Vitamin-Synthesen mit Carben-Komplexen, III [1] Stereospezifische Synthese von Alkenylcarben-Komplexen des Chroms

Vitamin Syntheses via Carbene Complexes, III [1]

Stereospecific Synthesis of Alkenylcarbene Chromium Complexes

Karl Heinz Dötz*, Werner Kuhn und Klaus Ackermann

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstraße 4, D-8046 Garching

Herrn Prof. Dr. Dr. h. c. mult. E. O. Fischer zum 65. Geburtstag gewidmet

Z. Naturforsch. 38b, 1351-1356 (1983); eingegangen am 31. März 1983

Pentacarbonyl[alkenyl(methoxy)carbene]chromium Complexes, X-Ray Structure Determination

Addition of lithioalkenes to hexacarbonylchromium followed by alkylation with trimethyloxonium tetrafluoroborate provides a stereospecific route to pentacarbonyl-[alkenyl(methoxy)carbene]chromium complexes. For the *E*-butenylcarbene complex an approximately orthogonal dihedral angle between the carbene and the alkene plane is established by X-ray analysis.

Pentacarbonyl-Arylcarben-Komplexe des Chroms reagieren mit Alkinen unter Anellierung des Arylcarben-Liganden zu metall-koordinierten kondensierten Hydrochinon-Derivaten [2]. Dieses Syntheseprinzip konnte kürzlich auf die Darstellung von Vitaminen der K-Reihe übertragen werden [1, 3]. Im Zusammenhang mit Arbeiten über die Synthese von Vitamin E wurden nun auch Komplexe mit acyclischen Alkenylcarben-Liganden in die Untersuchungen einbezogen.

Präparative Ergebnisse

Carben-Komplexe, die in a-Stellung zum Carbenkohlenstoffatom eine Olefinfunktion tragen, wurden bisher meist durch Insertion von Alkinen in die Metall-Carben-Bindung [4, 5] oder durch nukleophile Addition von Carben-Komplex-Anionen an Carbonylverbindungen [6, 7] und Enolether [8] erhalten. Diese Verfahren haben allerdings den Nachteil, daß mit dem Auftreten von E/Z-Isomeren gerechnet werden muß. Ein stereospezifischer Zugang zu Alkenylcarben-Komplexen wird dagegen durch die traditionelle Addition von Lithiumorganylen an Metallcarbonyle [9] ermöglicht. Die Lithioalkene 1-4 sind unter Erhalt der Stereochemie durch Halogen-Metall-Austausch aus den Bromalkenen gut

* Sonderdruckanforderungen an Privatdozent Dr. K. H. Dötz. 0340-5087/83/1100-1351/\$ 01.00/0 zugänglich [10, 11]. Sie lassen sich durch Addition an Hexacarbonylchrom und nachfolgende Alkylierung mit Trimethyloxoniumtetrafluoroborat gezielt in die Alkenylcarben-Komplexe 5–8 überführen.

L	$\frac{1}{R^{1}} = \frac{R^{2}}{R^{3}}$	$\xrightarrow{1) Cr(CO)_6}$ $\xrightarrow{2) (CH_3)_3OBF_4}$	$(CO)_5 Cr = C C C R^2$ $R^1 R^3$ 5 - 8
	$\mathbf{R^{1}}$	$\mathbf{R^2}$	R ³
1, 5	н	н	C_6H_5
2, 6	CH_3	\mathbf{H}	\mathbf{H}
3, 7	CH_3	\mathbf{H}	CH_3
4, 8	CH_3	${ m CH_3}$	н

Die Carben-Komplexe werden bei tiefen Temperaturen aus Pentan in Form orange bis dunkelrot gefärbter Kristalle erhalten. Die Farbintensität nimmt dabei von 6, 8 über 7 nach 5 entsprechend dem verlängerten Chromophor zu. Im Gegensatz zu 5 und 8 zersetzen sich bei Raumtemperatur die ölig anfallenden Komplexe 6 und 7 spontan unter Erwärmen.

