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Abstract: Commercially available diosgenin has been used as start-
ing material for a highly efficient synthesis of (25R)-dafachronic
acids and (25R)-cholestenoic acid, potential ligands for the receptor
DAF-12 in the nematode Caenorhabditis elegans.
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Under unfavorable conditions, such as scarcity of food or
overcrowding, the nematode Caenorhabditis elegans en-
ters diapause and forms so-called dauer larvae. The hor-
monal receptor DAF-12 appears to play a key role in this
process.1 Recently, Mangelsdorf et al. reported novel ste-
roidal metabolites from C. elegans identified as 3-keto-
cholesten-26-oic acids. These steroids function as ligands
for the orphan receptor DAF-12 and have been described
as (25R)-D7-dafachronic acid (1) and (25R)-D4-dafachro-
nic acid (2) as well as their 25S-diastereomers (Figure 1).2

The synthesis of both diastereomers of D4-dafachronic
acid starting from the noncommercial (25R)- and (25S)-
26-hydroxycholesterol was described by Mangelsdorf et
al.2 It was found that (25R)-D4-dafachronic acid (2) was
significantly less active than its 25S-isomer. Gill et al.
have shown that (25S)-cholestenoic acid represents anoth-
er ligand for DAF-12.3 However, the 25R-isomer 3 exhi-

bited no activity at all. In an independent synthetic study,
Khripach et al. reported the syntheses of (25R)- and (25S)-
D4-dafachronic acid as well as (25R)- and (25S)-choles-
tenoic acid via a multistep elaboration of the steroid side
chain.4 In 2007, Corey et al. described the synthesis of
(25S)-D7-dafachronic acid via a diastereoselective ruthe-
nium-catalyzed hydrogenation.5 More recently, they re-
ported a synthesis of (25R)-D7-dafachronic acid (1) from
b-ergosterol (10 steps and 13% overall yield).6

In the course of our project directed towards the synthesis
of hormonally active cholesterol derivatives,1,7 we be-
came interested in a diastereoselective route to the (25R)-
cholesten-26-oic acids 1–3. We recognized commercially
available diosgenin (4) as perfect starting material since it
provides the 25R-configuration present in the target com-
pounds 1–3.

Using a modification of the procedure reported by Will-
iams, the Clemmensen reduction of diosgenin afforded
the triol 5 in 85% yield on large scale (Scheme 1).8 Selec-
tive protection of the C-3b and C-26 hydroxy groups us-
ing TBSCl and DBU to 6 followed by removal of the C-16
hydroxy group led to the disilyl ether 7 in 76% overall
yield.8 Several methods are known for allylic oxidations
at C-7 of steroids (Table 1).9–11 We found that Chan-

Figure 1 (25R)-Cholesten-26-oic acids (1–3) and diosgenin (4)
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drasekaran’s procedure9 provides the best results for ally-
lic oxidation of 7 to the cholest-5-en-7-one 8.

Transfer hydrogenation of 8 provided the ketone 9 in high
yield. In order to establish the D7-double bond, we re-
quired only the 7a-alcohol 10 for stereoelectronic reasons.
However, reduction with lithium aluminum hydride at
low temperature provided the 7a-alcohol 10 in 59% yield
along with the corresponding 7b-alcohol in 31% yield.

Grignard reduction using isopropylmagnesium chloride in
diethyl ether afforded diastereoselectively the 7a-alcohol
10 in 70% yield. Elimination of the 7a-alcohol 10 with
thionyl chloride in pyridine led quantitatively to the
cholest-7-ene 11.12 Finally, desilylation with TBAF to the
diol 12 and subsequent Jones oxidation provided (25R)-
D7-dafachronic acid (1).13

A stereoselective route to (25R)-D4-dafachronic acid (2)
proved to be more difficult. Desilylation of 7 provided
(25R)-26-hydroxycholesterol in 89% yield (Scheme 2).
However, Jones oxidation of (25R)-26-hydroxycholester-
ol did not provide the desired (25R)-D4-dafachronic acid
(2) but the (25R)-3,6-diketocholest-4-en-26-oic acid (13)
in 56% yield. Using PDC in N,N-dimethylformamide as
oxidizing agent14 provided the undesired compound 13 in
74% yield.13 Oxidation of cholesterols was known to af-
ford cholest-4-en-3,6-diones using Jones reagent,15

PCC,16 or TPAP/NMO.17 Therefore, we decided to oxi-
dize the C-3 and C-26 hydroxy groups in two different

Table 1 Allylic Oxidation of 7 to the Cholest-5-en-7-one 8

Reaction conditions Yield 
(%)

