

Experimental study of the cold mercury dimer

A. Zehnacker, M. C. Duval, C. Jouvet, C. LardeuxDedonder, D. Solgadi, B. Soep, and O. Benoist d'Azy

Citation: The Journal of Chemical Physics **86**, 6565 (1987); doi: 10.1063/1.452401 View online: http://dx.doi.org/10.1063/1.452401 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/86/11?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

An experimental study of cold helium dispersion in air AIP Conf. Proc. **613**, 1452 (2002); 10.1063/1.1472177

An interatomic potential for mercury dimer J. Chem. Phys. **114**, 5545 (2001); 10.1063/1.1351877

Experimental studies of mercury molecules J. Chem. Phys. **66**, 5656 (1977); 10.1063/1.433887

Experimental Study of Thermal Convection in a Vertical Cylinder of Mercury Heated from Below Phys. Fluids **12**, 1733 (1969); 10.1063/1.1692736

Experimental Study of Arc Stability. II. An Investigation of Mercury Arc Stability J. Appl. Phys. **32**, 1528 (1961); 10.1063/1.1728390

duPont, Chevron and TRW are gratefully acknowledged.

^{a)} Weizmann Postdoctoral Fellow.

- ^{b)} Presidential Young Investigator Awardee and Alfred P. Sloan Fellow.
- ¹Time-Resolved Vibrational Spectroscopy, edited by A. Laubereau and M. Stockberger (Springer, Berlin, 1985).
- ²M. R. Farrar, L. R. Williams, Y. -X. Yan, L. -T. Cheng, and K. A. Nelson, in *Ultrafast Phenomena V*, edited by G. R. Fleming and A. E. Siegman (Springer, Berlin, 1986), p. 532, and references therein.
- ³S. Ruhman, L. R. Williams, A. G. Joly, B. Kohler, and K. A. Nelson, J. Phys. Chem. (in press).
- ⁴Y. -X. Yan, E. B. Gamble, Jr., and K. A. Nelson, J. Chem. Phys. **83**, 5391 (1985).
- ⁵T. Sizer, J. D. Kafka, I. N. Duling, C. W. Gabel, and G. A. Mourou, IEEE
- J. Quantum Electron. QE-19, 506 (1983).

- ⁶DMS RAMAN / IR Atlas, edited by B. Schrader and W. Meier (Verlag Chemie GmbH, Weinheim, 1974).
- ⁷B. I. Green and R. C. Farrow, Chem. Phys. Lett. **98**, 273 (1983); P. A. Madden, in *Ultrafast Phenomena IV*, edited by D. H. Auston and K. B. Eisenthal (Springer, Berlin, 1984), p. 244.
- ⁸S. Bratos and E. Marchal, Phys. Rev. A 4, 1078 (1971).
- ⁹Y. -X. Yan, L. -T. Cheng, and K. A. Nelson, Adv. Raman Spectrosc. (in press).
- ¹⁰K. A. Nelson, R. J. D. Miller, D. R. Lutz, and M. D. Fayer, J. Appl. Phys. 53, 1144 (1982).
- ¹¹M. J. Rosker, R. W. Wise, and C. L. Tang, Phys. Rev. Lett. **57**, 321 (1986); K. A. Nelson and L. R. Williams, *ibid.* **58**, 745 (1987); J. M. Y. Ha, H. J. Maris, W. M. Risen, Jr., J. Tauc, C. Thomsen, and Z. Vardeny, *ibid.* **57**, 3302 (1986).
- ¹²K. P. Cheung and D. H. Auston, Phys. Rev. Lett. 55, 2152 (1985).