Spektroskopische Untersuchungen

Im IR-Spektrum zeigen die v(CO)-Absorptionsbanden der Verbindungen 5-8 (Tab. I) das Vorliegen einer Pentacarbonyl-Metall-Struktur an. Sie lassen darüber hinaus erkennen, daß nur beim Styrylcarben-Komplex 5 eine gegenüber den Alkoxy-(alkyl)carben-Komplexen geringfügig erhöhte Ladungsübertragung vom Carben-Liganden zum Metall vorliegt.

Tab. I. $\nu({\rm CO})\text{-}{\rm Absorptions frequenzen}$ (in cm^-1) von 5–8*.

$\mathbf{A_1}$	В	A_1	Е
$2060 \mathrm{m}$	1985 w	1962 s	1948 vs
$2064 \mathrm{m}$	1988 w	$1965 \mathrm{~s}$	1950 vs
$2065~\mathrm{m}$	1985 w	1950	vs(br)
$2067 \mathrm{m}$	$1988 \mathrm{w}$	$1965~{\rm s}$	1955 vs
	$\begin{array}{c} {\bf A_1} \\ \\ 2060 \ {\rm m} \\ 2064 \ {\rm m} \\ 2065 \ {\rm m} \\ 2067 \ {\rm m} \end{array}$	$\begin{tabular}{ c c c c c c } \hline A_1 & B \\ \hline $2060 $ m$ & $1985 $ w$ \\ \hline $2064 $ m$ & $1988 $ w$ \\ \hline $2065 $ m$ & $1985 $ w$ \\ \hline $2067 $ m$ & $1988 $ w$ \\ \hline \end{tabular}$	

* In n-Hexan.

Die ¹H–NMR-Spektren (Tab. II) können nur bedingt zur Ermittlung der Konfiguration an der C=C-Doppelbindung herangezogen werden. Während beim Styrylcarben-Komplex durch die Kopplungskonstante ${}^{3}J_{H,H} = 15,5 \text{ Hz}$ die trans-Anordnung bewiesen werden kann, ist bei den Butenylcarben-Komplexen 7 und 8 auf der Grundlage der long-range-Kopplung ${}^{4}J_{CH_3,H}$ keine zuverlässige Konfigurationszuordnung möglich. Die beiden Isomeren unterscheiden sich jedoch deutlich in der chemischen Verschiebung des olefinischen Wasserstoffatoms. Dessen Resonanzabsorption erscheint bei der E-Verbindung 7 - im Gegensatz zum Z-Komplex 8 - stark nach tieferem Feld verschoben, was durch eine Wasserstoffbrücken-Funktion gegenüber dem Methoxycarben-Sauerstoffatom be-

Tab. II. ¹H–NMR-Spektren von 5–8 (δ -Werte in ppm, int. TMS).

	OCH_3	R ¹	\mathbb{R}^2	R ³
5 ª	4,04(s,3)	$7,88(d,1)^{c}$	$6,73(d,1)^{c}$	6,90–7,30(m,5)
6 ^b	4,56(s,3)	$1,92(m,3)^{d,e}$	5,07 (m, 1) ^{e,f}	$4,82(m,1)^{d,f}$
7a	3,69(s,3)	$1,39(m,3)^{g,h}$	$5,67 (m,1)^{g,i}$	$1,39(m,3)^{h,i}$
8ª	3,29(s,3)	$1,\!44(m,3)^{k,1}$	$1,18(m,3)^{1,m}$	$4,42 (m,1)^{k,m}$