PDC (4.0 equiv), t-BuOOH (4.0 equiv), C6H6, 0 °C to r.t., 28 h9 57

Mn(OAc)3 (10 mol%), t-BuOOH (5.1 equiv), EtOAc, r.t., 2 d10 47

CrO3 (18 equiv), DMP (18 equiv),a CH2Cl2, –20 °C to –10 °C, 
1 h11

56

a DMP = 3,5-dimethyl-1H-pyrazole

Scheme 1 Synthesis of (25R)-D7-dafachronic acid (1). Reagents and conditions: a) Zn, 19% HCl, EtOH, reflux, 2 h, 85%; b) TBSCl, DBU,
THF, r.t., 16 h, 85%; c) MsCl, pyridine, 0 °C to r.t., 16 h; d) LiAlH4, Et2O, 0 °C to reflux, 4 h, 89% over 2 steps; e) PDC, t-BuOOH, benzene,
0 °C to r.t., 28 h, 57%; f) Pd/C, ammonium formate, MeOH–EtOAc (3:4), reflux, 8 h, 90%; g) i-PrMgCl, Et2O, r.t., 1 h, 70%; h) SOCl2, pyridine,
0 °C, 1 h, 100%; i) TBAF, THF, reflux, 24 h, 93%; j) CrO3, H2SO4, acetone, 0 °C, 1 h, 74%.
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steps. This strategy required a differentiation between all
three hydroxy groups at the stage of the triol 5.

Pivaloyl chloride represents an excellent reagent for se-
lective acylations of primary in the presence of secondary
hydroxy groups.18 However, Williams reported a double
pivaloylation of the triol 5 at C-3b and C-26.8c Treatment
of 5 with only 1.1 equivalents of pivaloyl chloride led to a
selective esterification at C-26 to provide 14 in 81% yield
(Scheme 3). Silylation of the C-3b hydroxy group of 14
using TBSCl provided 15 in 79% yield. Thus, sequential
introduction of the pivaloyl and tert-butyldimethylsilyl
protecting groups resulted in a perfect differentiation
between all three hydroxy groups. Mesylation of the hy-
droxy group at C-16 and subsequent reduction removed
also the pivaloyl group at C-26 to afford the 26-hydroxy
derivative 16 in 89% yield. Acylation of 16 to 17 followed
by cleavage of the silyl ether using TBAF provided 18 in
88% yield. Using the classical Oppenauer oxidation was
found to avoid allylic oxidation at C-6 (see Scheme 2) and
afforded the ketone 19 in 70% yield. Saponification of the
acetate to 20 followed by Jones oxidation provided (25R)-
D4-dafachronic acid (2).13

Compound 16 represents a crucial intermediate, which
has been exploited also for the synthesis of (25R)-cholest-
5-en-26-oic acid (3) (Scheme 4). Oxidation of 16 using
PDC in dichloromethane14 to the aldehyde followed by
further oxidation with sodium chlorite afforded the acid
21 in 82% yield over both steps. Direct oxidation of 16 to
21 by using PDC in DMF as solvent gave only 45% yield.
Desilylation of the acid 21 by the usual method (TBAF in
THF at reflux) led only to impure (25R)-cholestenoic acid
(3) (67% yield). Chromatographic purification of 3
proved to be difficult. Therefore, desilylation of 21 was
carried out with catalytic amounts of concentrated sulfuric
acid in methanol at reflux to provide the methyl ester 22
in 84% yield. Purification of 22 by flash chromatography
and subsequent saponification using lithium hydroxide af-
forded pure (25R)-cholestenoic acid (3) in 97% yield.13

In conclusion, we have developed highly efficient and ste-
reoselective syntheses of (25R)-D7-dafachronic acid (1)
(10 steps, 16% overall yield), (25R)-D4-dafachronic acid
(2) (10 steps, 22% overall yield), and (25R)-cholestenoic
acid (3) (9 steps, 32% overall yield) starting from com-
mercially available diosgenin (4). These compounds are
much less active than described for the corresponding

Scheme 2 Synthesis of (25R)-3,6-diketocholest-4-en-26-oic acid (13). Reagents and conditions: a) TBAF, THF, reflux, 20 h, 89%; b) PDC,
DMF, r.t., 18 h, 74%.
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25S-diastereoisomers.2 However, they could be used for
the clarification of basic principles of dauer larva forma-
tion and biological studies in this direction are underway.
By use of the present methodology, yamogenin, the 25S-
diastereoisomer of diosgenin (4), provides a direct and
stereoselective access to the (25S)-cholesten-26-oic acids.
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