp(Wj+AH~~(nj], 

where M refers to the mixture. 
Our detailed thermodynamic and spectroscopic 

work on the molecular bases for these variations of 
AH will be published elsewhere. 

Figure 2 shows the molecular structure of B. 
Table 2 contains selected bond lengths and angles. 
The measured iridiumchloride bond length of 
2.341(6) A compares well with those measured for 
KJIrC1,JLo (2.36 A) and trans-[IrCl,(py),] 
Cl - 6H,0(2.35 A). The measured iridium-oxygen 
bond lengths are slightly longer in mer- 
[IrCl(py)3(C,0,)], at 2.033 and 2.040 A, than in 
K3[Ir(ox)3] - 3H,O” (1.96 A). In contrast, one of the 
Ir-N bond lengths in B (2.06 A) is identical to 
one of the lengths in trans-[IrCl,(py),]Cl * 6H,O. The 

Fig. 2. The molecular structure of B. 
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Table 3. Pyridine ring orientations REFERENCES 

B E F G H 1. 

a* 138.36 130.08 42.48 49.00 65.09 2. 
b 79.68 136.20 110.10 43.47 48.58 
C* 46.66 125.30 43.31 52.26 119.38 3. 
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R. D. Gillard and S. H. Mitchell, Polyhedron 1989, 
8, 2245. 

Values given are the dihedral angles between the pyri- 
dine ring planes and the meridional pysMX plane. a* and 
c* are the outer rings and are interchangeable due to the 
“chemical” symmetry of the molecule. Similar values 
correspond to a propeller arrangement, approximate 
supplementary values correspond to different orien- 
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B = This work ; E = mer-[CrCl,(py),] ;I2 

Wr3(mM ;I3 G = mer-[RhCl,(py),] ;9 

D’1Br3bvM.‘4 

F = mer- 
H = mer- ‘. 

9. 
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B38, 932. 
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10. 

other Ir-N bond lengths [2.045(14) A] are both 
shorter than those in trans-[IrCl,(py),]Cl - 6H20. A 

1 1 

particular feature of this and related structures is 
12’ 

’ 
the orientation of the pyridine rings with respect to 13. 
the plane through the iridium and the three nitro- 
gens. A comparison of data for these dihedral angles 14. 
is given in Table 3. 