^a In [D₆]Benzol; ^b in [D₆]Aceton; ^c ${}^{3}J_{H,H} = 15,5 \text{ Hz}$; ^d ${}^{4}J_{H,H(cisoid)} = 1,5 \text{ Hz}$ [12]; ^e ${}^{4}J_{H,H(transoid)} = 1,0 \text{ Hz}$ [12]; ^f ${}^{2}J_{H,H}$ nicht bestimmt; ^g ${}^{4}J_{H,H}$ nicht bestimmt; ^h ${}^{5}J_{H,H} = 1,1 \text{ Hz}$; ⁱ ${}^{3}J_{H,H} = 7,0 \text{ Hz}$; ^k ${}^{4}J_{H,H} = 1,6 \text{ Hz}$; ^l ${}^{5}J_{H,H} = 1,6 \text{ Hz}$; ^m ${}^{3}J_{H,H} = 7,2 \text{ Hz}$.

dingt sein kann. Diese Zuordnung wurde zusätzlich durch eine Röntgenstrukturanalyse von 8 bestätigt.

Die ¹³C-NMR-Spektren (Tab. III) zeigen die für Carben-Komplexe typische extreme Tieffeldverschiebung des Carbenkohlenstoff-Signals. Auffällig in der Reihe der untersuchten Verbindungen ist die signifikant geringere Entschirmung des Styrylcarbenkohlenstoffatoms in 5, was auf eine Konjugation des olefinischen Systems mit dem Phenylsubstituenten R³ zurückzuführen ist. Die Spektren sind temperaturabhängig: Bei tiefen Temperaturen wird der doppelte Satz von Resonanzabsorptionen beobachtet. Dies ist, wie bereits früher an Alkoxy-(alkyl)carben-Komplexen gezeigt wurde [13], mit einer verlangsamten Rotation des Methoxysubstituenten um die Carbenkohlenstoff-Sauerstoff-Bindung zu erklären, wodurch beide Rotamere auf der NMR-Zeitskala nachweisbar werden.

Auch aus den ¹³C–NMR-Spektren ergeben sich Anhaltspunkte für eine chelatisierende Wasserstoffbrücken-Bindung innerhalb des Carbenliganden, sofern eine *cis*-Konfiguration des Carbenkohlenstoffs und eines β -ständigen olefinischen Wasserstoff-Substituenten gegeben ist. Bedingt durch den Oxoniumcharakter des Methoxysauerstoffatoms sollte das OCH₃-Signal eine entsprechende Tieffeldverschiebung erfahren, was bei den Verbindungen **5–7** relativ zum Z-Butenylcarben-Komplex 8 auch beobachtet wird.

Die massenspektrometrische Fragmentierung der Komplexverbindungen beginnt erwartungsgemäß mit dem schrittweisen Verlust der CO-Liganden [14]. Das carbonylfreie Chrom-Carben-Bruchstück stellt in der Regel den intensivsten Peak des Spektrums dar. Der weitere Zerfall setzt an der Methoxycarben-Gruppierung ein, zum Beispiel unter Abspaltung von Formaldehyd oder des Bruchstücks m/e 43 (CH₃ + CO).

Röntgenstrukturanalyse des Z-Butenylcarben-Komplexes 8

Eine am Komplex 8 durchgeführte Röntgenstrukturanalyse bestätigt das Vorliegen eines Zkonfigurierten Butenylcarben-Liganden. Darüber hinaus sollte eine mögliche Wechselwirkung zwischen der Alken-Funktion und der Metall-Carben-Bindung untersucht werden.

Das zentrale Chromatom besitzt eine nur geringfügig verzerrte oktaedrische Umgebung. Wie bei

K. H. Dötz et al. · Vitamin-Synthesen mit Carben-Komplexen

	C_{Carben}	COtrans	COcis	OCH_3	$C_{\alpha} =$	$=C_{\beta}$	R ³	\mathbb{R}^2	\mathbf{R}^{1}
5 ^a	333,6	225,4	217,4	67,3	139,4	131,9	133,8 134,9 i 130,3 129,9 o, m		r
6 ^{b, c}	356,5 352,4	$\substack{225,1\\224,5}$	$216,9 \\ 216,7$	$68, 6 \\ 65, 6$	$160,0 \\ 155,7$	$119,6 \\ 106,7$			$19,7 \\ 18,3$
7c, d	$356,8 \\ 344,9$	$\substack{225,4\\224,5}$	$\begin{array}{c} 217,4\\ 216,8 \end{array}$	$ 68,4 \\ 65,9 $	$154,3 \\ 149,0$	$119,4 \\ 113,8$	$13,3 \\ 12,2$		$15,2 \\ 14,7$
8e	361,5	224,4	216,8	63,7	147,0	114,1		14,4	19,3

Tab. III. ¹³C–NMR-Spektren von 5–8 (δ -Werte in ppm).