Experimental study of the cold mercury dimer

A. Zehnacker, M. C. Duval, C. Jouvet, C. Lardeux-Dedonder, D. Solgadi, B. Soep, and O. Benoist d'Azy

Laboratoire de Photophysique Moléculaire du CNRS Bât. 213-Université Paris-Sud 91405 Orsay, France

(Received 20 January 1987; accepted 19 March 1987)

The experimental setup has been previously described.² The cold mercury dimer is obtained in a continuous supersonic expansion of mercury in argon, through a $D = 200 \,\mu\text{m}$ nozzle ($P_0 = 3 \,\text{atm}$). The dimer concentration increases by two orders of magnitude when Ar is used as carrier gas instead of He (in the same conditions of temperature and pressure). The mercury is kept under an oven maintained at 300 °C (mercury vapor pressure of $\simeq 200 \,\text{Torr}$). The two laser beams (excitation and probe) cross the jet at x/D = 30, and are delayed by $\simeq 15 \,\text{ns}$. The free Hg(${}^{3}P_{0} \rightarrow 7{}^{3}S_{1}$) transition.

 Hg_2 has been a challenge for potential calculations.³ The lowest predicted states are:

The ground state of the mercury dimer, correlated with $Hg(^{1}S_{0}) + Hg(^{1}S_{0})$, is a 0_{g}^{+} state.

The lowest u excited state 0_u^- correlates with the $Hg({}^{3}P_0) + Hg({}^{1}S_0)$ configuration and cannot be excited optically.

Two states with u symmetry $(1_u \text{ and } 0_u^+ \text{ correlating to } \text{Hg}({}^3P_1) + \text{Hg}({}^1S_0)$ can be excited: the 1_u state studied here is strongly bound while the 0_u^+ state is very weakly bound.

The fluorescence excitation spectrum of the cold mercury dimer in the 270–260 nm spectral region is presented in Fig. 1. It shows a long vibrational progression in the 1_u state. Each vibrational band has a substructure, 11 lines separated by about 5 cm⁻¹ [Fig. 2(a)]. This structure can be assigned to an isotopic effect as for Hg–Xe complexes.^{2,4} In natural mercury, six isotopes [$M_i = 198$, 199, 200, 201, 202, 204] are present in great abundance, the 21 possible combinations of the *i*, *j* isotopes lead to only 12 combinations of different ($M_i + M_i$) masses and all the lines can be assigned to different isotopic combinations as shown in Fig. 2(b) (the 204– 204 combination, very weak, is not observed). From the strong isotopic shift and the linear Birge–Sponer plot, it was possible to deduce the vibrational quantum number v' of the excited vibrational bands, the vibrational frequency $\omega'_e = 133 \pm 1 \text{ cm}^{-1}$, and the anharmonicity $\omega_e x'_e$ $= 0.52 \pm 0.02 \text{ cm}^{-1}$ of the 1_u state, by using the wellknown formula⁵

$$\Delta v_{12} = \mathbf{v}'(1-\rho_{12})\Delta G_{v'+1/2} \text{ with } \rho_{12} = (\mu_1/\mu_2)^{1/2},$$

 μ_1, μ_2 being the reduced masses of two isotopic Hg₂ molecules and $\Delta G_{v'+1/2}$ the frequency separation of the successive v' and v' + 1 vibrational bands.

Hence in the Morse potential approximation, we can

FIG. 1. Fluorescence excitation spectrum of the cold Hg₂, the arrow indicates the energy of the free Hg(${}^{3}P_{0}$) $P_{0}(Ar) = 3$ atm, $T_{Hg} = 300 \,^{\circ}C$, $D = 200 \,\mu$ m, x/D = 30.

0021-9606/87/116565-02\$02.10

^{55.33.16.124} On: Sun. 23 Nov 2014 15:11:48

FIG. 2. (a) Expended view of the $v' = 60 \pm 1$ vibrational band. (b) Simulation of the isotopic substructure. (c) Expended view of Fig. 1, v' = 63, 64, 65, 66 ± 1 . (d) Action spectrum: Excitation of the Hg₂ 1_u state probe of the Hg(³P₀) free mercury through laser induced fluorescence. Below the dissociation limit of the 0_u^- state, no signal appears. Above the dissociation limit, Hg(³P₀) is obtained through the collision-induced relaxation. $1_u \rightarrow 0_u^- \rightarrow \text{Hg}(^3P_0)$. (d.t.: dissociation threshold.)

deduce the well depth of this state $D_e(1_u) = 8450 \pm 200 \text{ cm}^{-1}$.