^a In [D₆]Aceton, Raumtemperatur; ^b in [D₆]Aceton, -65 °C; ^c doppelter Signalsatz durch Rotamere; ^d in [D₆]Aceton, -80 °C; ^e in [D₆]Benzol, Raumtemperatur.

Abb. 1. Molekülbau von 8.

Tab. IV. Die wichtigsten Abstände (in pm) und Winkel (in °).

Cr–C1	190,2(7)	Cr-C 2	189,0(7)	Cr–C3	190,6(6)
Cr-C4	189,6(6)	Cr-C5	187,3(5)	Cr-C 6	200,6(5)
C1-O1	114,2(9)	C2-O2	113,7(9)	C 3–O 3	112,6(7)
C4-O4	113,1(7)	C 5 - O 5	115.4(7)	C 6–O 6	130,1(6)
C 6–C 7	152,3(8)	C7-C10	158,9(11)	C7-C8	123,8(10)
C 8–C 9	151,2(14)	O 6-C 11	145,8(7)		
C1CrC2	176,7(3)	C1CrC3	90,3(3)	C1-Cr-C4	90,5(3)
C1-Cr-C5	93,1(3)	C1CrC6	86,4(2)	m C2-Cr-C3	89,7(3)
C 2– Cr – $C 4$	89,7(3)	m C2-Cr-C5	90,3(3)	m C2-Cr-C6	90,3(2)
C 3-Cr-C 4	178,0(3)	C 3–Cr–C 5	88,9(3)	C 3–Cr–C 6	89,9(2)
C4-Cr-C5	89,2(3)	C 4CrC 6	92,0(2)	C 5-Cr-C 6	178,7(2)
Cr-C6-C7	124,8(4)	Cr-C 6-O 6	119,0(4)	C7-C6-O6	115,8(5)
C6-C7-C8	123,9(6)	C 6-C 7-C 10	115,3(5)	C8-C7-C10	120,8(6)
C 6–O 6–C 11	123, 3(5)	С7-С8-С9	121,8(7)		

einer Reihe anderer Pentacarbonvl-Carben-Komplexe ist der Cr-C-Abstand bei der trans-CO-Gruppe gegenüber den cis-CO-Liganden im Sinne eines geringen trans-Effekts verkürzt. Während beim bisher einzigen strukturell untersuchten Alkenvlcarben-

Tab. V. Atomkoordinaten und isotrope Temperaturfaktoren von 8.

Atom	x/a	y/b	z/c	в
Cr	0,16293(6)	0,22157(4)	0,16075(6)	
C1	0,3209(5)	0,2530(3)	0,2450(4)	
01	0,4164(3)	0,2703(3)	0,2973(4)	
C2	0,0086(5)	0,1848(3)	0,0824(5)	
O2	0,0846(4)	0,1635(3)	0,0342(4)	
C3	0,1489(4)	0,2735(3)	0,2759(5)	
03	0.1385(3)	0,3064(2)	0,3412(3)	
C4	0,1735(4)	0,1727(3)	0,0423(4)	
04	0.1792(3)	0.1461(2)	0.0299(3)	
C 5	0.1116(5)	0.3175(3)	0.0720(5)	
05	0.0782(4)	0,3763(2)	0.0166(4)	
C 6	0,2191(4)	0,1203(3)	0,2591(4)	
C7	0,2483(6)	0,0412(4)	0,2241(4)	
C8	0.1825(6)	0.0179(4)	0.1823(5)	
C9	0.0683(6)	0.0191(4)	0.1698(7)	
C10	0.3698(5)	0.0398(3)	0.2404(5)	
O 6	0.2444(4)	0.1230(2)	0.3658(3)	
C11	0.2891(6)	0.0536(3)	0.4456(5)	
H91	0.056	0.032	0.189	4.0
H101	0.367	-0.007	0,206	4.0
H92	0.066	-0.058	0,220	4.0
H93	0.005	-0.030	0.090	4.0
H102	0.433	0.041	0.323	4.0
H103	0.379	0.086	0.204	4.0
H111	0.309	0.057	0,525	4.0
H112	0.361	0.036	0.456	4.0
H113	0,236	0,009	0,410	4,0

Komplex (CO)₅Cr=C(NHC₆H₁₁)C(OCH₃)=CH₂[15] eine koplanare Anordnung von Olefin- und Carben-Ebene gefunden wurde, bilden diese Strukturelemente bei 8 einen Diederwinkel von 81°. Dadurch ist - zumindest im festen Zustand - eine elektronische Wechselwirkung zwischen den beiden π -Systemen auszuschließen. Im Gang befindliche weitere Untersuchungen sollen zeigen, ob die Koplanarität durch eine ungünstige Gruppenhäufung verhindert wird [16].

Der Molekülbau ist der Abbildung zu entnehmen; die wichtigsten Abstände und Winkel sowie die Lage- und Temperaturparameter sind in den Tabellen IV bis VI zusammengestellt.

Experimenteller Teil

Alle Arbeiten wurden unter N₂- bzw. Argon-Schutz durchgeführt. Die Lösungsmittel waren sorgfältig getrocknet; die verwendeten Ausgangsverbindungen waren handelsübliche Produkte. E- und Z-2-Brom-2-buten wurden aus trans- bzw. cis-2-Buten dargestellt [10]. Die Lithiierung der Bromalkene wurde in Anlehnung an l.c. [11] durchgeführt.

IR-Spektren: Perkin-Elmer-Spektrometer 283 B. ¹H-NMR-Spektren: Jeol PMX 60.

¹³C-NMR-Spektren: Jeol FX 90 Q.

Massenspektren: Varian MAT 311 A.

Allgemeine Arbeitsvorschriften

Lithioalkene 1-4

10 mmol Bromalken werden unter Argon und unter Lichtschutz in 20 ml Ether (Darstellung von

Tab. VI. Anisotrope Temperaturfaktoren von 8. Der anisotrope Temperaturfaktor ist definiert: $\mathbf{T} = \exp[-\frac{1}{4(h^2a^{*2}\mathbf{B}_{11} + k^2b^{*2}\mathbf{B}_{22} + l^2c^{*2}\mathbf{B}_{33} + 2hka^{*}b^*\mathbf{B}_{12} + 2hla^{*}c^*\mathbf{B}_{13} + 2klb^{*}c^*\mathbf{B}_{23})]; \mathbf{B}_{11} \text{ in } 10^4 \text{ pm}^2.$