We could get a precise value of the ground state binding energy, studying the collision induced electron relaxation of $Hg_2(1_u)$ in the jet provided by the mechansim:

$$\mathrm{Hg}_{2}(x\,0_{g}^{+}) + \mathrm{h}\nu$$

 \rightarrow Hg₂(1_u,v') + collision

$$\rightarrow$$
 Hg₂(0⁻_u, dissociative) \rightarrow Hg(³P₀) + Hg(¹S₀).

This process was observed to be collision induced. Moreover, it has been shown³ that no matrix elements directly couple the 1_u and the 0_u^- states in Hg₂. However, collisions will induce the relaxation by destroying the $C_{\infty v}$ symmetry of the molecule. This process was not observed in the Hg-Ar⁶ complex owing to a bad overlap of the bound and continuum wave functions, while the excitation of v' = 60 in the Hg₂ case increases the overlap by orders of magnitude.

The resulting free mercury in the ${}^{3}P_{0}$ state detected by laser-induced fluorescence will be observed only if the energy of the excited $(1_{u}, v')$ state exceeds the dissociation limit of 0_{u}^{-} to ${}^{3}P_{0}$. Using this threshold effect we can deduce the ground state 0_{g}^{+} binding from the energy difference between the cutoff frequency of the Hg(${}^{3}P_{0}$) signal [37 990 \pm 20 cm⁻¹, Fig. 2(d)] and the energy of the Hg(${}^{3}P_{0}$) free mercury (37 645 cm⁻¹). We assumed a cold jet, i.e., the translational average energy being less than 5 cm⁻¹, hence we find D_{0} ($X0_{g}^{+}$) = 345 \pm 20 cm⁻¹. This measurement implies that the 0_{u}^{-} potential has no barrier at long distance, in agreement with theoretical works.³ From this measurement we can deduce the binding energy of the 1_{u} excited state to be 8260 \pm 200 cm⁻¹.

Finally, assuming two Morse potentials, we can deduce the spectroscopic parameters for the A_{1_u} and $X_{0_g}^+$ states, as well as the difference in equilibrium distance between these two states $(R'_e - R''_e = 1.1 \pm 0.1 \text{ Å})$. In view of this result, the value $R''_e = 3.3 \text{ Å}$ admitted in the literature^{1,3} seems much too small.)

$$X 0_{g}^{+} D_{e} = 350 \pm 20 \text{ cm}^{-1} \omega_{e}^{"} = 19 \pm 2 \text{ cm}^{-17}$$
$$\omega_{e} x_{e}^{"} = 0.25 \text{ cm}^{-1},$$
$$A 1_{u} D_{e} = 8260 \pm 200 \text{ cm}^{-1} \omega_{e}^{'} = 133 \pm 1 \text{ cm}^{-1}$$
$$\omega_{e} x_{e}^{'} = 0.52 \text{ cm}^{-1}.$$

These are preliminary results on the mercury dimer: a full analysis of higher excited states is in progress.

¹See for a review: M. P. Morse, Chem. Rev. 86, 1049 (1986).

⁷From emission spectrum (to be published).

²M-C. Duval, C. Jouvet, and B. Soep, Chem. Phys. Lett. **119**, 317 (1985). ³(a) F. H. Mies, W. J. Stevens, and M. Kraus, J. Mol. Spectrosc. **72**, 303

^{(1975); (}b) K. C. Celestino and W. C. Emler, J. Chem. Phys. 81, 1872 (1984).
⁴K. Yamanouchi, J. Fukuyama, H. Horiguchi, S. Tsuchiya, K. Fuke, T.

Saito, and K. Kaya, J. Chem. Phys. 85, 1806 (1986).

⁵G. W. Herzberg, Spectra of Diatomic Molecules. I. (Van Nostrand, New York, 1966), p. 143.

⁶C. Jouvet and B. Soep, J. Chem. Phys. 80, 2229 (1984).

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 155 33 16 124 Op; Sup. 23 Nov 2014 15:11:48