Atom	B11	B22	B 33	B12	B13	B 23
Cr	2.43(4)	2,08(3)	1.94(3)	-0,16(3)	1,12(3)	0,02(3)
C1	3.9(3)	2.9(2)	2,2(2)	-0.1(2)	1.5(2)	-0,0(2)
01	3.0(2)	5.4(2)	4.3(2)	-1,1(2)	1,5(2)	-0,5(2)
C 2	3.3(3)	2.7(2)	3.1(2)	-0.3(2)	1,9(2)	-0,5(2)
02	3.7(2)	5,7(2)	5,2(2)	-1,3(2)	2,5(2)	-1,7(2)
C3	2.8(2)	2,4(2)	3,2(2)	-0.4(2)	1,5(2)	-0,1(2)
03	4.8(2)	4.0(2)	4.6(2)	-0.5(2)	3,1(2)	-1,5(2)
C4	2,9(2)	3,4(2)	2,2(2)	-0,1(2)	1,2(2)	0, 3(2)
04	4.8(2)	5,6(2)	3,2(2)	-0.3(2)	2,6(2)	-0,6(2)
C 5	3.6(3)	3.1(2)	3,2(2)	-0.5(2)	1,4(2)	-0,0(2)
05	5,4(2)	3,5(2)	4.9(2)	0,0(2)	1,2(2)	1,5(2)
C 6	3.3(2)	2.9(2)	2.2(2)	-0.0(2)	1.7(2)	-0,3(2)
C7	6.1(4)	4.0(3)	1.9(2)	0.0(3)	1.4(2)	0,7(2)
C8	6.8(4)	4.7(3)	3.7(3)	-0.1(3)	2,5(3)	0,7(2)
C9	5.2(4)	5,6(3)	8,5(5)	-0.9(3)	5,1(4)	0,3(3)
C10	2.7(2)	4.8(3)	3,9(3)	0,3(2)	1,7(2)	-0,6(2)
06	7,7(3)	2.8(2)	2,9(2)	1,2(2)	3,6(2)	0,5(1)
C11	9.5(5)	3,3(3)	3,5(3)	2,0(3)	4,1(3)	1,2(2)

	Ausbeutea	Summenformel	Molmasseb	Analyse	Analyse [%]		
				C	H	\mathbf{Cr}	
5°	64	$\mathrm{C_{15}H_{10}CrO_6}$	Ber. 338,2 Gef. 338	Ber. 53,27 Gef. 53,72	$2,98 \\ 2,99$	$15,37 \\ 15,32$	
6 ^d	60	$\mathrm{C_{16}H_8CrO_6}$	Ber. 276,2 Gef. 276	Ber. 43,49 Gef. 43,47	$2,92 \\ 2,89$	$18,83 \\ 18,49$	
7e	58	$\mathrm{C_{11}H_{10}CrO_6}$	Ber. 290,2 Gef. 290	Ber. 45,53 Gef. 46,01	$3,47 \\ 3,50$	$17,92 \\ 17,78$	
8f	55	$\mathrm{C_{11}H_{10}CrO_6}$	Ber. 290,2 Gef. 290	Ber. 45,53 Gef. 45,44	$3,47 \\ 3,52$	$17,92 \\ 17,99$	

Tab. VII. Ausbeuten und Analysenwerte der Komplexe 5-8.

[%], bezogen auf Bromalken; b Massenspektrometr.; c Pentacarbonyl[methoxy(Z-2-phenylethenyl)carben]-chrom; d Pentacarbonyl[methoxy(2-propenyl)carben]chrom; e Pentacarbonyl[E-2-butenyl(methoxy)carben]-chrom; f Pentacarbonyl[Z-2-butenyl(methoxy)carben]chrom.

1 und 2) bzw. 20 ml THF (Darstellung von 3 und 4) gelöst und bei -78 °C mit 20 mmol einer 1,6-m-Lösung von tert-Butyllithium in Pentan versetzt. Die entstehende gelbe Lösung wird nach 3-stdg. Nachreaktion bei -78 °C direkt weiterverwendet.

Die analytischen Daten der Komplexverbindungen 5-8 sind in Tab. VII zusammengefaßt.

Röntgenstrukturanalyse von 8

Pentacarbonyl[alkenyl(methoxy)carben]chrom-Komplexe 5-8

Zu einer Aufschlämmung von 10 mmol Cr(CO)6 in 150 ml Ether (Darstellung von 5 und 6) bzw. THF (Darstellung von 7 und 8) wird bei -60 °C unter Argon und Lichtschutz innerhalb von 15 min die äquimolare Menge Lithioalken getropft. Dabei tritt eine Farbvertiefung von gelb nach braun auf. Man hält noch 30 min bei -60 °C und läßt anschließend auf Raumtemperatur kommen.

Nach Entfernen des Lösungsmittels bei Raumtemperatur wird der Rückstand in 150 ml Pentan und 30 ml Wasser aufgenommen und mit einem geringen Überschuß an Trimethyloxoniumtetrafluoroborat versetzt. Nach dem Abtrennen der Pentan-Phase wird noch mehrmals mit Pentan extrahiert. Die vereinigten organischen Phasen werden über Na₂SO₄ filtriert. Die Chromatographie an Kieselgel mit Pentan bzw. Pentan/CH₂Cl₂ (Isolierung von 5) liefert rote Kristalle (5, 8). Zur Isolierung von analysenreinem 6 und 7 wurde bei -78 °C aus Pentan kristallisiert.

- [1] II. Mitteilung: K. H. Dötz, I. Pruskil und J. Mühlemeier, Chem. Ber. 115, 1278 (1982).
- [2] K. H. Dötz und R. Dietz, Chem. Ber. 111, 2517 (1978).
- [3] K. H. Dötz und I. Pruskil, J. Organomet. Chem. 209, C 4 (1981).
- [4] K. H. Dötz, Chem. Ber. 110, 78 (1977).
- [5] K. H. Dötz und I. Pruskil, Chem. Ber. 111, 2059 (1978).

Kristalldaten: Raumgruppe C2/c (Z = 8), a =1403,2(9), b = 1646,0(1), c = 1375,6(6) pm, $\beta =$ $124,47(4)^{\circ}, V = 2619 \times 10^{6} \text{ pm}^{3}, d(\text{ber.}) = 1,47,$ Kristallgröße: $0.2 \times 0.2 \times 0.3$ mm.

Mo-K_{α}-Strahlung, $\lambda = 71,069$ pm, lin. Absorptionskoeffizient 9,3 cm⁻¹, 2073 unabhängige Reflexe, $2^{\circ} < 2\theta < 48^{\circ}$, Meßtemperatur — 40° C, 1697 Strukturfaktoren größer $3,92 \sigma$, Lösung durch Schweratommethode, 163 verfeinerte Parameter, $R_1 = 0.06, R_2 = 0.063.$

Wir danken Herrn Prof. E. O. Fischer für die Unterstützung mit Institutsmitteln sowie der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Förderung dieser Arbeit. Die Aufnahme der ¹³C-NMR-Spektren wurde liebenswürdigerweise von Herrn Privatdozent Dr. H. G. Alt und Herrn Dr. W. Ehrenreich, Universität Bayreuth, die Aufnahme der Massenspektren von Herrn Privatdozent Dr. F. R. Kreissl und Herrn B. Grimberger vorgenommen. Herrn Riede danken wir für die Diffraktometer-Messungen, Frl. U. Graf und Herrn M. Barth für die Elementaranalysen.

- [6] C. P. Casey, R. A. Boggs und R. L. Anderson,
- J. Am. Chem. Soc. 94, 8947 (1972).
 C. P. Casey und W. R. Brunsvold, J. Organomet. Chem. 77, 345 (1974). [7]
- [8] M. Rudler-Chauvin und H. Rudler, J. Organomet. Chem. **212**, 203 (1981). [9] Vgl. E. O. Fischer und J. W. Wilson, J. Organo-
- met. Chem. 57, C 63 (1973).
- [10] A. S. Dreiding und R. J. Pratt, J. Am. Chem. Soc. 76, 1902 (1954).

- [11] D. Seebach und H. Neumann, Chem. Ber. 107,
- D. seebach und H. Neumann, Chem. Ber. 107, 847 (1974).
 Vgl. E. B. Whipple, J. H. Goldstein und L. Mandell, J. Am. Chem. Soc. 82, 3010 (1960).
 C. G. Kreiter und E. O. Fischer, Angew. Chem. 81, 780 (1969); Angew. Chem. Int. Ed. Engl. 8, 761 (1969).
- [14] J. Müller und J. A. Connor, Chem. Ber. 102, 1148 (1969).
- [15] G. Huttner und S. Lange, Chem. Ber. 103, 3149 (1970).
- [16] K. H. Dötz, W. Kuhn und U. Thewalt, unver-öffentlichte Ergebnisse.